An Unsupervised Spectrogram Cross-Correlation Method to Assess ELM Triggering Efficiency by Pellets
Abstract
:1. Introduction
2. Diagnostics
2.1. JET Pellet Injection and Pellet Monitoring System
2.2. Beryllium Spectroscopy
2.3. Diamond UV Sensor
3. Methodology
- ELMs’ and pellets’ peaks detection (Section 3.1).
- Spectrogram cross-correlation (SPCC) (Section 3.2).
- Clustering of the SPCC signals (Section 3.3).
3.1. ELMs’ and Pellet’ Peaks Detection
3.2. Spectrogram Cross-Correlation
3.3. Clustering of the SPCC Signals
4. Application to Data
4.1. Testing the Methodology on a Reference Pulse: The 92238 Case
4.2. Testing on Discharges with Different Plasma Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wagner, F.; Becker, G.; Behringer, K.; Campbell, D.; Eberhagen, A.; Engelhardt, W.; Fussmann, G.; Gehre, O.; Gernhardt, J.; Gierke, G.V.; et al. Regime of Improved Confinement and High Beta in Neutral-Beam-Heated Divertor Discharges of the ASDEX Tokamak. Phys. Rev. Lett. 1982, 49, 1408–1412. [Google Scholar] [CrossRef]
- Connor, J.W. Edge-localized modes—Physics and theory. Plasma Phys. Control. Fusion 1998, 40, 531–542. [Google Scholar] [CrossRef]
- Igochine, V. Active Control of Magneto-hydrodynamic Instabilities in Hot Plasmas; Springer: Berlin/Heidelberg, Germany, 2015; Volume 83. [Google Scholar]
- Zohm, H. Edge localized modes (ELMs). Plasma Phys. Control. Fusion 1996, 38, 105–128. [Google Scholar] [CrossRef]
- Hill, D. A review of ELMs in divertor tokamaks. J. Nucl. Mater. 1997, 241–243, 182–198. [Google Scholar] [CrossRef] [Green Version]
- Leonard, A.W. Edge-localized-modes in tokamaks. Phys. Plasmas 2014, 21, 090501. [Google Scholar] [CrossRef]
- Shimada, M.; Campbell, D.J.; Mukhovatov, V.; Fujiwara, M.; Kirneva, N.; Lackner, K.; Nagami, M.; Pustovitov, V.D.; Uckan, N.; Wesley, J.; et al. Chapter 1: Overview and summary. Nucl. Fusion 2007, 47, S1–S17. [Google Scholar] [CrossRef]
- Tobita, K.; Nishio, S.; Enoeda, M.; Kawashima, H.; Kurita, G.; Tanigawa, H.; Nakamura, H.; Honda, M.; Saito, A.; Sato, S.; et al. Compact DEMO, SlimCS: Design progress and issues. Nucl. Fusion 2009, 49, 075029. [Google Scholar] [CrossRef]
- Wade, M. Physics and engineering issues associated with edge localized mode control in ITER. Fusion Eng. Des. 2009, 84, 178–185. [Google Scholar] [CrossRef]
- Lang, P.T.; Degeling, A.W.; Lister, J.B.; Martin, Y.R.; Mc Carthy, P.J.; Sips, A.C.C.; Suttrop, W.; Conway, G.D.; Fattorini, L.; Gruber, O.; et al. Frequency control of type-I ELMs by magnetic triggering in ASDEX Upgrade. Plasma Phys. Control. Fusion 2004, 46, L31–L39. [Google Scholar] [CrossRef]
- Gerhardt, S.P.; Ahn, J.W.; Canik, J.; Maingi, R.; Bell, R.; Gates, D.; Goldston, R.; Hawryluk, R.; Le Blanc, B.P.; Menard, J.; et al. First observation of ELM pacing with vertical jogs in a spherical torus. Nucl. Fusion 2010, 50, 064015. [Google Scholar] [CrossRef] [Green Version]
- De La Luna, E.; Chapman, I.; Rimini, F.; Lomas, P.; Saibene, G.; Koechl, F.; Sartori, R.; Saarelma, S.; Albanese, R.; Flanagan, J.; et al. Understanding the physics of ELM pacing via vertical kicks in JET in view of ITER. Nucl. Fusion 2015, 56, 026001. [Google Scholar] [CrossRef]
