Comparison of the Axial Fan and Synthetic Jet Cooling Systems
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
Data Reduction
3. Results and Discussion
3.1. Validation
3.2. Comparision of Thermal Parameters of Different Cooling Devices
3.3. A Comparison of the Performance of Different Cooling Devices
- Fischerelectronik ICK S R 140 × 70; commercial pin fins heat sink with parameters: K/W; dm3; W/(K·dm3).
- Fischerelectronik ICK LED R 200 × 40; commercial plane fin heat sink with parameters: K/W; dm3; W/(K·dm3).
- Natural convection; investigated heat sink under natural convection conditions with parameters: K/W; dm3; W/(K·dm3).
- Yu et al.; The heat sink optimized by Yu et al. [13], with W/(K·dm3) depending on the heat flux density applied to the heat sink base.
- SJ (Gil and Wilk); the actuator investigated by Gil and Wilk [28] with parameters: K/W; dm3; W/(K·dm3), W.
- SJ (Gil et al.); the actuator investigated by Gil et al. [27] with parameters: K/W; dm3; W/(K·dm3), W.
- Fan (downward flow); the investigated configuration with parameters: K/W; dm3; W/(K·dm3), W.
- Fan (upward flow); the investigated configuration with parameters: K/W; dm3; W/(K·dm3), W.
- Fischerelectronik LA ICK PEN 38 W 12; commercial fan-cooled heat sink with parameters: K/W; dm3; W/(K·dm3); W.
- Jian-Hui and Chun-Xin; the fan-cooled heat sink optimized by Jian-Hui and Chun-Xin [36] with parameters: K/W; dm3; W/(K·dm3); W.
- Saini and Webb; the fan-cooled heat sink investigated by Saini and Webb [17] with parameters: K/W; dm3; W/(K·dm3).
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jouhara, H.; Chauhan, A.; Nannou, T.; Almahmoud, S.; Delpech, B.; Wrobel, L.C. Heat pipe based systems—Advances and applications. Energy 2017, 128, 729–754. [Google Scholar] [CrossRef]
- Alhuyi Nazari, M.; Ahmadi, M.H.; Ghasempour, R.; Shafii, M.B.; Mahian, O.; Kalogirou, S.; Wongwises, S. A review on pulsating heat pipes: From solar to cryogenic applications. Appl. Energy 2018, 222, 475–484. [Google Scholar] [CrossRef]
- Ali, H.M. Recent advancements in PV cooling and efficiency enhancement integrating phase change materials based systems—A comprehensive review. Sol. Energy 2020, 197, 163–198. [Google Scholar] [CrossRef]
- Hu, X.; Gong, X. Experimental study on the thermal response of PCM-based heat sink using structured porous material fabricated by 3D printing. Case Stud. Therm. Eng. 2021, 24, 100844. [Google Scholar] [CrossRef]
- Pattanaik, M.S.; Cheekati, S.K.; Varma, V.B.; Ramanujan, R.V. A novel magnetic cooling device for long distance heat transfer. Appl. Therm. Eng. 2022, 201, 117777. [Google Scholar] [CrossRef]
- Deepak, K.; Varma, V.B.; Prasanna, G.; Ramanujan, R.V. Hybrid thermomagnetic oscillator for cooling and direct waste heat conversion to electricity. Appl. Energy 2019, 233–234, 312–320. [Google Scholar] [CrossRef]
- Glezer, A.; Amitay, M. Synthetic jets. Annual review of fluid mechanics. Annu. Rev. Fluid Mech. 2002, 34, 503–529. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, P.K.; Sahu, S.K.; Yadav, H. A Critical Review on Flow and Heat Transfer Characteristics of Synthetic Jet. Trans. Indian Natl. Acad. Eng. 2021, 7, 61–92. [Google Scholar] [CrossRef]
- Pavlova, A.; Amitay, M. Electronic Cooling Using Synthetic Jet Impingement. ASME J. Heat Transf. 2006, 128, 897–907. [Google Scholar] [CrossRef]
- Chaudhari, M.; Puranik, B.; Agrawal, A. Heat transfer characteristics of synthetic jet impingement cooling. Int. J. Heat Mass Transf. 2010, 53, 1057–1069. [Google Scholar] [CrossRef]
- Mangate, L.D.; Chaudhari, M.B. Experimental study on heat transfer characteristics of a heat sink with multiple-orifice synthetic jet. Int. J. Heat Mass Transf. 2016, 103, 1181–1190. [Google Scholar] [CrossRef]
- Yu, S.H.; Lee, K.S.; Yook, S.J. Natural convection around a radial heat sink. Int. J. Heat Mass Transf. 2010, 53, 2935–2938. [Google Scholar] [CrossRef]
- Yu, S.H.; Lee, K.S.; Yook, S.J. Optimum design of a radial heat sink under natural convection. Int. J. Heat Mass Transf. 2011, 54, 2499–2505. [Google Scholar] [CrossRef]
