Biophotonics in Dentistry
Abstract
:1. Introduction
2. Historical Events and Current Advancements
3. Applications in Dentistry
3.1. Photoelasticity
3.2. Interferometry Techniques
3.2.1. Electronic Speckle Pattern Interferometry
3.2.2. Moiré Interferometry
3.3. Optical Coherence Tomography
3.4. Lasers
3.4.1. Types of Lasers
3.4.2. Applications of Lasers
3.4.3. Peri-Implantitis
3.4.4. Regenerative Laser Periodontal Therapy
3.5. Photodynamic Therapy
3.5.1. Management of Symptomatic Oral Lichen Planus
3.5.2. Management of Chronic Periodontitis in Smokers
3.5.3. Anticancer Therapy
3.6. Quantum Dots
3.7. Photoacoustic Imaging
3.8. Photothermal Imaging
3.9. Photobiomodulation (PBM) and Ozone Treatment
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, X.; White, I.M.; Shopova, S.I.; Zhu, H.; Suter, J.D.; Sun, Y. Sensitive optical biosensors for unlabeled targets: A review. Anal. Chim. Acta 2008, 620, 8–26. [Google Scholar] [CrossRef]
- Walters, F.; Rozhko, S.; Buckley, D.; Ahmadi, E.D.; Ali, M.; Tehrani, Z.; Mitchell, J.; Burwell, G.; Liu, Y.; Kazakova, O. Real-time detection of hepatitis B surface antigen using a hybrid graphene-gold nanoparticle biosensor. 2D Mater. 2020, 7, 024009. [Google Scholar] [CrossRef]
- Ntziachristos, V.; Ripoll, J.; Wang, L.V.; Weissleder, R. Looking and listening to light: The evolution of whole-body photonic imaging. Nat. Biotechnol. 2005, 23, 313–320. [Google Scholar] [CrossRef]
- Allison, R.; Mota, H.; Bagnato, V.S.; Sibata, C. Bio-nanotechnology and photodynamic therapy—State of the art review. Photodiagnosis Photodyn. Ther. 2008, 5, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Celli, J.P.; Spring, B.Q.; Rizvi, I.; Evans, C.L.; Samkoe, K.S.; Verma, S.; Pogue, B.W.; Hasan, T. Imaging and photodynamic therapy: Mechanisms, monitoring, and optimization. Chem. Rev. 2010, 110, 2795–2838. [Google Scholar] [CrossRef] [Green Version]
- Gangrade, A.; Mandal, B.B. Injectable carbon nanotube impregnated silk based multifunctional hydrogel for localized targeted and on-demand anticancer drug delivery. ACS Biomater. Sci. Eng. 2019, 5, 2365–2381. [Google Scholar] [CrossRef]
- Jeyamohan, P.; Hasumura, T.; Nagaoka, Y.; Yoshida, Y.; Maekawa, T.; Kumar, D.S. Accelerated killing of cancer cells using a multifunctional single-walled carbon nanotube-based system for targeted drug delivery in combination with photothermal therapy. Int. J. Nanomed. 2013, 8, 2653–2667. [Google Scholar]
- Philipp, C.M.; Trelles, M.A. Lasers in surgery. Photonics Lasers Med. 2015, 4, 207–209. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Ahmadi, E.D.; Shayan, K.; Ma, Y.; Mistry, K.S.; Zhang, C.; Hone, J.; Blackburn, J.L.; Strauf, S. Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities. Nat. Commun. 2017, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Akinwande, D.; Huyghebaert, C.; Wang, C.-H.; Serna, M.I.; Goossens, S.; Li, L.-J.; Wong, H.-S.P.; Koppens, F.H. Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Saruwatari, M. All-optical time-division multiplexing technology. In Fibre Optic Communication Devices; Springer: Berlin/Heidelberg, Germany, 2001; pp. 338–375. [Google Scholar]
- Najeeb, S.; Khurshid, Z.; Zafar, M.S.; Ajlal, S. Applications of light amplification by stimulated emission of radiation (lasers) for restorative dentistry. Med. Princ. Pract. 2016, 25, 201–211. [Google Scholar] [CrossRef]
- Rechmann, P. Dental laser research: Selective ablation of caries, calculus, and microbial plaque: From the idea to the first in vivo investigation. Dent. Clin. 2004, 48, 1077–1104. [Google Scholar]
- Pecaro, B.C.; Garehime, W.J. The CO2 laser in oral and maxillofacial surgery. J. Oral Maxillofac. Surg. 1983, 41, 725–728. [Google Scholar] [CrossRef]
- Fuster Torres, M.; Albalat Estela, S.; Alcañiz Raya, M.; Peñarrocha Diago, M. CAD/CAM dental systems in implant dentistry: Update. Med. Oral Patol. Oral Cirugía Bucal. Ed. Ingl. 2009, 14, 8. [Google Scholar]