- Kirk, A.; Nardon, E.; Akers, R.; Becoulet, M.; De Temmerman, G.; Dudson, B.; Hnat, B.; Liu, Y.; Martin, R.; Tamain, P.; et al. Resonant magnetic perturbation experiments on MAST using external and internal coils for ELM control. Nucl. Fusion 2010, 50, 034008. [Google Scholar] [CrossRef] [Green Version]
- Canik, J.; Maingi, R.; Evans, T.; Bell, R.; Gerhardt, S.; Kugel, H.; Leblanc, B.; Manickam, J.; Menard, J.; Osborne, T.; et al. ELM destabilization by externally applied non-axisymmetric magnetic perturbations in NSTX. Nucl. Fusion 2010, 50, 034012. [Google Scholar] [CrossRef]
- Fenstermacher, M.E.; Evans, T.E.; Osborne, T.H.; Schaffer, M.J.; Aldan, M.P.; Degrassie, J.S.; Gohil, P.; Joseph, I.; Moyer, R.A.; Snyder, P.B.; et al. Effect of island overlap on edge localized mode suppression by resonant magnetic perturbations in DIII-D. Phys. Plasmas 2008, 15, 056112. [Google Scholar] [CrossRef] [Green Version]
- Mukhovatov, V.; Shimada, M.; Chudnovskiy, A.N.; Costley, A.E.; Gribov, Y.; Federici, G.; Kardaun, O.; Kukushkin, A.S.; Polevoi, A.; Pustovitov, V.D.; et al. Overview of physics basis for ITER. Plasma Phys. Control. Fusion 2003, 45, A235–A252. [Google Scholar] [CrossRef]
- Lang, P.; Conway, G.; Eich, T.; Fattorini, L.; Gruber, O.; Günter, S.; Horton, L.; Kalvin, S.; Kallenbach, A.; Kaufmann, M.; et al. ELM pace making and mitigation by pellet injection in ASDEX Upgrade. Nucl. Fusion 2004, 44, 665–677. [Google Scholar] [CrossRef]
- Lang, P.; Lackner, K.; Maraschek, M.; Alper, B.; Belonohy, E.; Gál, K.; Hobirk, J.; Kallenbach, A.; Kalvin, S.; Kocsis, G.; et al. Investigation of pellet-triggered MHD events in ASDEX Upgrade and JET. Nucl. Fusion 2008, 48, 095007. [Google Scholar] [CrossRef] [Green Version]
- Mansfield, D.; Roquemore, A.; Carroll, T.; Sun, Z.; Hu, J.; Zhang, L.; Liang, Y.; Gong, X.; Li, J.; Guo, H.; et al. First observations of ELM triggering by injected lithium granules in EAST. Nucl. Fusion 2013, 53, 113023. [Google Scholar] [CrossRef]
- Stober, J.; Lomas, P.; Saibene, G.; Andrew, Y.; Belo, P.; Conway, G.; Herrmann, A.; Horton, L.; Kempenaars, M.; Koslowski, H.R.; et al. Small ELM regimes with good confinement on JET and comparison to those on ASDEX Upgrade, Alcator C-mod and JT-60U. Nucl. Fusion 2005, 45, 1213–1223. [Google Scholar] [CrossRef] [Green Version]
- Pamela, S.J.P.; Huysmans, G.T.A.; Beurskens, M.N.A.; Devaux, S.; Eich, T.; Benkadda, S.; Contributors, J.E. Nonlinear MHD simulations of edge-localized-modes in JET. Plasma Phys. Control. Fusion 2011, 53, 054014. [Google Scholar] [CrossRef]
- Cathey, A.; Hoelzl, M.; Futatani, S.; Lang, P.T.; Lackner, K.; Huijsmans, G.T.A.; Pamela, S.J.P.; Günter, S. Comparing spontaneous and pellet-triggered ELMs via non-linear extended MHD simulations. Plasma Phys. Control. Fusion 2021, 63, 075016. [Google Scholar] [CrossRef]
- Futatani, S.; Huijsmans, G.; Loarte, A.; Baylor, L.R.; Commaux, N.; Jernigan, T.C.; Fenstermacher, M.E.; Lasnier, C.; Osborne, T.H.; Pegourié, B. Non-linear MHD modelling of ELM triggering by pellet injection in DIII-D and implications for ITER. Nucl. Fusion 2014, 54, 073008. [Google Scholar] [CrossRef]
- Huysmans, G.T.A.; Pamela, S.; Van Der Plas, E.; Ramet, P. Non-linear MHD simulations of edge localized modes (ELMs). Plasma Phys. Control. Fusion 2009, 51, 124012. [Google Scholar] [CrossRef]
