An On-Chip Silicon Photonics Thermometer with Milli-Kelvin Resolution
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karvonen, A.; Rintamäki, P.; Jokela, J.; Valtonen, E.T. Increasing water temperature and disease risks in aquatic systems: Climate change increases the risk of some, but not all, diseases. Int. J. Parasitol. 2010, 40, 1483–1488. [Google Scholar] [CrossRef] [PubMed]
- Wunderlich, K.R.A. On the Temperature in Diseases: A Manual of Medical Thermometry; New Sydenham Society: London, UK, 1871.
- Jolesz, F.A. MRI-guided focused ultrasound surgery. Annu. Rev. Med. 2009, 60, 417–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, Y.X.; Nagy, Z.K.; Tan, R.B.H.; Braatz, R.D. Adaptive concentration control of cooling and antisolvent crystallization with laser backscattering measurement. Cryst. Growth Des. 2009, 9, 182–191. [Google Scholar] [CrossRef]
- Knight, C.A.; Ackerly, D.D. An ecological and evolutionary analysis of photosynthetic thermotolerance using the temperature-dependent increase in fluorescence. Oecologia 2002, 130, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Price, R. The Platinum resistance Thermometer. Platin. Met. Rev. 1959, 3, 78–87. [Google Scholar]
- Burns, G.W.; Scroger, M.G. The Calibration of Thermocouples and Thermocouple Materials; US Department of Commerce, National Institute of Standards and Technology: Gaithersburg, MD, USA, 1989.
- Strouse, G.F. Standard platinum resistance thermometer calibrations from the Ar TP to the Ag FP. NIST Spec. Publ. 2008, 250, 1–66. [Google Scholar]
- Berry, R.J. Effect of Pt oxidation on Pt resistance thermometry. Metrologia 1980, 16, 117. [Google Scholar] [CrossRef]
- Berry, R.J. Thermal strain effects in standard platinum resistance thermometers. Metrologia 1983, 19, 37. [Google Scholar] [CrossRef]
- Mihailov, S.J. Fiber Bragg grating sensors for harsh environments. Sensors 2012, 12, 1898–1918. [Google Scholar] [CrossRef]
- Kersey, A.D.; Berkoff, T.A. fiber-optic Bragg-grating differential-temperature sensor. IEEE Photonics Technol. Lett. 1992, 4, 1183–1185. [Google Scholar] [CrossRef]
- Klimov, N.N.; Purdy, T.; Ahmed, Z. On-chip integrated silicon photonic thermometers. Sens. Transducers 2015, 191, 67. [Google Scholar]
- Kim, G.D.; Lee, H.S.; Park, C.H.; Lee, S.S.; Lim, B.T.; Bae, H.K.; Lee, W.G. Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process. Opt. Express 2010, 18, 22215–22221. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Hafezi, M.; Fan, J.; Taylor, J.M.; Strouse, G.F.; Ahmed, Z. Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures. Opt. Express 2014, 22, 3098–3104. [Google Scholar] [CrossRef]
- Weituschat, L.M.; Dickmann, W.; Guimbao, J.; Ramos, D.; Kroker, S.; Postigo, P.A. Photonic and thermal modelling of microrings in silicon, diamond and GaN for temperature sensing. Nanomaterials 2020, 10, 934. [Google Scholar] [CrossRef]
- Zhang, C.; Kang, G.; Xiong, Y.; Xu, T.; Gu, L.; Gan, X.; Pan, Y.; Qu, J. Photonic thermometer with a sub-millikelvin resolution and broad temperature range by waveguide-microring Fano resonance. Opt. Express 2020, 28, 12599–12608. [Google Scholar] [CrossRef]
- Li, B.B.; Wang, Q.Y.; Xiao, Y.F.; Jiang, X.F.; Li, Y.; Xiao, L.; Gong, Q. On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator. Appl. Phys. Lett. 2010, 96, 251109. [Google Scholar] [CrossRef]
