A New CO2-EOR Methods Screening Model Based on Interdependency Parameters
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
- MMP correlates with temperature, oil gravity, and depth, whereas oil gravity correlates with oil viscosity. Therefore MMP, temperature, oil gravity, depth, and oil viscosity are intercorrelated and depend on each other.
- Porosity correlates with permeability based on reservoir rock properties.
- Oil saturation and net thickness insignificantly correlate to other screening parameters.
3.1. Miscible CO2-EOR Screening Model
3.2. Immiscible CO2-EOR Screening Model
3.3. Implementation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yongle, H.; Mingqiang, H.; Guoli, C.; Ruiyan, S.; Shi, L. Technologies and practice of CO2 flooding and sequestration in China. Pet. Explor. Dev. 2019, 46, 753–766. [Google Scholar] [CrossRef]
- Babadagli, T. Philosophy of EOR. J. Pet. Sci. Eng. 2020, 188, 106930. [Google Scholar] [CrossRef]
- Alvarado, V.; Manrique, E. Enhanced Oil Recovery Field Planning and Development Strategies; Gulf Professional Publishing: Burlington, MA, USA, 2010; pp. 134–135. [Google Scholar]
- Rezk, M.G.; Foroozesh, J. Phase behavior and fluid interactions of a CO2-light oil system at high pressures and temperatures. Heliyon 2019, 5, e02057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, N.; Yin, M.; Wei, M.; Bai, B. Identification of CO2 sequestration opportunities: CO2 miscible flooding guidelines. Fuel 2019, 241, 459–467. [Google Scholar] [CrossRef]
- Moghadasi, R.; Rostami, A.; Hemmati-sarapardeh, A. Enhanced oil recovery using CO2. In Fundamentals of Enhanced Oil and Gas Recovery from Conventional and Unconventional Reservoirs; Elsevier: Amsterdam, The Netherlands, 2018; pp. 61–63. [Google Scholar] [CrossRef]
- Parera, M.S.A.; Gamage, R.P.; Rathnaweera, T.D.; Ranathunga, A.S.; Koay, A.; Choi, X. A Review of CO2-enhanced oil recovery with a simulated sensitivity analysis. Energies 2016, 9, 481. [Google Scholar] [CrossRef]
- Almobarak, M.; Wu, Z.; Zhou, D.; Fan, K.; Liu, Y.; Xie, Q. A review of chemical-assisted minimum miscibility pressure reduction in CO2 injection for enhanced oil recovery. Petroleum 2021, 7, 245–253. [Google Scholar] [CrossRef]
- Rotondi, M.; Lamberti, A.; Masserano, F.; Mogensen, K. Building an enhanced oil recovery culture to maximise asset values. In Proceedings of the SPE Asia Pacific Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia, 11–13 August 2015. [Google Scholar] [CrossRef]
- Taber, J.J.; Martin, F.D.; Seright, R.S. EOR screening criteria revisited—Part 1: Introduction to screening criteria and enhanced recovery field projects. SPE Res. Eng. 1997, 12, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Al Adasani, A.; Bai, B. Analysis of EOR projects and updated screening criteria. J. Petrol. Sci. Eng. 2011, 79, 10–24. [Google Scholar] [CrossRef]