- Kocsis, G.; Kalvin, S.; Lang, P.; Maraschek, M.; Neuhauser, J.; Schneider, W.; Szepesi, T. Spatio-temporal investigations on the triggering of pellet induced ELMs. Nucl. Fusion 2007, 47, 1166–1175. [Google Scholar] [CrossRef] [Green Version]
- Futatani, S.; Pamela, S.; Garzotti, L.; Huijsmans, G.; Hoelzl, M.; Frigione, D.; Lennholm, M.; the JOREK Team; JET Contributors. Non-linear magnetohydrodynamic simulations of pellet triggered edge-localized modes in JET. Nucl. Fusion 2019, 60, 026003. [Google Scholar] [CrossRef]
- Lennholm, M.; McKean, R.; Mooney, R.; Tvalashvili, G.; Artaserse, G.; Baruzzo, M.; Belonohy, E.; Calabro, G.; Carvalho, I.; Challis, C.D.; et al. Statistical assessment of ELM triggering by pellets on JET. Nucl. Fusion 2021, 61, 036035. [Google Scholar] [CrossRef]
- Garzotti, L.; Lang, P.T.; Alonso, A.; Alper, B.; Belonohy, E.; Boboc, A.; Devaux, S.; Eich, T.; Frigione, D.; Gál, K.; et al. Investigating pellet ELM triggering physics using the new small size pellet launcher at JET. In Proceedings of the 37th EPS Conference on Plasma Physics, Dublin, Ireland, 21–25 June 2010; European Physical Society: Mulhouse, France, 2010. [Google Scholar]
- Khanna, H.; Gaunt, S.L.L.; McCallum, D.A. Digital Spectrographic Cross-Correlation: Tests of Sensitivity. Bioacoustics 1997, 7, 209–234. [Google Scholar] [CrossRef]
- Bombarda, F.; Angelone, M.; Apruzzese, G.; Centioli, C.; Cesaroni, S.; Gabellieri, L.; Grosso, A.; Marinelli, M.; Milani, E.; Palomba, S.; et al. CVD diamond detectors for fast VUV and SX-ray diagnostics on FTU. Nucl. Fusion 2021, 61, 116004. [Google Scholar] [CrossRef]
- Cesaroni, S.; Angelone, M.; Apruzzese, G.; Bombarda, F.; Gabellieri, L.; Marinelli, M.; Milani, E.; Palomba, S.; Pucella, G.; Romano, A.; et al. CVD diamond photodetectors for FTU plasma diagnostics. Fusion Eng. Des. 2021, 166, 112323. [Google Scholar] [CrossRef]
- Angelone, M.; Pillon, M.; Marinelli, M.; Milani, E.; Prestopino, G.; Verona, C.; Rinati, G.V.; Coffey, I.; Murari, A.; Tartoni, N. Single crystal artificial diamond detectors for VUV and soft X-rays measurements on JET thermonuclear fusion plasma. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2010, 623, 726–730. [Google Scholar] [CrossRef]
- Vinyar, I.; Geraud, A.; Wyman, M.; Dequan, L.; Lukin, A.; Umov, A.; Skoblikov, S.; Reznichenko, P. Pellet injectors developed at PELIN for JET, TAE and HL-2A. Fusion Eng. Des. 2011, 86, 2208–2211. [Google Scholar] [CrossRef]
- Géraud, A.; Lennholm, M.; Alarcon, T.; Bennett, P.; Frigione, D.; Garnier, D.; Lang, P.; Lukin, A.; Mooney, R.; Vinyar, I. Status of the JET high frequency pellet injector. Fusion Eng. Des. 2013, 88, 1064–1068. [Google Scholar] [CrossRef] [Green Version]
- Hutchinson, I.H. Principles of Plasma Diagnostics. Plasma Phys. Control. Fusion 2002, 44, 2603. [Google Scholar] [CrossRef]
- Caiffi, B.; Coffey, I.; Pillon, M.; Osipenko, M.; Prestopino, G.; Ripani, M.; Taiuti, M.; Verona, C.; Verona-Rinati, G. Analysis of the Response of CVD Diamond Detectors for UV and sX-Ray Plasma Diagnostics Installed at JET. Phys. Procedia 2015, 62, 79–83. [Google Scholar] [CrossRef] [Green Version]
- MATLAB—Find Peaks Algorithm. Available online: https://it.mathworks.com/help/signal/ref/findpeaks.html (accessed on 3 April 2022).
