Pentane Depletion by a Surface DBD and Catalysis Processing
Abstract
:1. Introduction
2. Experimental Setup
3. Experimental Results
3.1. Gas Chromatograms
3.2. Pentane Decomposition
3.3. Intermediate Reaction Species
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EEA. Air Pollution; European Environment Agency: Copenhagen, Denmark, 2017. [Google Scholar]
- Vandenbroucke, A.; Morent, R.; De Geyter, N.; Leys, C. Non-thermal plasmas for non-catalytic and catalytic VOC abatement. J. Hazard. Mater. 2011, 195, 30–54. [Google Scholar] [CrossRef] [PubMed]
- Aguayo-Villarreal, I.; Montes-Morán, M.; Hernández-Montoya, V.; Bonilla-Petriciolet, A.; Concheso, A.; Rojas-Mayorga, C.; González, J. Importance of iron oxides on the carbons surface vs the specific surface for VOC’s adsorption. Ecol. Eng. 2017, 106, 400–408. [Google Scholar] [CrossRef]
- Wang, W.; Ma, X.; Grimes, S.; Cai, H.; Zhang, M. Study on the absorbability, regeneration characteristics and thermal stability of ionic liquids for VOCs removal. Chem. Eng. J. 2017, 328, 353–359. [Google Scholar] [CrossRef]
- Donley, E.; Lewandowski, D. Optimized Design and Operating Parameters for Minimizing Emissions During VOC Thermal Oxidation. Met. Finish. Guideb.-Dir. 1998, 96, 52–58. [Google Scholar] [CrossRef]
- Chen, X.; Carabineiro, S.; Bastos, S.; Tavares, P.; Órfão, J.; Pereira, M.; Figueiredo, J. Catalytic oxidation of ethyl acetate on cerium-containing mixed oxides. Appl. Catal. A Gen. 2014, 472, 101–112. [Google Scholar] [CrossRef]
- Vergara-Fernández, A.; Revah, S.; Moreno-Casas, P.; Scott, F. Biofiltration of volatile organic compounds using fungi and its conceptual and mathematical modeling. Biotechnol. Adv. 2018, 36, 1079–1093. [Google Scholar] [CrossRef]
- Belaissaoui, B.; Le Moullec, Y.; Favre, E. Energy efficiency of a hybrid membrane/condensation process for VOC (Volatile Organic Compounds) recovery from air: A generic approach. Energy 2016, 95, 291–302. [Google Scholar] [CrossRef]
- Schiavon, M.; Torretta, V.; Casazza, A.; Ragazzi, M. Non-thermal plasma as an innovative option for the abatement of volatile organic compounds: A review. Water Air Soil Pollut. 2017, 228, 1–20. [Google Scholar] [CrossRef]
- Li, S.; Dang, X.; Yu, X.; Abbas, G.; Zhang, Q.; Cao, L. The application of dielectric barrier discharge non-thermal plasma in VOCs abatement: A review. Chem. Eng. J. 2020, 388, 124275. [Google Scholar] [CrossRef]
- Dobslaw, C.; Glocker, B. Plasma Technology and Its Relevance in Waste Air and Waste Gas Treatment. Sustainability 2020, 12, 8981. [Google Scholar] [CrossRef]
- Shin, D.; Hong, Y.; Lee, S.; Kim, Y.; Cho, C.; Ma, S.; Chun, S.; Lee, B.; Uhm, H. A pure steam microwave plasma torch: Gasification of powdered coal in the plasma. Surf. Coat. Technol. 2013, 228, S520–S523. [Google Scholar] [CrossRef]
- Choi, S.; Hong, S.; Lee, H.; Watanabe, T. A comparative study of air and nitrogen thermal plasmas for PFCs decomposition. Chem. Eng. J. 2012, 185, 193–200. [Google Scholar] [CrossRef]
- Suris, A. Investigation of high-temperature steam-air reagents for plasma waste treatment processes. Theor. Found. Chem. Eng. 2017, 51, 348–351. [Google Scholar] [CrossRef]
- George, A.; Shen, B.; Craven, M.; Wang, Y.; Kang, D.; Wu, C.; Tu, X. A Review of Non-Thermal Plasma Technology: A novel solution for CO2 conversion and utilization. Renew. Sustain. Energy Rev. 2021, 135, 109702. [Google Scholar] [CrossRef]
- Pietanza, L.; Colonna, G.; Capitelli, M. Kinetics versus thermodynamics on CO2 dissociation in high temperature microwave discharges. Plasma Sources Sci. Technol. 2020, 29, 035022. [Google Scholar] [CrossRef]