- Negrutiu, M.L.; Sinescu, C.; Cozarov, D.; Culea, L.; Rominu, M.; Pop, D.M. Repairing method of fixed partial prostheses in dentistry: Laser welding. In Lasers in Dentistry XIV; International Society for Optics and Photonics: Bellingham, WA, USA, 2008. [Google Scholar]
- Boulnois, J.-L. Photophysical processes in recent medical laser developments: A review. Lasers. Med. Sci. 1986, 1, 47–66. [Google Scholar] [CrossRef]
- Wadhawan, R.; Solanki, G.; Bhandari, A.; Rathi, A.; Dash, R. Role of laser therapy in dentistry: A review. Int. J. Biomed. Res. 2014, 5, 153–157. [Google Scholar] [CrossRef]
- Keller, U.; Hibst, R. Experimental studies of the application of the Er: YAG laser on dental hard substances: II. Light microscopic and SEM investigations. Lasers Surg. Med. 1989, 9, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Patel, C.K.N. Interpretation of CO2 Optical Maser Experiments. Phys. Rev. Lett. 1964, 12, 588. [Google Scholar] [CrossRef]
- Rao, M. Applications of CO2 laser in medicine. IJAPBC 2013, 2, 501–506. [Google Scholar]
- Myers, D.R.; Pashley, D.H.; Whitford, G.M.; McKinney, R. Tissue changes induced by the absorption of formocresol from pulpotomy sites in dogs. Pediatr. Dent. 1983, 5, 6–8. [Google Scholar]
- Hakeberg, M.; Berggren, U.; Carlsson, S.G. Prevalence of dental anxiety in an adult population in a major urban area in Sweden. Community Dent Oral Epidemiol. 1992, 20, 97–101. [Google Scholar] [CrossRef]
- Barcellos, D.C.; Santos, V.M.M.; Niu, L.-N.; Pashley, D.H.; Tay, F.R.; Pucci, C.R. Repair of composites: Effect of laser and different surface treatments. Int. J. Adhes Adhes. 2015, 59, 1–6. [Google Scholar] [CrossRef]
- Bello-Silva, M.S.; Wehner, M.; de Paula Eduardo, C.; Lampert, F.; Poprawe, R.; Hermans, M.; Esteves-Oliveira, M. Precise ablation of dental hard tissues with ultra-short pulsed lasers. Preliminary exploratory investigation on adequate laser parameters. Lasers. Med. Sci. 2013, 28, 171–184. [Google Scholar] [CrossRef]
- Freitas, P.M.; Simoes, A. Lasers in Dentistry: Guide for Clinical Practice; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Parker, S. Surgical lasers and hard dental tissue. Br. Dent. J. 2007, 202, 445–454. [Google Scholar] [CrossRef]
- Schelle, F.; Polz, S.; Haloui, H.; Braun, A.; Dehn, C.; Frentzen, M.; Meister, J. Ultrashort pulsed laser (USPL) application in dentistry: Basic investigations of ablation rates and thresholds on oral hard tissue and restorative materials. Lasers. Med. Sci. 2014, 29, 1775–1783. [Google Scholar] [CrossRef]
- White, R.A.; White, G.H.; Fujitani, R.M.; Vlasak, J.W.; Donayre, C.E.; Kopchok, G.E.; Peng, S.-K. Initial human evaluation of argon laser—assisted vascular anastomoses. J. Vasc. Surg. 1989, 9, 542–547. [Google Scholar]
- Skorczakowski, M.; Swiderski, J.; Pichola, W.; Nyga, P.; Zajac, A.; Maciejewska, M.; Galecki, L.; Kasprzak, J.; Gross, S.; Heinrich, A. Mid-infrared Q-switched Er: YAG laser for medical applications. Laser Phys. Lett. 2010, 7, 498. [Google Scholar] [CrossRef]
- Zajac, A.; Skorczakowski, M.; Swiderski, J.; Nyga, P. Electrooptically Q-switched mid-infrared Er: YAG laser for medical applications. Opt. Express. 2004, 12, 5125–5130. [Google Scholar] [CrossRef]
- Okada, M.; Shimizu, K.; Ikuta, H.; Horii, H.; Nakamura, K. An alternative method of vascular anastomosis by laser: Experimental and clinical study. Lasers Surg. Med. 1987, 7, 240–248. [Google Scholar] [CrossRef]
- Jain, K. Sutureless extra-intracranial anastomosis by laser. Lancet 1984, 324, 816–817. [Google Scholar] [CrossRef]
- Stern, R. Laser beam effect on dental hard tissues. J. Dent. Res. 1964, 43, 873. [Google Scholar]
- Baek, K.-W.; Deibel, W.; Marinov, D.; Griessen, M.; Bruno, A.; Zeilhofer, H.-F.; Cattin, P.; Juergens, P. Clinical applicability of robot-guided contact-free laser osteotomy in cranio-maxillo-facial surgery: In-Vitro simulation and in-vivo surgery in minipig mandibles. Br. J. Oral Maxillofac. Surg. 2015, 53, 976–981. [Google Scholar] [CrossRef]
- Pick, R.M.; Colvard, M.D. Current status of lasers in soft tissue dental surgery. J. Periodontol. 1993, 64, 589–602. [Google Scholar] [CrossRef]