- Zhang, N.; Wei, M.; Bai, B. Statistical and analytical review of worldwide CO2 immiscible field applications. Fuel 2018, 220, 89–100. [Google Scholar] [CrossRef]
- Yellig, W.F.; Metcalfe, R.S. Determination and prediction of CO2 minimum miscibility pressures. J. Pet. Technol. 1980, 32, 160–168. [Google Scholar] [CrossRef]
- Zhang, H.; Hou, D.; Li, K. An improved CO2-crude oil minimum miscibility pressure correlation. J. Chem. 2015, 2015, 175940. [Google Scholar] [CrossRef] [Green Version]
- Wilcox, R.R. Basic Statistics Understanding Conventional Methods and Modern Insights; Oxford University Press Inc.: Oxford, UK, 2009; pp. 172–174. [Google Scholar]
- MacGregor, J.F.; Kourti, T. Statistical process control of multivariate processes. Control. Eng. Pract. 1995, 3, 403–414. [Google Scholar] [CrossRef]
- Montgomery, D.C. Introduction Statistical Quality Control; John Wiley & Sons: Hoboken, NJ, USA, 2005; pp. 486–501. [Google Scholar]
- Jolliffe, I.T. Principal Component Analysis; Springer: New York, NY, USA, 2002; pp. 1–9. [Google Scholar]
- Moritis, G. EOR weathers low oil prices. Oil Gas J. 2000, 98, 39–43. [Google Scholar]
- Koottungal, L. Survey: Miscible CO2 continues to eclipse steam in US EOR production. Oil Gas J. 2014, 112, 78–79. [Google Scholar]
- Sauer, P.W.; Burns, R.A.; Skees, J.L.; Aud, W.W.; Gentry, B.; Wing, C. Re-fracturing: Evaluation, design, and implementation of a Chester oil well in SW Kansas. In Proceedings of the SPE Production and Operations Symposium, Oklahoma City, OK, USA, 22–25 March 2003. [Google Scholar] [CrossRef]
- Petrusak, R.; Cyphers, S.; Bumgardner, S.; Hills, D.; Pashin, J.; Esposito, R. Saline reservoir storage in an active oil field: Extracting maximum value from existing data for initial site characterization, southeast regional carbon sequestration partnership (SECARB) phase IIII anthropogenic CO2 test at Citronelle fields. In Proceedings of the SPE International Conference on CO2 Capture, Storage, and Utilization, New Orleans, LA, USA, 10–12 November 2010. [Google Scholar] [CrossRef]
- Aalund, L.R. Annual production report: EOR projects decline but CO2 pushes up production. Oil Gas J. 1988, 86, 33–74. [Google Scholar]
- Leonard, J. Production/enhanced oil recovery report: Increased rate of EOR brightens outlook. Oil Gas J. 1986, 84, 71–89. [Google Scholar]
- Islam, A.; Ziarani, A.S.; Glover, K.; Schneider, B. Integrated reservoir modeling and optimization study of multi-fractured horizontal well in the Swan Hills formation: A case study of acid fracturing. In Proceedings of the SPE/CSUR Unconventional Resources Conference, Calgary, AB, Canada, 20–22 October 2015. [Google Scholar] [CrossRef]
- Batycky, R.P.; Seto, A.C.; Fenwick, D.H. Assisted history matching of a 1.4-million-cell simulation model for Judy Creek—A pool waterflood/HCMF using a streamline-based workflow. In Proceedings of the SPE Annual Technical Conference and Exhibition, Anaheim, CA, USA, 11–14 November 2007. [Google Scholar] [CrossRef]
