Development of a Radio-Frequency Quadrupole Accelerator for the HL-2A/2M Tokamak Diagnostic System
Abstract
:Featured Application
Abstract
1. Introduction
2. Beam Dynamics Design
3. RF Conditioning
3.1. Coupling Factor for Setup
3.2. High-Power Tests
3.3. Inter-Vane Voltage Measurement
3.4. Measuring Q-Factor with the Ring-Down Method
4. Beam Commissioning
4.1. Beam Current Measurement
4.2. Beam Energy Measurement
4.3. Comparison with Other Deuteron RFQs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Academies of Sciences, Engineering, and Medicine. Final Report of the Committee on a Strategic Plan for U.S. Burning Plasma Research; National Academies Press: Washington, DC, USA, 2019. [Google Scholar]
- Dong, C.; Morita, S.; Feng, L.; Zhang, K.; Zheng, D.; Cui, Z.; Sun, P.; Fu, B.; Lu, P.; Shi, Z.; et al. Space-resolved extreme ultraviolet spectrometer for impurity diagnostics in HL-2A. Fusion Eng. Des. 2020, 159, 111785. [Google Scholar] [CrossRef]
- Hitzler, F.; Wischmeier, M.; Reimold, F.; Coster, D.P. the ASDEX Upgrade Team Impurity transport and divertor retention in Ar and N seeded SOLPS 5.0 simulations for ASDEX Upgrade. Plasma Phys. Control. Fusion 2020, 62, 085013. [Google Scholar] [CrossRef]
- Rudakov, D.L.; Wong, C.P.C.; Litnovsky, A.; Wampler, W.R.; Boedo, J.A.; Brooks, N.H.; Fenstermacher, M.E.; Groth, M.; Hollmann, E.M.; Jacob, W.; et al. Overview of the recent DiMES and MiMES experiments in DIII-D. Phys. Scr. 2009, 2009, 014007. [Google Scholar] [CrossRef] [Green Version]
- Ding, R.; Pitts, R.; Borodin, D.; Carpentier, S.; Ding, F.; Gong, X.; Guo, H.; Kirschner, A.; Kocan, M.; Li, J.; et al. Material migration studies with an ITER first wall panel proxy on EAST. Nucl. Fusion 2015, 55, 023013. [Google Scholar] [CrossRef]
- Zlobinski, M.; Philipps, V.; Schweer, B.; Huber, A.; Stoschus, H.; Brezinsek, S.; Samm, U.; TEXTOR team. In situ measurements of fuel retention by laser induced desorption spectroscopy in TEXTOR. Phys. Scr. 2011, 2011, 014027. [Google Scholar] [CrossRef]
- Li, C.; Feng, C.-L.; Oderji, H.Y.; Luo, G.-N.; Ding, H.-B. Review of LIBS application in nuclear fusion technology. Front. Phys. 2016, 11, 114214. [Google Scholar] [CrossRef]
- Hartwig, Z.S.; Barnard, H.S.; Lanza, R.C.; Sorbom, B.N.; Stahle, P.W.; Whyte, D.G. An in-situ accelerator-based diagnostic for plasma-material interactions science on magnetic fusion devices. Rev. Sci. Instrum. 2013, 84, 123503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crandall, K.R.; Wangler, T.P.; Young, L.M.; Billen, J.H.; Neuschaefer, G.H.; Schrage, D.L. RFQ Design Codes; LA-UR-96-1836; Los. Alamos National Laboratory: Los Alamos, NM, USA, 2005. [Google Scholar]
- Kilpatrick, W.D. Criterion for Vacuum Sparking Designed to Include Both rf and dc. Rev. Sci. Instruments 1957, 28, 824–826. [Google Scholar] [CrossRef] [Green Version]
- Fu, Q.; Zhu, K.; Lu, Y.R.; Easton, M.J.; Gao, S.L.; Wang, Z.; Jia, F.J.; Li, H.P.; Gan, P.P.; He, Y. Design and cold model experiment of a continuous-wave deuteron radio-frequency quadrupole. Phys. Rev. Accel. Beams 2017, 20, 120101. [Google Scholar] [CrossRef] [Green Version]
- Young, L.M. Simulations of the LEDA RFQ 6.7-MeV accelerator. In Proceedings of the 1997 Particle Accelerator Conference (PAC1997), Vancouver, BC, Canada, 12–16 May 1997; pp. 2752–2754. [Google Scholar]
- Comunian, M.; Pisent, A. Beam dynamics redesign of IFMIF-EVEDA RFQ for a larger input beam acceptance. In Proceedings of the 2011 International Particle Accelerator Conference (IPAC2011), San Sebastian, Spain, 4–9 September 2011; pp. 670–672. [Google Scholar]
- Available online: http://www.chalcu.com (accessed on 12 March 2022).