- Tuncer, I.; Özçakır-Tomruk, C.; Şencift, K.; Çöloğlu, S. Comparison of conventional surgery and CO2 laser on intraoral soft tissue pathologies and evaluation of the collateral thermal damage. Photomed Laser Surg. 2010, 28, 75–79. [Google Scholar] [CrossRef]
- Adrian, J.C. Pulp effects of neodymium laser: A preliminary report. Oral Surg. Oral Med. Oral Pathol. 1977, 44, 301–305. [Google Scholar] [CrossRef]
- Stern, R.H.; Vahl, J.; Sognnaes, R.F. Lased enamel: Ultrastructural observations of pulsed carbon dioxide laser effects. J. Dent. Res. 1972, 51, 455–460. [Google Scholar] [CrossRef]
- Horch, H. Current status of laser osteotomy. Der Orthopade. 1984, 13, 125–132. [Google Scholar]
- Horch, H.; McCord, R. Histological and Long Term Results Following Laser Osteotomy. LASER SURGERY II; Jerusalem Academic Press: Jerusalem, Israel, 1978. [Google Scholar]
- Stübinger, S. Advances in bone surgery: The Er: YAG laser in oral surgery and implant dentistry. Clin. Cosmet. Investig. Dent. 2010, 2, 47. [Google Scholar] [CrossRef] [Green Version]
- Peavy, G.M.; Reinisch, L.; Payne, J.T.; Venugopalan, V. Comparison of cortical bone ablations by using infrared laser wavelengths 2.9 to 9.2 μm. Lasers. Surg. Med. 1999, 25, 421–434. [Google Scholar] [CrossRef]
- Bader, C.; Krejci, I. Indications and limitations of Er: YAG laser applications in dentistry. Am. J. Dent. 2006, 19, 178-86. [Google Scholar]
- Bornstein, E.S.; Lomke, M.A. The safety and effectiveness of dental Er: YAG lasers. A literature review with specific reference to bone. Dent. Today. 2003, 22, 129–133. [Google Scholar]
- Convissar, R.A. The biologic rationale for the use of lasers in dentistry. Dent. Clin. 2004, 48, 771–794. [Google Scholar] [CrossRef]
- Iaria, G. Clinical, morphological, and ultrastructural aspects with the use of Er: YAG and Er, Cr: YSGG lasers in restorative dentistry. Gen. Dent. 2008, 56, 636–639. [Google Scholar]
- Olivi, G.; Olivi, M. Lasers in Restorative Dentistry: A Practical Guide; Springer: Nerlin, Germany, 2015. [Google Scholar]
- Khang, D.; Park, G.E.; Webster, T.J. Enhanced chondrocyte densities on carbon nanotube composites: The combined role of nanosurface roughness and electrical stimulation. J. Biomed. Mater. Res. A 2008, 86, 253–260. [Google Scholar] [CrossRef]
- Minati, L.; Antonini, V.; Dalla Serra, M.; Speranza, G. Multifunctional branched gold–carbon nanotube hybrid for cell imaging and drug delivery. Langmuir 2012, 28, 15900–15906. [Google Scholar] [CrossRef]
- Koo, J.H.; Jeong, S.; Shim, H.J.; Son, D.; Kim, J.; Kim, D.C.; Choi, S.; Hong, J.-I.; Kim, D.-H. Wearable electrocardiogram monitor using carbon nanotube electronics and color-tunable organic light-emitting diodes. ACS Nano 2017, 11, 10032–10041. [Google Scholar] [CrossRef]
- Wang, Q.; Yildiz, O.; Li, A.; Aly, K.; Qiu, Y.; Jiang, Q.; Pui, D.Y.; Chen, S.-C.; Bradford, P.D. High temperature carbon nanotube–Nanofiber hybrid filters. Sep. Purif. Technol. 2020, 236, 116255. [Google Scholar] [CrossRef]
- Schroeder, V.; Savagatrup, S.; He, M.; Lin, S.; Swager, T.M. Carbon nanotube chemical sensors. Chem. Rev. 2018, 119, 599–663. [Google Scholar] [CrossRef]
- Chang, T.; Prakash, S. Procedures for microencapsulation of enzymes, cells and genetically engineered microorganisms. Mol. Biotechnol. 2001, 17, 249–260. [Google Scholar] [CrossRef]
- Martins-Júnior, P.A.; de Sá, M.A.; Andrade, V.B.; Ribeiro, H.J.; Ferreira, A.J. Bone repair utilizing carbon nanotubes. In Bioengineering Applications of Carbon Nanostructures; Springer: Berlin, Germany, 2016; pp. 1–15. [Google Scholar]
- Curtin, W.A.; Sheldon, B.W. CNT-reinforced ceramics and metals. Mater. Today 2004, 7, 44–49. [Google Scholar] [CrossRef]
- White, A.A.; Best, S.M.; Kinloch, I.A. Hydroxyapatite–carbon nanotube composites for biomedical applications: A review. Int. J. Appl. Ceram. Technol. 2007, 4, 1–13. [Google Scholar] [CrossRef]
- Mishima, N.; Sahara, N.; Shirakawa, M.; Ozawa, H. Effect of streptozotocin-induced diabetes mellitus on alveolar bone deposition in the rat. Arch. Oral Biol. 2002, 47, 843–849. [Google Scholar] [CrossRef]