- Bouck, L.S.; Hearn, C.L.; Dohy, G. Performance of a miscible flood in the Bear Lake Cardium Unit, Pembina Field, Alberta, Canada. J. Can. Pet. Technol. 1975, 27, 672–678. [Google Scholar] [CrossRef]
- Malik, S.; Chugh, S.; McKishnie, R.A.; Griffith, P.J.; Lavole, R.G. Field-scale compossitional simulation of a CO2 flood in the fractured Midale Field. J. Can. Pet. Technol. 2006, 45, 41–50. [Google Scholar] [CrossRef]
- Wegelin, A. Reservoir characteristics of The Weyburn field, Southeastern Saskatchewan. J. Can. Pet. Technol. 1987, 26, 60–66. [Google Scholar] [CrossRef]
- Singh, L.J.M.; Singhal, A.K. Lessons from Trinidad’s CO2 immiscible pilot projects. In Proceedings of the SPE/DOE Symposium on Improved Oil Recovery, Tulsa, OK, USA, 17–21 April 2004. [Google Scholar] [CrossRef]
- Sahin, S.; Kalfa, U.; Celebioglu, D.; Duygu, E.; Lahna, H. A quarter century of progress in the application of CO2 immiscible EOR project in Bati Raman heavy oil field in Turkey. In Proceedings of the SPE Heavy Oil Conference Canada, Calgary, AB, Canada, 12–14 June 2012. [Google Scholar] [CrossRef]
- Lino, U.R.A. Case history of breaking a paradigm: Improvement of an immiscible gas-injection project in Buracica field by water injection at the gas/oil contact. In Proceedings of the SPE Latin American and Caribbean Petroleum Engineering Conference, Rio de Janeiro, Brazil, 20–23 June 2005. [Google Scholar] [CrossRef]
- Davis, D.; Scott, M.; Roberson, K.; Robinson, A. Large scale CO2 flood begins along Texas Gulf Coast. In Proceedings of the SPE Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia, 19–21 July 2011. [Google Scholar] [CrossRef]
Taber et al. [10] | Al Adasani and Bai [11] | Zhang et al. [5] | |||||
---|---|---|---|---|---|---|---|
Minimum | Mean | Median | Maximum | Standard Deviation | |||
Porosity, % | - | 3–37 | 3 | 16.3 | 14.55 | 37 | 7.3 |
Permeability, mD | NC | 1.5–4500 | 0.1 | 290.1 | 30 | 9244 | 1070.6 |
Depth, ft | >2500 | 1500–13,365 | 1150 | 6404.2 | 5600 | 15,600 | 2700.2 |
Oil Gravity, °API | >22 | 22–45 | 25 (special case: 11–22) | 36.9 | 38 | 48 | 5.5 |
Oil Viscosity, cp | <10 | 0–35 | 0.15 | 3.8 | 1.2 | 4 (special case: 5–188) | 15.6 |
Temperature, °F | NC | 82–257 | 70 | 141 | 122.5 | 260 | 50.2 |
Oil Saturation, % | >20 | 15–89 | 15 | 52.2 | 50.4 | 98 | 16.7 |
Net Thickness, ft | Wide Range | Wide Range | 15 | 105.6 | 71 | 824 | 124.5 |
MMP, psi | - | - | 1020 | 2231.5 | 2075 | 3600 (special case: 4000–4200) | 790.3 |
Compositions | High percent of C2 to C12 | - | - | - | - | - | - |
Formation Type | Sandstone or carbonate | Sandstone or carbonate | - | - | - | - | - |
Taber et al. [10] | Al Adasani and Bai [11] | Zhang et al. [12] | ||||
---|---|---|---|---|---|---|
Minimum | Mean | Median | Maximum | |||
Porosity, % | - | 17–32 | 11.5 | 22.6 | 23 | 33 |
Permeability, mD | NC | 30–1000 | 1.4 | 418.2 | 255 | 2750 |
Depth, ft | >1800 | 1150–8500 | 1400 | 4258.3 | 4300 | 8500 |
Oil Gravity, °API | >12 | 11–35 | 10.8 | 20.5 | 17 | 39 |