- Nordlander, P.; Holloway, S.; Nørskov, J. Hydrogen adsorption on metal surfaces. Surf. Sci. 1984, 136, 59–81. [Google Scholar] [CrossRef]
- Zhukov, A.P. SNS RFQ Voltage measurements using X-ray spectrometer. In Proceedings of the 2016 International Beam In-strumentation Conference (IBIC2016), Barcelona, Spain, 11–15 September 2016; pp. 154–156. [Google Scholar]
- Duke, J.P.; Letchford, A.P.; Findlay, D.J.S. Measurements of RF cavity voltages by X-ray spectrum measurements. In Proceedings of the 20th International International Linear Accelerator Conference (LINAC2000), Monterey, CA, USA, 21–25 August 2000; pp. 164–165. [Google Scholar]
- Ostroumov, P.N.; Barcikowski, A.; Clifft, B.; Rusthoven, B.; Sharma, S.; Sharamentov, S.I.; Toter, W.F.; Rathke, J.W.; Vinogradov, N.E.; Schrage, D.L. High power test of a 57-MHz CW RFQ. In Proceedings of the 23rd International Linear Accelerator Conference (LINAC2006), Knoxville, TN, USA, 21–25 August 2006; pp. 767–769. [Google Scholar]
- Liu, S.; Bai, Q.; Wei, Y.; Lu, Y.; Wang, Z.; Han, M.; Li, H.; Tan, Q.; Wei, T.; Xia, Y.; et al. RF design and tuning of a deuteron RFQ for detecting impurity deposition on a tokamak. J. Instrum. 2022, 17, P01030. [Google Scholar] [CrossRef]
- Bozzolan, M. BPM time of flight measurements for setting-up the RF cavities of the CERN Linac4. In Proceedings of the 29th Linear Accelerator Conference (LINAC2018), Beijing, China, 16–21 September 2018; pp. 879–881. [Google Scholar]
- Ferdinand, R.; Congretel, G.; Curtoni, A.; Delferriere, O.; France, A.; Leboeuf, D.; Thinel, J.; Toussaint, J.; Di Giacomo, M. SPIRAL2 RFQ design. In Proceedings of the 9th European Particle Accelerator Conference (EPAC2004), Lucerne, Switzerland, 5–9 July 2004; pp. 2026–2028. [Google Scholar]
- Ferdinand, R.; Bernaudin, P.E.; Bertrand, P.; Di Giacomo, M.; Ghribi, A.; Franberg, H.; Kamalou, O. Commissioning of SPIRAL2 cw RFQ and linac. In Proceedings of the 8th International Particle Accelerator Conference (IPAC2017), Copenhagen, Denmark, 14–19 May 2017; pp. 2462–2465. [Google Scholar]
- Di Giacomo, M.; Ferdinand, R.; Franberg, H.; Lagniel, J.M.; Normand, G.; Desmons, M.; Galdemard, P.; Lussignol, Y.; Piquet, O.; Sube, S. RF commissioning of the SPIRAL2 RFQ in cw mode and beyond nominal field. In Proceedings of the 10th International Particle Accelerator Conference (IPAC2019), Melbourne, Australia, 19–24 May 2019; pp. 2804–2806. [Google Scholar]
- Weissman, L.; Perry, A.; Bechtold, A.; Berkovits, D.; Kaizer, B.; Luner, Y.; Niewieczerzal, P.; Rodnizki, J.; Silverman, I.; Shor, A.; et al. Installation, high-power conditioning and beam commissioning of the upgraded SARAF 4-rods RFQ. J. Instrum. 2018, 13, T05004. [Google Scholar] [CrossRef]
- Akagi, T.; Bellan, L.; Bolzon, B.; Cara, P.; Carin, Y.; Chauvin, N.; Comunian, M.; Dzitko, H.; Fagotti, E.; Harrault, F.; et al. Commissioning of high current H+/D+ ion beams for the prototype accelerator of the International Fusion Materials Irradiation Facility. Rev. Sci. Instrum. 2020, 91, 023321. [Google Scholar] [CrossRef] [PubMed]
- Dou, W.-P.; Chen, W.-L.; Wang, F.-F.; Wang, Z.-J.; Li, C.-X.; Wu, Q.; Wang, C.; Wang, W.-S.; Jia, H.; Zhang, P.; et al. Beam dynamics and commissioning of CW RFQ for a compact deuteron–beryllium neutron source. Nucl. Instruments Methods Phys. Res. Sect. A: Accel. Spectrometers, Detect. Assoc. Equip. 2018, 903, 85–90. [Google Scholar] [CrossRef]