- Dobslaw, D.; Ortlinghaus, O.; Dobslaw, C. A combined process of non-thermal plasma and a low-cost mineral adsorber for VOC removal and odor abatement in emissions of organic waste treatment plants. J. Environ. Chem. Eng. 2018, 6, 2281–2289. [Google Scholar] [CrossRef]
- Barni, R.; Benocci, R.; Spinicchia, N.; Roman, H.; Riccardi, C. An experimental study of plasma cracking of methane using DBDs aimed at hydrogen production. Plasma Chem. Plasma Process. 2019, 39, 241–258. [Google Scholar] [CrossRef]
- Long, H.; Shang, S.; Tao, X.; Yin, Y.; Dai, X. CO2 reforming of CH4 by combination of cold plasma jet and Ni/γ-Al2O3 catalyst. Int. J. Hydrogen Energy 2008, 33, 5510–5515. [Google Scholar] [CrossRef]
- Piferi, C.; Barni, R.; Roman, H.; Riccardi, C. Current Filaments in Asymmetric Surface Dielectric Barrier Discharge. Appl. Sci. 2021, 11, 2079. [Google Scholar] [CrossRef]
- Abdelaziz, A.; Seto, T.; Abdel-Salam, M.; Otani, Y. Performance of a surface dielectric barrier discharge based reactor for destruction of naphthalene in an air stream. J. Phys. D Appl. Phys. 2012, 45, 115201. [Google Scholar] [CrossRef] [Green Version]
- Assadi, A.; Bouzaza, A.; Wolbert, D. Comparative study between laboratory and large pilot scales for VOC’s removal from gas streams in continuous flow surface discharge plasma. Chem. Eng. Res. Des. 2016, 106, 308–314. [Google Scholar] [CrossRef]
- Siliprandi, R.; Roman, H.; Barni, R.; Riccardi, C. Characterization of the streamer regime in dielectric barrier discharges. J. Appl. Phys. 2008, 104, 063309. [Google Scholar] [CrossRef]
- Biganzoli, I.; Barni, R.; Riccardi, C. Note: On the use of Rogowski coils as current probes for atmospheric pressure dielectric barrier discharges. Rev. Sci. Instrum. 2013, 84, 016101. [Google Scholar] [CrossRef] [PubMed]
- Biganzoli, I.; Barni, R.; Gurioli, A.; Pertile, R.; Riccardi, C. Experimental investigation of Lissajous figure shapes in planar and surface dielectric barrier discharges. J. Phys. Conf. Ser. 2014, 550, 012039. [Google Scholar] [CrossRef]
- Kim, H. Nonthermal plasma processing for air-pollution control: A historical review, current issues, and future prospects. Plasma Process. Polym. 2004, 1, 91–110. [Google Scholar] [CrossRef]
- Chung, W.; Mei, D.; Tu, X.; Chang, M. Removal of VOCs from gas streams via plasma and catalysis. Catal. Rev. 2019, 61, 270–331. [Google Scholar] [CrossRef]
- Nguyen, H.; Park, M.; Kim, S.; Kim, H.; Baik, L.; Jo, Y. Effective dielectric barrier discharge reactor operation for decomposition of volatile organic compounds. J. Clean. Prod. 2018, 198, 1232–1238. [Google Scholar] [CrossRef]
- Shayegan, Z.; Lee, C.; Haghighat, F. TiO2 photocatalyst for removal of volatile organic compounds in gas phase—A review. Chem. Eng. J. 2018, 334, 2408–2439. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Liu, H.; He, C.; Shen, Z.; Wang, T. Synergistic effects and mechanism of a non-thermal plasma catalysis system in volatile organic compound removal: A review. Catal. Sci. Technol. 2018, 8, 936–954. [Google Scholar] [CrossRef]
- Piferi, C.; Riccardi, C. High concentration propane depletion with photocatalysis. AIP Adv. 2021, 11, 125008. [Google Scholar] [CrossRef]
- Bin, Z.; Zhang, L.; Yan, Y.; Meng, L.; Yimin, Z. Enhancing toluene removal in a plasma photocatalytic system through a black TiO2 photocatalyst. Plasma Sci. Technol. 2019, 21, 115503. [Google Scholar]
- Piferi, C.; Brescia, A.; Riccardi, C. Intensity comparison between UV lamps and plasma emission for air purification studies. AIP Adv. 2021, 11, 085209. [Google Scholar] [CrossRef]