Oil Viscosity, cp | <600 | 0.6–592 | 0.2 | 140.3 | 17.4 | 936 |
Temperature, °F | NC | 82–198 | 82 | 142.1 | 131 | 235.4 |
Oil Saturation, % | >35 | 42–78 | 30 | 56 | 59.5 | 86 |
Net Thickness, ft | NC | - | 5.215 | 79.3 | 41 | 300 |
MMP, psi | - | - | - | - | - | - |
Formation Type | NC | Sandstone or carbonate | Sandstone or carbonate |
Screening Model | ||||
---|---|---|---|---|
Simultaneous A:
| If < 11.13 Then Miscible CO2-EOR PC1 = (0.000233 × Depth) + (0.05839 × API) + (0.037014 × Visc) + (0.011362 × Temp) + (0.000713 × MMP) − 6.4375053 PC2 = −(0.0000113 × Depth) − (0.127728 × API) + (0.157454 × Visc) − (0.000327 × Temp) + (0.0000639 × MMP) + 4.407477 | |||
Simultaneous B:
| If < 11.13, then miscible CO2-EOR and | |||
Individual: Oil saturation, % | Minimum | =17 | Q1 (25th percentile) | =38 |
Maximum | =89 | Q2 (50th percentile) | =47 | |
Mean | =48.54 | Q3 (75th percentile) | =55 | |
Standard Deviation | =14.14 | |||
Individual: Net Thickness, ft | Minimum | =9 | Q1 (25th percentile) | =44 |
Maximum | =472 | Q2 (50th percentile) | =80 | |
Mean | =96.92 | Q3 (75th percentile) | =113 | |
Standard Deviation | =78.38 |
Screening Model | ||||
---|---|---|---|---|
Simultaneous A:
| if < 12.1, then immiscible CO2-EOR PC1 = (0.000173 × Depth) + (0.05312 × API) − (0.00089 × Visc) + (0.011223 × Temp) + (0.00034 × MMP) − 5.07638 PC2 = (0.00007563 × Depth) − (0.04427 × API) + (0.002297 × Visc) + (0.004473 × Temp) + (0.000365 × MMP) − 1.11169 | |||
Simultaneous B:
| If < 12.1, then immiscible CO2-EOR and | |||
Individual for Oil saturation, % | Minimum | =22 | Q1 (25th percentile) | =45 |
Maximum | =83.5 | Q2 (50th percentile) | =50 | |
Mean | =52.13 | Q3 (75th percentile) | =60 | |
Standard Deviation | =14.40 | |||
Individual for Net Thickness, ft | Minimum | =5.2 | Q1 (25th percentile) | =38.8 |
Maximum | =300 | Q2 (50th percentile) | =71 | |
Mean | =78.17 | Q3 (75th percentile) | =98 | |
Standard Deviation | =60.27 |
Country | Field | Porosity, % | Permeability, md | Depth, ft | Oil Gravity, °API | Oil Viscosity, cp | Temperature, °F | Oil Saturation, % | Net Thickness, ft | MMP, psi | References |
---|---|---|---|---|---|---|---|---|---|---|---|
Canada | Swan Hills | 8.5 | 54 | 8300 | 41 | 0.4 | 225 | 45 | 50 | 2791 | [20,25] |
Canada | Judy Creek | 12 | 50 | 8200 | 41.5 | 0.65 | 206 | 45 | 220 | 2558 | [20,26] |
Canada | Pembina | 16 | 20 | 5300 | 41 | 1 | 128 | 38 | 41 | 1605 | [20,27] |
Canada | Jofrre | 13 | 500 | 4900 | 42 | 1.14 | 133 | 38 | 60 | 1671 | [20] |
Canada | Midale | 16.3 | 7.5 | 4600 | 30 | 3 | 149 | 45 | 65 | 1872 | [20,28] |
Canada | Weyburn Unit | 15 | 10 | 4655 | 28 | 3 | 140 | 45 | 65 | 1760 | [20,29] |
Country | Field | Actual EOR Method | Combination Screening | Zhang et al. [5] | Al Adasani and Bai [11] | Taber et al. [10] | ||||
---|---|---|---|---|---|---|---|---|---|---|
Miscible | Immiscible | Miscible | Immiscible | Miscible | Immiscible | Miscible | Immiscible | |||