- Gan, P.P.; Zhu, K.; Fu, Q.; Li, H.P.; Easton, M.J.; Tan, Q.Y.; Liu, S.; Gao, S.L.; Wang, Z.; Lu, Y.R.; et al. Development and beam commissioning of a continuous-wave window-type radio-frequency quadrupole. Phys. Rev. Accel. Beams 2019, 22, 030102. [Google Scholar] [CrossRef] [Green Version]
- Nagler, A.; Mardor, I.; Berkovits, D.; Dunkel, K.; Pekeler, M.; Piel, C.; vom Stein, P.; Vogel, H. Status of the SARAF project. In Proceedings of the 23rd International International Linear Accelerator Con-ference (LINAC2006), Knoxville, TN, USA, 21–25 August 2006; pp. 168–170. [Google Scholar]
- Berkovits, D. The SARAF accelerator commissioning. In Proceedings of the Seminar at FNAL, Batavia, NY, USA, 10 February 2011. [Google Scholar]
Parameter | Value |
---|---|
Ion species | |
RFQ type | 4-vane |
Frequency [MHz] | 162.5 |
Beam current [mA] | 10 |
Input normalized [·mm·mrad] | 0.20 |
Input energy [keV] | 40 |
Output energy [MeV] | 1.52 |
Duty cycle [%] | 1 |
Voltage [kV] | 70 |
Length [m] | 2.191 |
Peak field | 1.52 kp |
Minimum aperture radius [cm] | 0.270 |
Average aperture radius [cm] | 0.460 |
Vane tip radius [cm] | 0.345 |
Synchronous phase | −90° to −25° |
Maximum modulation factor | 2.2 |
Output normalized [·mm·mrad] | 0.208 |
Output longitudinal normalized [MeV·deg] | 0.060 |
Transmission efficiency [%] | 99.0 |
Radius of cavity [mm] | 173.82 |
RF power consumption [kW] | 45 |
Specific shunt impedance [kΩ·m] | 240 |
Mode separation [MHz] | 3.1 |
Intrinsic Q-value | 14,722 |
Project | Type | Frequency (MHz) | Ein/Eout (MeV) | Beam Current (mA) | Inter-vane Voltage (kV) | Length (m) | Power (kW) | Status |
---|---|---|---|---|---|---|---|---|
SPIRAL2 [21,22,23] | 4-vane | 88 | 0.04/1.5 | 5 | 100–113 | 5.08 | 180 | cw 1.34 mA He2+ |
SARAF [24] | 4-rod | 176 | 0.04/2.54 | 5 | 56 | 3.70 | 186 | cw 1.15 mA D+ |
IFMIF [13,25] | 4-vane | 175 | 0.1/5.0 | 125 | 79–132 | 9.8 | 550 | pulse 125 mA D+ |
CMIF [26] | 4-vane | 162.5 | 0.04/3.0 | 10 | 65 | 5.26 | 120 | pulse 7.8 mA 2H+ |
973-RFQ [27] | window | 162.5 | 0.05/1.0 | 50 | 60 | 1.8 | 49 | cw 1.78 mA 2H+ |
this work | 4-vane | 162.5 | 0.04/1.5 | 10 | 70 | 2.2 | 45 | pulse 10 mA 2H+ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Wei, Y.; Lu, Y.; Wang, Z.; Han, M.; Wei, T.; Xia, Y.; Li, H.; Gao, S.; Zheng, P. Development of a Radio-Frequency Quadrupole Accelerator for the HL-2A/2M Tokamak Diagnostic System. Appl. Sci. 2022, 12, 4031. https://doi.org/10.3390/app12084031
Liu S, Wei Y, Lu Y, Wang Z, Han M, Wei T, Xia Y, Li H, Gao S, Zheng P. Development of a Radio-Frequency Quadrupole Accelerator for the HL-2A/2M Tokamak Diagnostic System. Applied Sciences. 2022; 12(8):4031. https://doi.org/10.3390/app12084031
Chicago/Turabian StyleLiu, Shuo, Yaxia Wei, Yuanrong Lu, Zhi Wang, Meiyun Han, Tianhao Wei, Yin Xia, Haipeng Li, Shuli Gao, and Pengfei Zheng. 2022. "Development of a Radio-Frequency Quadrupole Accelerator for the HL-2A/2M Tokamak Diagnostic System" Applied Sciences 12, no. 8: 4031. https://doi.org/10.3390/app12084031
APA StyleLiu, S., Wei, Y., Lu, Y., Wang, Z., Han, M., Wei, T., Xia, Y., Li, H., Gao, S., & Zheng, P. (2022). Development of a Radio-Frequency Quadrupole Accelerator for the HL-2A/2M Tokamak Diagnostic System. Applied Sciences, 12(8), 4031. https://doi.org/10.3390/app12084031