- Xia, T.; Yao, S.; Wu, Z.; Li, G.; Li, J. High ratio of Ce3+/(Ce3++Ce4+) enhanced the plasma catalytic degradation of n-undecane on CeO2/γ-Al2O3. J. Hazard. Mater. 2022, 424, 127700. [Google Scholar] [CrossRef] [PubMed]
- Aggelopoulos, C.; Svarnas, P.; Klapa, M.; Tsakiroglou, C. Dielectric barrier discharge plasma used as a means for the remediation of soils contaminated by non-aqueous phase liquids. Chem. Eng. J. 2015, 270, 428–436. [Google Scholar] [CrossRef]
- Martini, L.; Coller, G.; Schiavon, M.; Cernuto, A.; Ragazzi, M.; Dilecce, G.; Tosi, P. Non-thermal plasma in waste composting facilities: From a laboratory-scale experiment to a scaled-up economic model. J. Clean. Prod. 2019, 230, 230–240. [Google Scholar] [CrossRef]
- Oda, T.; Takahashi, T.; Kohzuma, S. Decomposition of Dilute Trichloroethylene by Using Nonthermal Plasma Processing. IEEE Trans. Ind. Appl. 2001, 37, 965–970. [Google Scholar] [CrossRef]
- Oda, T.; Takahahshi, T.; Yamaji, K. Nonthermal plasma processing for dilute VOCs decomposition. IEEE Trans. Ind. Appl. 2002, 38, 873–878. [Google Scholar] [CrossRef]
- Nassour, K.; Brahami, M.; Nemmich, S.; Hammadi, N.; Zouzou, N.; Tilmatine, A. Comparative experimental study between surface and volume DBD ozone generator. Ozone Sci. Eng. 2016, 38, 70–76. [Google Scholar] [CrossRef]
- Nobrega, P.; Blin-Simiand, N.; Bournonville, B.; Jorand, F.; Lacour, B.; Pasquiers, S.; Rohani, V.; Cauneau, F.; Fulcheri, L. Comparison between performances of surface and volume nanosecond pulsed dielectric barrier discharges for the treatment of volatile organic compounds. In Proceedings of the 23rd International Symposium on Plasma Chemistry-ISPC 23, Montréal, QC, Canada, 30 July 2017. [Google Scholar]
Power (W) | Starting CH (ppm) | Catalyst | (%) | (min) |
---|---|---|---|---|
16.9 | 300 | No | 87 | 2.5 ± 0.3 for t < 2 min, 1.8 ± 0.1 for t > 2 min |
Yes | >95 | 2.5 ± 0.3 for t < 2 min, 1.8 ± 0.1 for t > 2 min | ||
600 | No | 55 | 4.8 ± 0.5 | |
Yes | 75 | 4.8 ± 0.5 for t < 2 min, 2.6 ± 0.2 for t > 2 min | ||
1200 | No | 58 | 5.3 ± 0.8 | |
Yes | 60 | 5.3 ± 0.8 | ||
44.2 | 300 | No | >95 | 0.7 ± 0.1 |
Yes | >95 | 0.7 ± 0.1 | ||
600 | No | >95 | 1.0 ± 0.1 | |
Yes | >95 | 1.0 ± 0.1 | ||
1200 | No | >95 | 1.7 ± 0.2 | |
Yes | 60 | 1.7 ± 0.2 |
Specie | Power | Catalyst | |||
---|---|---|---|---|---|
(W) | (min) | (min) | (min) | ||
Acetylene | 16.9 | No | 5.3 ± 0.8 | 32.1 ± 3.0 | 27.4 ± 8.0 |
Yes | 5.3 ± 0.8 | 31.8 ± 2.0 | 6.5 ± 1.0 | ||
44.2 | No | 1.7 ± 0.2 | 8.4 ± 0.7 | 1.7 ± 0.2 | |
Yes | 1.7 ± 0.2 | 7.1 ± 1.0 | 1.1 ± 0.1 | ||
Propane | 16.9 | No | 5.3 ± 0.8 | 8.3 ± 2.0 | 3.7 ± 1.0 |
Yes | 5.3 ± 0.8 | 5.2 ± 2.0 | 0.8 ± 0.3 | ||
44.2 | No | 1.7 ± 0.2 | 4.6 ± 1.0 | 2.2 ± 0.8 | |
Yes | 1.7 ± 0.2 | 5.7 ± 2.0 | 2.6 ± 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piferi, C.; Daghetta, M.; Schiavon, M.; Roman, H.E.; Riccardi, C. Pentane Depletion by a Surface DBD and Catalysis Processing. Appl. Sci. 2022, 12, 4253. https://doi.org/10.3390/app12094253
Piferi C, Daghetta M, Schiavon M, Roman HE, Riccardi C. Pentane Depletion by a Surface DBD and Catalysis Processing. Applied Sciences. 2022; 12(9):4253. https://doi.org/10.3390/app12094253
Chicago/Turabian StylePiferi, Cecilia, Matteo Daghetta, Marco Schiavon, Hector Eduardo Roman, and Claudia Riccardi. 2022. "Pentane Depletion by a Surface DBD and Catalysis Processing" Applied Sciences 12, no. 9: 4253. https://doi.org/10.3390/app12094253
APA StylePiferi, C., Daghetta, M., Schiavon, M., Roman, H. E., & Riccardi, C. (2022). Pentane Depletion by a Surface DBD and Catalysis Processing. Applied Sciences, 12(9), 4253. https://doi.org/10.3390/app12094253