Canada | Swan Hills | Miscible | √ | √ | √ | X | √ | X | √ | √ |
Canada | Judy Creek | Miscible | √ | √ | √ | X | √ | X | √ | √ |
Canada | Pembina | Miscible | √ | √ | √ | X | √ | X | √ | √ |
Canada | Jofrre | Miscible | √ | √ | √ | X | √ | X | √ | √ |
Canada | Midale | Miscible | √ | √ | √ | √ | √ | X | √ | √ |
Canada | Weyburn Unit | Miscible | √ | √ | √ | √ | √ | X | √ | √ |
Country | Field | Porosity, % | Permeability, md | Depth, ft | Oil Gravity, °API | Oil Viscosity, cp | Temperature, °F | Oil Saturation, % | Net Thickness, ft | MMP, psi | References |
---|---|---|---|---|---|---|---|---|---|---|---|
Trinidad | Area 2102 | 32 | 175 | 3000 | 19 | 16 | 120 | 56 | 144 | 1497 | [20,30] |
Trinidad | Area 2121 | 30 | 150 | 2600 | 17 | 32 | 120 | 60 | 58 | 1497 | [20,30] |
Trinidad | Area 2124 | 31 | 300 | 4200 | 25 | 6 | 130 | 44 | 196 | 1632 | [20,30] |
Turkey | Bati Raman | 18 | 58 | 4265 | 13 | 592 | 129 | 78 | 197 | 1619 | [20,31] |
US | Bayou Sale | 31 | 500 | 10,000 | 34 | 0.4 | 194 | 50.0 | 71 | 2413 | [24] |
Brazil | Buracica | 22 | 525 | 1970 | 35 | 10.5 | 120 | 76 | 29 | 1497 | [20,32] |
US | West Hasting | 30 | 1000 | 5700 | 31 | 1.2 | 165 | 30 | 75 | 2066 | [20,33] |
Country | Field | Actual EOR Method | Combination Screening | Zhang et al. [5] | Al Adasani and Bai [11] | Taber et al. [10] | ||||
---|---|---|---|---|---|---|---|---|---|---|
Miscible | Immiscible | Miscible | Immiscible | Miscible | Immiscible | Miscible | Immiscible | |||
Trinidad | Area 2102 | Immiscible | X | √ | √ | √ | X | √ | X | √ |
Trinidad | Area 2121 | Immiscible | X | √ | √ | √ | X | √ | X | √ |
Trinidad | Area 2124 | Immiscible | √ | √ | √ | √ | √ | √ | √ | √ |
Turkey | Bati Raman | Immiscible | X | √ | X | √ | X | √ | X | √ |
US | Bayou Sale | Immiscible | √ | √ | √ | X | √ | X | √ | √ |
Brazil | Buracica | Immiscible | √ | √ | √ | √ | √ | √ | X | √ |
US | West Hasting | Immiscible | √ | √ | √ | √ | √ | X | √ | X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosiani, D.; Permadi, A.K.; Siregar, H.P.S.; Gunawan, A.Y.; Ariadji, T. A New CO2-EOR Methods Screening Model Based on Interdependency Parameters. Appl. Sci. 2022, 12, 3937. https://doi.org/10.3390/app12083937
Rosiani D, Permadi AK, Siregar HPS, Gunawan AY, Ariadji T. A New CO2-EOR Methods Screening Model Based on Interdependency Parameters. Applied Sciences. 2022; 12(8):3937. https://doi.org/10.3390/app12083937
Chicago/Turabian StyleRosiani, Diyah, Asep Kurnia Permadi, Hasian Parlindungan Septoratno Siregar, Agus Yodi Gunawan, and Tutuka Ariadji. 2022. "A New CO2-EOR Methods Screening Model Based on Interdependency Parameters" Applied Sciences 12, no. 8: 3937. https://doi.org/10.3390/app12083937
APA StyleRosiani, D., Permadi, A. K., Siregar, H. P. S., Gunawan, A. Y., & Ariadji, T. (2022). A New CO2-EOR Methods Screening Model Based on Interdependency Parameters. Applied Sciences, 12(8), 3937. https://doi.org/10.3390/app12083937