- Sa, M.; Andrade, V.; Mendes, R.; Caliari, M.; Ladeira, L.; Silva, E.; Silva, G.; Corrêa-Júnior, J.; Ferreira, A. Carbon nanotubes functionalized with sodium hyaluronate restore bone repair in diabetic rat sockets. Oral Dis. 2013, 19, 484–493. [Google Scholar] [CrossRef]
- Cinteza, L.O. Quantum dots in biomedical applications: Advances and challenges. J. Nanophotonics 2010, 4, 042503. [Google Scholar] [CrossRef]
- Wegner, K.D.; Hildebrandt, N. Quantum dots: Bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem. Soc. Rev. 2015, 44, 4792–4834. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhu, J.-J. Quantum dots for fluorescent biosensing and bio-imaging applications. Analyst 2013, 138, 2506–2515. [Google Scholar] [CrossRef]
- Schornbaum, J.; Zakharko, Y.; Held, M.; Thiemann, S.; Gannott, F.; Zaumseil, J. Light-emitting quantum dot transistors: Emission at high charge carrier densities. Nano Lett. 2015, 15, 1822–1828. [Google Scholar] [CrossRef]
- Wang, K.L.; Cha, D.; Liu, J.; Chen, C. Ge/Si self-assembled quantum dots and their optoelectronic device applications. Proc. IEEE 2007, 95, 1866–1883. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Z.M. Quantum Dot Solar Cells; Springer: Berlin, Germany, 2014; Volume 15. [Google Scholar]
- Buckley, S.; Rivoire, K.; Vučković, J. Engineered quantum dot single-photon sources. Rep. Prog. Phys. 2012, 75, 126503. [Google Scholar] [CrossRef]
- Ledentsov, N. Quantum dot laser. Semicond Sci. Technol. 2010, 26, 014001. [Google Scholar] [CrossRef]
- Liang, R.; Yan, D.; Tian, R.; Yu, X.; Shi, W.; Li, C.; Wei, M.; Evans, D.G.; Duan, X. Quantum dots-based flexible films and their application as the phosphor in white light-emitting diodes. Chem. Mater. 2014, 26, 2595–2600. [Google Scholar] [CrossRef]
- Chan, W.C.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A.P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekimov, A.; Onushchenko, A. Quantum size effect in the optical-spectra of semiconductor micro-crystals. Sov. phys. Semiconduct. 1982, 16, 775–778. [Google Scholar]
- Ekimov, A.I.; Efros, A.L.; Onushchenko, A.A. Quantum size effect in semiconductor microcrystals. Solid State Commun. 1985, 56, 921–924. [Google Scholar] [CrossRef]
- Alves, L.P.; Pilla, V.; Murgo, D.O.; Munin, E. Core–shell quantum dots tailor the fluorescence of dental resin composites. J Dent. 2010, 38, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, S.B.; Ghaderi, S.; Keshtgar, M.; Seifalian, A.M. Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging. Nano Rev. 2010, 1, 5161. [Google Scholar] [CrossRef]
- Chung, C.; Kim, Y.-K.; Shin, D.; Ryoo, S.-R.; Hong, B.H.; Min, D.-H. Biomedical applications of graphene and graphene oxide. Acc. Chem. Res. 2013, 46, 2211–2224. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Zhang, L.; Liu, M.; Zhang, Z. Biomedical applications of graphene. Theranostics 2012, 2, 283. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Asiri, A.M.; Tang, Z.; Du, D.; Lin, Y. Graphene based materials for biomedical applications. Mater. Today. 2013, 16, 365–373. [Google Scholar] [CrossRef]
- Zhang, Y.; Nayak, T.R.; Hong, H.; Cai, W. Graphene: A versatile nanoplatform for biomedical applications. Nanoscale 2012, 4, 3833–3842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Robinson, J.T.; Sun, X.; Dai, H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 2008, 130, 10876–10877. [Google Scholar] [CrossRef] [Green Version]
- Amrollahi-Sharifabadi, M.; Koohi, M.K.; Zayerzadeh, E.; Hablolvarid, M.H.; Hassan, J.; Seifalian, A.M. In vivo toxicological evaluation of graphene oxide nanoplatelets for clinical application. Int. J. Nanomed. 2018, 13, 4757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, B.; Killeen, T.; Access Laser CO. High-Precision Laser Therapy Transforms Dentistry. Available online: https://www.photonics.com/Articles/High-Precision_Laser_Therapy_Transforms_Dentistry/a63797 (accessed on 5 February 2022).