- Dong, C.H.; Sun, F.W.; Zou, C.L.; Ren, X.F.; Guo, G.C.; Han, Z.F. High-Q silica microsphere by poly (methyl methacrylate) coating and modifying. Appl. Phys. Lett. 2010, 96, 061106. [Google Scholar] [CrossRef]
- Klimov, N.; Berger, M.; Ahmed, Z. Towards reproducible ring resonator based temperature sensors. Sens. Transducers 2015, 191, 63. [Google Scholar]
- Klimov, N.; Ahmed, Z. Ring resonator thermometry. In Proceedings of the 2016 IEEE Photonics Conference, Waikoloa, HI, USA, 2–6 October 2016; pp. 99–100. [Google Scholar]
- Ahmed, Z.; Cumberland, L.T.; Klimov, N.N.; Pazos, I.M.; Tosh, R.E.; Fitzgerald, R. Assessing radiation hardness of silicon photonic sensors. Sci. Rep. 2018, 8, 13007. [Google Scholar] [CrossRef]
- Kim, H.; Yu, M. Cascaded ring resonator-based temperature sensor with simultaneously enhanced sensitivity and range. Opt. Express 2016, 24, 9501–9510. [Google Scholar] [CrossRef] [PubMed]
- Janz, S.; Cheriton, R.; Xu, D.X.; Densmore, A.; Dedyulin, S.; Todd, A.; Schmid, J.; Cheben, P.; Vachon, M.; Dezfouli, M.; et al. Photonic temperature and wavelength metrology by spectral pattern recognition. Opt. Express 2020, 28, 17409–17423. [Google Scholar] [CrossRef]
- Liao, J.; Yang, L. Optical whispering-gallery mode barcodes for high-precision and wide-range temperature measurements. Light-Sci. Appl. 2021, 10, 32. [Google Scholar] [CrossRef]
- You, M.; Lin, Z.; Li, X.; Liu, J. Chip-scale silicon ring resonators for cryogenic temperature sensing. J. Lightwave Technol. 2020, 38, 5768–5773. [Google Scholar] [CrossRef]
- Tao, J.; Luo, Y.; Wang, L.; Cai, H.; Sun, T.; Song, J.; Liu, H.; Gu, Y. An ultrahigh-accuracy miniature dew point sensor based on an integrated photonics platform. Sci. Rep. 2016, 6, 29672. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Kang, G.G.; Wang, J.; Wan, S.; Dong, C.H.; Pan, Y.J.; Qu, J.F. Photonic thermometer by silicon nitride microring resonator with milli-kelvin self-heating effect. Measurement 2022, 188, 110494. [Google Scholar] [CrossRef]
- Selvaraja, S.K.; Sethi, P. Review on optical waveguides. In Emerging Waveguide Technology [Internet]; You, K.Y., Ed.; IntechOpen: London, UK, 2018; Available online: https://www.intechopen.com/chapters/61838 (accessed on 25 March 2022).
- Taillaert, D.; Bienstman, P.; Baets, R. Compact efficient broadband grating coupler for silicon-on-insulator waveguides. Opt. Lett. 2004, 29, 2749. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Pan, Y.; Gao, J.; Zhang, C.; Qu, Z.; Xu, T.; Shen, Y.; Qu, J. An On-Chip Silicon Photonics Thermometer with Milli-Kelvin Resolution. Appl. Sci. 2022, 12, 3713. https://doi.org/10.3390/app12083713
Wang J, Pan Y, Gao J, Zhang C, Qu Z, Xu T, Shen Y, Qu J. An On-Chip Silicon Photonics Thermometer with Milli-Kelvin Resolution. Applied Sciences. 2022; 12(8):3713. https://doi.org/10.3390/app12083713
Chicago/Turabian StyleWang, Jin, Yijie Pan, Jianxin Gao, Cheng Zhang, Zhier Qu, Tongtong Xu, Yang Shen, and Jifeng Qu. 2022. "An On-Chip Silicon Photonics Thermometer with Milli-Kelvin Resolution" Applied Sciences 12, no. 8: 3713. https://doi.org/10.3390/app12083713
APA StyleWang, J., Pan, Y., Gao, J., Zhang, C., Qu, Z., Xu, T., Shen, Y., & Qu, J. (2022). An On-Chip Silicon Photonics Thermometer with Milli-Kelvin Resolution. Applied Sciences, 12(8), 3713. https://doi.org/10.3390/app12083713