- Mucha, H.-J.; Späth, H. Cluster dissection and analysis: Theory, FORTRAN programs, examples. (Translator: Johannes Goldschmidt.) Ellis Horwood Ltd. Wiley, Chichester 1985. 226 pp. £25. Biom. J. 1986, 28, 182. [Google Scholar] [CrossRef]
- Likas, A.; Vlassis, N.; Verbeek, J.J. The global k-means clustering algorithm. Pattern Recognit. 2003, 36, 451–461. [Google Scholar] [CrossRef] [Green Version]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A K-Means Clustering Algorithm. J. R. Stat. Soc. Ser. Appl. Stat. 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Melter, R.A. Some characterizations of city block distance. Pattern Recognit. Lett. 1987, 6, 235–240. [Google Scholar] [CrossRef]
- Frigione, D.; Garzotti, L.; Lennholm, M.; Alper, B.; Artaserse, G.; Bennett, P.; Giovannozzi, E.; Eich, T.; Kocsis, G.; Lang, P.; et al. Divertor load footprint of ELMs in pellet triggering and pacing experiments at JET. J. Nucl. Mater. 2015, 463, 714–717. [Google Scholar] [CrossRef]
- Murari, A.; Craciunescu, T.; Peluso, E.; Gelfusa, M.; Lungaroni, M.; Garzotti, L.; Frigione, D.; Gaudio, P.; Contributors, J. How to assess the efficiency of synchronization experiments in tokamaks. Nucl. Fusion 2016, 56, 76008. [Google Scholar] [CrossRef]
Pulse | I [MA] | Bt (T) | nedl [1019 m−2] | Te [keV] | Ptot [MW] (% NBI) | Triggering Efficiency (%) |
---|---|---|---|---|---|---|
96713 | 3.5 | 3.3 | 20.0 | 8.0 | 37.1 (85.2%) | 69.88% |
96994 | 3.0 | 2.8 | 17.2 | 8.2 | 31.3 (90.6%) | 69.07% |
97824 | 3.0 | 2.8 | 23.6 | 5.0 | 29.5 (98.8%) | 69.00% |
97825 | 3.0 | 2.8 | 21.3 | 5.5 | 29.8 (98.0%) | 72.73% |
97835 | 3.8 | 3.6 | 20.0 | 7.5 | 34.1 (87.5%) | 48.08% |
98004 | 3.8 | 3.6 | 21.0 | 6.5 | 34.2 (94.8%) | 51.54% |
98005 | 4.0 | 3.6 | 25 | 7.0 | 32.8 (98.1%) | 45.98% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, R.; Cesaroni, S.; Bombarda, F.; Gaudio, P.; Gelfusa, M.; Marinelli, M.; Verona Rinati, G.; Peluso, E.; JET Contributors. An Unsupervised Spectrogram Cross-Correlation Method to Assess ELM Triggering Efficiency by Pellets. Appl. Sci. 2022, 12, 3681. https://doi.org/10.3390/app12073681
Rossi R, Cesaroni S, Bombarda F, Gaudio P, Gelfusa M, Marinelli M, Verona Rinati G, Peluso E, JET Contributors. An Unsupervised Spectrogram Cross-Correlation Method to Assess ELM Triggering Efficiency by Pellets. Applied Sciences. 2022; 12(7):3681. https://doi.org/10.3390/app12073681
Chicago/Turabian StyleRossi, Riccardo, Silvia Cesaroni, Francesca Bombarda, Pasquale Gaudio, Michela Gelfusa, Marco Marinelli, Gianluca Verona Rinati, Emmanuele Peluso, and JET Contributors. 2022. "An Unsupervised Spectrogram Cross-Correlation Method to Assess ELM Triggering Efficiency by Pellets" Applied Sciences 12, no. 7: 3681. https://doi.org/10.3390/app12073681
APA StyleRossi, R., Cesaroni, S., Bombarda, F., Gaudio, P., Gelfusa, M., Marinelli, M., Verona Rinati, G., Peluso, E., & JET Contributors. (2022). An Unsupervised Spectrogram Cross-Correlation Method to Assess ELM Triggering Efficiency by Pellets. Applied Sciences, 12(7), 3681. https://doi.org/10.3390/app12073681