- Al Timimi, Z.J.M.; Alhabeel, M.S.I. Laser Dental Treatment Techniques. In Prevention, Detection and Management of Oral Cancer; IntechOpen: London, UK, 2019. [Google Scholar]
- Featherstone, J.D.; Fried, D. Fundamental interactions of laserswith dental hard tissues. Med. Laser Appl. 2001, 16, 181–194. [Google Scholar] [CrossRef]
- Shokrieh, M.M. Residual Stresses in Composite Materials; Woodhead Publishing: Sawston, UK, 2014. [Google Scholar]
- Carvalho, L.; Roriz, P.; Simões, J.; Frazão, O. New trends in dental biomechanics with photonics technologies. Appl. Sci. 2015, 5, 1350–1378. [Google Scholar] [CrossRef] [Green Version]
- Zak, B. Photoelastic analysis in der orthodontischen mechanik. Oesterr. Z. Stomatol. 1935, 35, 22–37. [Google Scholar]
- Craig, R.G.; El-Ebrashi, M.K.; Peyton, F.A. Experimental stress analysis of dental restorations: Part II. Two-dimensional photoelastic stress analysis of crowns. J. Prosthet. Dent. 1967, 17, 292–302. [Google Scholar] [CrossRef]
- Farah, J.; Craig, R. Reflection photoelastic stress analysis of a dental bridge. J. Dent. Res. 1971, 50, 1253–1259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodsky, J.F.; Caputo, A.A.; Furstman, L.L. Root tipping: A photoelastic-histopathologic correlation. Am. J. Orthod. 1975, 67, 1–10. [Google Scholar] [CrossRef]
- Standlee, J.; Caputo, A.; Hanson, E. Retention of endodontic dowels: Effects of cement, dowel length, diameter, and design. J Prosthet Dent. 1978, 39, 400–405. [Google Scholar] [CrossRef]
- Asundi, A.; Kishen, A. A strain gauge and photoelastic analysis of in vivo strain and in vitro stress distribution in human dental supporting structures. Arch. Oral Biol. 2000, 45, 543–550. [Google Scholar] [CrossRef]
- Kishen, A.; Asundi, A.K. Fundamentals and Applications of Biophotonics in Dentistry; World Scientific: Singpore, 2006; Volume 4. [Google Scholar]
- Asundi, A.K.; Kishen, A. Advanced digital photoelastic investigations on the tooth-bone interface. J. Biomed. Opt. 2001, 6, 224–230. [Google Scholar] [CrossRef]
- Wang, M.-Q.; Zhang, M.; Zhang, J.-H. Photoelastic study of the effects of occlusal surface morphology on tooth apical stress from vertical bite forces. J. Contemp Dent Pract. 2004, 5, 74–93. [Google Scholar] [CrossRef]
- Cehreli, M.; Duyck, J.; Cooman, M.D.; Puers, R.; Naert, I. Implant design and interface force transfer: A photoelastic and strain-gauge analysis. Clin. Oral Implants Res. 2004, 15, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Asvanund, P.; Morgano, S.M. Photoelastic stress analysis of different prefabricated post-and-core materials. Dent. Mater. J. 2011, 30, 684–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kishen, A.; Murukeshan, V.; Krishnakumar, V.; Asundi, A. Analysis on the nature of thermally induced deformation in human dentine by electronic speckle pattern interferometry (ESPI). J. Dent. 2001, 29, 531–537. [Google Scholar] [CrossRef]
- Lang, H.; Rampado, M.; Müllejans, R.; Raab, W.M. Determination of the dynamics of restored teeth by 3D electronic speckle pattern interferometry. Lasers. Surg. Med. 2004, 34, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Palacios, T. Thinking outside the silicon box. Nat. Nanotechnol. 2011, 6, 464–465. [Google Scholar] [CrossRef] [PubMed]
- Yap, A.U.; Tan, A.C.; Quan, C. Non-destructive characterization of resin-based filling materials using Electronic Speckle Pattern Interferometry. Dent. Mater. 2004, 20, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Chattah, N.L.T.; Shahar, R.; Weiner, S. Design strategy of minipig molars using electronic speckle pattern interferometry: Comparison of deformation under load between the tooth-mandible complex and the isolated tooth. Adv. Mater. 2009, 21, 413–418. [Google Scholar] [CrossRef]
- Fages, M.; Slangen, P.; Raynal, J.; Corn, S.; Turzo, K.; Margerit, J.; Cuisinier, F.J. Comparative mechanical behavior of dentin enamel and dentin ceramic junctions assessed by speckle interferometry (SI). Dent. Mater. 2012, 28, e229–e238. [Google Scholar] [CrossRef] [PubMed]
- Papapanou, P.N.; Sanz, M.; Buduneli, N.; Dietrich, T.; Feres, M.; Fine, D.H.; Flemmig, T.F.; Garcia, R.; Giannobile, W.V.; Graziani, F. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Periodontol. 2018, 89, S173–S182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ifju, P.; Han, B. Recent applications of moiré interferometry. Exp. Mech. 2010, 50, 1129–1147. [Google Scholar] [CrossRef]
- Li, F.C.; Kishen, A., II. Digital moiré interferometric analysis on the effect of nanoparticle conditioning on the mechanical deformation in dentin. In Lasers in Dentistry XXII; International Society for Optics and Photonics: Bellingham, WA, USA, 2016. [Google Scholar]
- Wang, R.; Weiner, S. Strain–structure relations in human teeth using Moiré fringes. J. Biomech. 1997, 31, 135–141. [Google Scholar] [CrossRef]
- Wood, J.D.; Wang, R.; Weiner, S.; Pashley, D.H. Mapping of tooth deformation caused by moisture change using moire interferometry. Dent. Mater. 2003, 19, 159–166. [Google Scholar] [CrossRef]
- Hsieh, Y.-S.; Ho, Y.-C.; Lee, S.-Y.; Chuang, C.-C.; Tsai, J.-C.; Lin, K.-F.; Sun, C.-W. Dental optical coherence tomography. Sensors 2013, 13, 8928–8949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujimoto, J.G.; Pitris, C.; Boppart, S.A.; Brezinski, M.E. Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy. Neoplasia 2000, 2, 9–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colston, B.W.; Everett, M.J.; Da Silva, L.B.; Otis, L.L.; Stroeve, P.; Nathel, H. Imaging of hard-and soft-tissue structure in the oral cavity by optical coherence tomography. Appl. Opt. 1998, 37, 3582–3585. [Google Scholar] [CrossRef] [PubMed]
- Sinescu, C.G.; Negrutiu, M.-L.V.; Todea, C.C.; Balabuc, C.I.; Filip, L.M.; Rominu, R.; Bradu, A.; Hughes, M.R.; Podoleanu, A.G. Quality assessment of dental treatments using en-face optical coherence tomography. J. Biomed. Opt. 2008, 13, 054065. [Google Scholar] [CrossRef] [Green Version]
- Todea, C.; Balabuc, C.; Sinescu, C.; Filip, L.; Kerezsi, C.; Calniceanu, M.; Negrutiu, M.; Bradu, A.; Hughes, M.; Podoleanu, A.G. En face optical coherence tomography investigation of apical microleakage after laser-assisted endodontic treatment. Lasers. Med. Sci. 2010, 25, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-L.; Kuo, W.-C.; Chang, Y.-H.; Yu, J.-J.; Lin, Y.-C. Examination of ceramic/enamel interfacial debonding using acoustic emission and optical coherence tomography. Dent. Mater. 2014, 30, 910–916. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.; Sowa, M.G.; Iacopino, A.M.; Maev, R.G.; Hewko, M.D.; Man, A.; Liu, K.Z. An update on novel non-invasive approaches for periodontal diagnosis. J. Periodontol. 2010, 81, 186–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fried, D. Lasers and optics for measuring tooth decay. Opt. Photonics News 2010, 21, 14–19. [Google Scholar] [CrossRef]
- Wijesinghe, R.E.; Cho, N.H.; Park, K.; Jeon, M.; Kim, J. Bio-photonic detection and quantitative evaluation method for the progression of dental caries using optical frequency-domain imaging method. Sensors 2016, 16, 2076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilder-Smith, P.; Jung, W.G.; Brenner, M.; Osann, K.; Beydoun, H.; Messadi, D.; Chen, Z. In vivo optical coherence tomography for the diagnosis of oral malignancy. Lasers. Surg. Med. 2004, 35, 269–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, W.; Zhang, J.; Chung, J.; Wilder-Smith, P.; Brenner, M.; Nelson, J.S.; Chen, Z. Advances in oral cancer detection using optical coherence tomography. IEEE J. Sel. Top. Quantum Electron. 2005, 11, 811–817. [Google Scholar] [CrossRef]
- Tsai, M.-T.; Lee, C.-K.; Lee, H.-C.; Chen, H.-M.; Chiang, C.-P.; Wang, Y.-M.; Yang, C.-C. Differentiating oral lesions in different carcinogenesis stages with optical coherence tomography. J. Biomed. Opt. 2009, 14, 044028. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.S.; Wilder-Smith, P.B.; Ahn, Y.C.; Liaw, L.H.L.; Chen, Z.; Kwon, Y.J. Enhanced detection of early-stage oral cancer in vivo by optical coherence tomography using multimodal delivery of gold nanoparticles. J. Biomed. Opt. 2009, 14, 034008. [Google Scholar] [CrossRef]
- Pendyala, C.; Tiwari, R.V.; Dixit, H.; Augustine, V.; Baruah, Q.; Baruah, K. Contemporary Apprise on LASERS and Its Applications in Dentistry. Int. J. Oral Health Med. Res. 2017, 4, 47–51. [Google Scholar]
- Biel, M. Advances in photodynamic therapy for the treatment of head and neck cancers. Lasers. Surg. Med. 2006, 38, 349–355. [Google Scholar] [CrossRef]
- Maung, L.H.; Lee, C.; Fried, D. Near-IR Imaging of thermal changes in enamel during laser ablation. In Lasers in Dentistry XVI; International Society for Optics and Photonics: Bellingham, WA, USA, 2010. [Google Scholar]
- Rechmann, P.; Fried, D.; Le, C.Q.; Rapozo-Hilo, M.L.; Rechmann, B.M.; Featherstone, J.D.; Nelson, G. Caries inhibition in vital teeth using 9.6-μm CO 2-laser irradiation. J. Biomed. Opt. 2011, 16, 071405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, K.H.; Fried, N.M.; Fried, D. Selective ablation of carious lesions using an integrated multispectral near-IR imaging system and a novel 9.3-µm CO2 laser. In Lasers in Dentistry XXIV; International Society for Optics and Photonics: Bellingham, WA, USA, 2018. [Google Scholar]
- Hossain, M.; Nakamura, Y.; Kimura, Y.; Ito, M.; Yamada, Y.; Matsumoto, K. Acquired acid resistance of dental hard tissues by CO2 laser irradiation. J. Clin. Laser Med. Surg. 1999, 17, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Hamad, S.A.; Naif, J.S.; Abdullah, M.A. Effect of diode laser on healing of tooth extraction socket: An experimental study in rabbits. J. Oral Maxillofac. Surg. 2016, 15, 308–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romanos, G.E.; Nentwig, G.H. Regenerative Therapy of Deep Peri-implant Infrabony Defects After CO2 Laser Implant Surface Decontamination. Int. J. Periodontics Restor. Dent. 2008, 28, 245–255. [Google Scholar]
- Aoki, A.; Mizutani, K.; Schwarz, F.; Sculean, A.; Yukna, R.A.; Takasaki, A.A.; Romanos, G.E.; Taniguchi, Y.; Sasaki, K.M.; Zeredo, J.L. Periodontal and peri-implant wound healing following laser therapy. Periodontology 2000 2015, 68, 217–269. [Google Scholar] [CrossRef]
- Kreisler, M.; Götz, H.; Duschner, H.; d’Hoedt, B. Effect of Nd: YAG, Ho: YAG, Er: YAG, CO2, and GaAlAs Laser Irradiation on Surface Properties of Endosseous Dental Implants. Int. J. Oral Maxillofac. Implant. 2002, 17, 202–211. [Google Scholar]
- Lee, J.H.; Heo, S.J.; Koak, J.Y.; Kim, S.K.; Lee, S.J.; Lee, S.H. Cellular responses on anodized titanium discs after laser irradiation. Lasers. Surg. Med. 2008, 40, 738–742. [Google Scholar] [CrossRef]
- Matsuyama, T.; Aoki, A.; Oda, S.; Yoneyama, T.; Ishikawa, I. Effects of the Er: YAG laser irradiation on titanium implant materials and contaminated implant abutment surfaces. J. Clin. Laser Med. Surg. 2003, 21, 7–17. [Google Scholar] [CrossRef]
- Caton, J.G.; Zander, H.A. The attachment between tooth and gingival tissues after periodic root planing and soft tissue curettage. J. Periodontol. 1979, 50, 462–466. [Google Scholar] [CrossRef]
- Melcher, A. On the repair potential of periodontal tissues. J. Periodontol. 1976, 47, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Yukna, R.A. A clinical and histologic study of healing following the excisional new attachment procedure in rhesus monkeys. J. Clin. Periodontol. 1976, 47, 701–709. [Google Scholar] [CrossRef]
- Yukna, R.A.; Bowers, G.M.; Lawrence, J.J.; Fedi, P.F., Jr. A clinical study of healing in humans following the excisional new attachment procedure. J. Clin. Periodontol. 1976, 47, 696–700. [Google Scholar] [CrossRef] [PubMed]
- Rossmann, J.A.; McQuade, M.J.; Turunen, D.E. Retardation of epithelial migration in monkeys using a carbon dioxide laser: An animal study. J. Periodontol. 1992, 63, 902–907. [Google Scholar] [CrossRef]
- Centty, I.G.; Blank, L.W.; Levy, B.A.; Romberg, E.; Barnes, D.M. Carbon dioxide laser for de-epithelialization of periodontal flaps. J. Periodontol. 1997, 68, 763–769. [Google Scholar] [CrossRef]
- Mollaoglu, N. Oral lichen planus: A review. Br. J. Oral. Maxillofac. Surg. 2000, 38, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Carbone, M.; Goss, E.; Carrozzo, M.; Castellano, S.; Conrotto, D.; Broccoletti, R.; Gandolfo, S. Systemic and topical corticosteroid treatment of oral lichen planus: A comparative study with long-term follow-up. J. Oral Pathol. Med. 2003, 32, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Akram, Z.; Abduljabbar, T.; Vohra, F.; Javed, F. Efficacy of low-level laser therapy compared to steroid therapy in the treatment of oral lichen planus: A systematic review. J. Oral Pathol. Med. 2018, 47, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Konopka, K.; Goslinski, T. Photodynamic therapy in dentistry. J. Dent. Res. 2007, 86, 694–707. [Google Scholar] [CrossRef] [PubMed]
- Bunæs, D.F.; Lie, S.A.; Åstrøm, A.N.; Mustafa, K.; Leknes, K.N. Site-specific treatment outcome in smokers following 12 months of supportive periodontal therapy. J. Clin. Periodontol. 2016, 43, 1086–1093. [Google Scholar] [CrossRef] [PubMed]
- Heasman, L.; Stacey, F.; Preshaw, P.; McCracken, G.; Hepburn, S.; Heasman, P. The effect of smoking on periodontal treatment response: A review of clinical evidence. J. Clin. Periodontol. 2006, 33, 241–253. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Wong, K.; Leung, W.; Corbet, E. Comparison of treatment response patterns following scaling and root planing in smokers and non-smokers with untreated adult periodontitis. J. Clin. Dent. 2000, 11, 35–41. [Google Scholar] [PubMed]
- Akram, Z.; Raffat, M.A.; Shafqat, S.S.; Mirza, S.; Ikram, S. Clinical efficacy of photodynamic therapy as an adjunct to scaling and root planing in the treatment of chronic periodontitis among cigarette smokers: A systematic review and meta-analysis. Photodiagnosis Photodyn. Ther. 2019, 26, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Massano, J.; Regateiro, F.S.; Januário, G.; Ferreira, A. Oral squamous cell carcinoma: Review of prognostic and predictive factors. Oral Surg. Oral Med. Oral Pathol. Oral Radiol Endod. 2006, 102, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Silverman, S., Jr. Oral cancer: Complications of therapy. Oral Surg. Oral Med. Oral Pathol. Oral Radiol Endod. 1999, 88, 122–126. [Google Scholar] [CrossRef]
- Dougherty, T.J.; Gomer, C.J.; Henderson, B.W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. Photodynamic therapy. JNCI 1998, 90, 889–905. [Google Scholar] [CrossRef] [Green Version]
- Biel, M.A. Photodynamic therapy in head and neck cancer. Curr. Oncol. Rep. 2002, 4, 87–96. [Google Scholar] [CrossRef]
- Abbasi, E.; Kafshdooz, T.; Bakhtiary, M.; Nikzamir, N.; Nikzamir, N.; Nikzamir, M.; Mohammadian, M.; Akbarzadeh, A. Biomedical and biological applications of quantum dots. Artif. Cells Nanomed. Biotechnol. 2016, 44, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, W.; Moore, B. Luminescence spectra of dental porcelains. J. Dent. Res. 1978, 57, 971–974. [Google Scholar] [CrossRef]
- Garcia, I.; Leitune, V.; Kist, T.; Takimi, A.; Samuel, S.; Collares, F. Quantum dots as nonagglomerated nanofillers for adhesive resins. J. Dent. Res. 2016, 95, 1401–1407. [Google Scholar] [CrossRef]
- Chalmers, N.I.; Palmer, R.J., Jr.; Du-Thumm, L.; Sullivan, R.; Shi, W.; Kolenbrander, P.E. Use of quantum dot luminescent probes to achieve single-cell resolution of human oral bacteria in biofilms. Appl. Environ. Microbiol. 2007, 73, 630–636. [Google Scholar] [CrossRef] [Green Version]
- Kanaparthy, R.; Kanaparthy, A. The changing face of dentistry: Nanotechnology. Int. J. Nanomed. 2011, 6, 2799. [Google Scholar] [CrossRef] [Green Version]
- Padovani, G.C.; Feitosa, V.P.; Sauro, S.; Tay, F.R.; Durán, G.; Paula, A.J.; Durán, N. Advances in dental materials through nanotechnology: Facts, perspectives and toxicological aspects. Trends Biotechnol. 2015, 33, 621–636. [Google Scholar] [CrossRef] [PubMed]
- da Silva, E.J.; de Miranda, E.M.; de Oliveira Mota, C.C.B.; Das, A.; Gomes, A.S.L. Photoacoustic imaging of occlusal incipient caries in the visible and near-infrared range. Imaging Sci. Dent. 2021, 51, 107. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Wang, L.V. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 2006, 77, 041101. [Google Scholar] [CrossRef] [Green Version]
- Beard, P. Biomedical photoacoustic imaging. Interface Focus. 2011, 1, 602–631. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaei, N.; Mandelis, A.; Amaechi, B.T. Thermophotonic lock-in imaging of early demineralized and carious lesions in human teeth. J. Biomed. Opt. 2011, 16, 071402. [Google Scholar] [CrossRef]
- Tavakolian, P.; Mandelis, A. Perspective: Principles and specifications of photothermal imaging methodologies and their applications to non-invasive biomedical and non-destructive materials imaging. J. Appl. Phys. 2018, 124, 160903. [Google Scholar] [CrossRef] [Green Version]
- Scribante, A.; Gallo, S.; Pascadopoli, M.; Soleo, R.; Di Fonso, F.; Politi, L.; Venugopal, A.; Marya, A.; Butera, A. Management of Periodontal Disease with Adjunctive Therapy with Ozone and Photobiomodulation (PBM): A Randomized Clinical Trial. Photonics 2022, 9, 138. [Google Scholar] [CrossRef]
Laser Type | Wavelength | Applications |
---|---|---|
CO2 | 10.6 µm |
|
Nd:YAG | 1.064 µm |
|
Er:YAG | 2.94 µm |
|
Er,Cr:YSGG | 2.78 µm |
|
Argon | 572 nm |
|
Diode | 810–980 nm |
|
HO:YAG | 2.1 µm |
|
Summary of Advantages of Laser Therapy in Dentistry Compared to Conventional Therapies |
---|
Reduced need of anaesthesia |
Reduces pain with analgesic effects |
Haemostatic effects; reduces bleeding and tissue inflammation |
Very precise cutting; minimises damage to healthy tissues |
Ability to ablate and vaporise dental hard tissues |
No issue of painful vibrations caused by conventional equipment, such as dental drills |
Microbial and bacterial inhibition |
Improved cell metabolism and biostimulation |
Patients with higher sensitivity can be treated with photomodulation therapy |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daghigh Ahmadi, E.; Hafeji, S.; Khurshid, Z.; Imran, E.; Zafar, M.S.; Saeinasab, M.; Sefat, F. Biophotonics in Dentistry. Appl. Sci. 2022, 12, 4254. https://doi.org/10.3390/app12094254
Daghigh Ahmadi E, Hafeji S, Khurshid Z, Imran E, Zafar MS, Saeinasab M, Sefat F. Biophotonics in Dentistry. Applied Sciences. 2022; 12(9):4254. https://doi.org/10.3390/app12094254
Chicago/Turabian StyleDaghigh Ahmadi, Ehsaneh, Saudah Hafeji, Zohaib Khurshid, Eisha Imran, Muhammad Sohail Zafar, Morvarid Saeinasab, and Farshid Sefat. 2022. "Biophotonics in Dentistry" Applied Sciences 12, no. 9: 4254. https://doi.org/10.3390/app12094254
APA StyleDaghigh Ahmadi, E., Hafeji, S., Khurshid, Z., Imran, E., Zafar, M. S., Saeinasab, M., & Sefat, F. (2022). Biophotonics in Dentistry. Applied Sciences, 12(9), 4254. https://doi.org/10.3390/app12094254