- Jang, D.; Yu, S.H.; Lee, K.S. Multidisciplinary optimization of a pin-fin radial heat sink for LED lighting applications. Int. J. Heat Mass Transf. 2012, 55, 515–521. [Google Scholar] [CrossRef]
- Yu, S.H.; Jang, D.; Lee, K.S. Effect of radiation in a radial heat sink under natural convection. Int. J. Heat Mass Transf. 2012, 55, 505–509. [Google Scholar] [CrossRef]
- Xu, Z. Thermal performance and multi-objective optimization of thermosyphon heat sinks with rectangular radial fins for high power LED lamps cooling. Case Stud. Therm. Eng. 2022, 30, 101778. [Google Scholar] [CrossRef]
- Saini, M.; Webb, R.L. Heat rejection limits of air cooled plane fin heat sinks for computer cooling. In Proceedings of the InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM), San Diego, CA, USA, 30 May–1 June 2002; pp. 1–8. [Google Scholar] [CrossRef]
- Lasance, C.J.M.; Aarts, R.M.; Ouweltjes, O. Synthetic jet cooling part II: Experimental results of an acoustic dipole cooler. In Proceedings of the 2008 Twenty-Fourth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA, 16–20 March 2008; pp. 26–31. [Google Scholar]
- Arik, M.; Utturkar, Y.; Ozmusul, M. Effect of synthetic jets over natural convection heat sinks. ASME Int. Mech. Eng. Congr. Expo. Proc. 2009, 10, 511–517. [Google Scholar] [CrossRef]
- Song, B.M.; Han, B.; Bar-Cohen, A.; Arik, M.; Sharma, R.; Weaver, S. Life prediction of LED-based recess downlight cooled by synthetic jet. Microelectron. Reliab. 2012, 52, 937–948. [Google Scholar] [CrossRef]
- Xiong, D.; Luo, Z.; Xia, Z.; Gong, W.; Wang, L. Active-passive combined and closed-loop control for the thermal management of high-power LED based on a dual synthetic jet actuator. Energy Convers. Manag. 2017, 132, 207–212. [Google Scholar] [CrossRef]
- Tan, X.; Zhang, J.; Yong, S.; Xie, G. An experimental investigation on comparison of synthetic and continuous jets impingement heat transfer. Int. J. Heat Mass Transf. 2015, 90, 227–238. [Google Scholar] [CrossRef]
- Singh, P.K.; Sahu, S.K.; Upadhyay, P.K. Experimental investigation of the thermal behavior a single-cavity and multiple-orifice synthetic jet impingement driven by electromagnetic actuator for electronics cooling. Exp. Heat Transf. 2022, 35, 132–158. [Google Scholar] [CrossRef]
- Krishan, G.; Aw, K.C.; Sharma, R.N. Synthetic jet impingement heat transfer enhancement—A review. Appl. Therm. Eng. 2019, 149, 1305–1323. [Google Scholar] [CrossRef]
- Gil, P. Performance of special type heat sink with an integrated synthetic jet actuator. E3S Web Conf. 2019, 100, 00017. [Google Scholar] [CrossRef] [Green Version]
- Gil, P. Experimental investigation on heat transfer enhancement of air-cooled heat sink using multiple synthetic jets. Int. J. Therm. Sci. 2021, 166, 106949. [Google Scholar] [CrossRef]
- Gil, P.; Smyk, E.; Gałek, R.; Przeszłowski, Ł. Thermal, flow and acoustic characteristics of the heat sink integrated inside the synthetic jet actuator cavity. Int. J. Therm. Sci. 2021, 170, 107171. [Google Scholar] [CrossRef]
- Gil, P.; Wilk, J. Experimental Investigations of Different Loudspeakers Applied as Synthetic Jet Actuators. Actuators 2021, 10, 224. [Google Scholar] [CrossRef]
- Smyk, E.; Gil, P.; Gałek, R.; Przeszłowski, Ł. Acoustic and Flow Aspects of Novel Synthetic Jet Actuator. Actuators 2020, 9, 100. [Google Scholar] [CrossRef]
- Kordík, J.; Trávníček, Z. Optimal diameter of nozzles of synthetic jet actuators based on electrodynamic transducers. Exp. Therm. Fluid Sci. 2017, 86, 281–294. [Google Scholar] [CrossRef]
- Singh, P.K.; Sahu, S.K.; Upadhyay, P.K.; Jain, A.K. Experimental investigation on thermal characteristics of hot surface by synthetic jet impingement. Appl. Therm. Eng. 2020, 165, 114596. [Google Scholar] [CrossRef]
- Jcgm, J.C.G.M. Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement; International Organization for Standardization: Geneva, Switzerland, 2008; Volume 50, p. 134. [Google Scholar]
- Riffat, S.B.; Ma, X. Improving the coefficient of performance of thermoelectric cooling systems: A review. Int. J. Energy Res. 2004, 28, 753–768. [Google Scholar] [CrossRef]
- Katarkar, A.S.; Dhale, L. Coefficient of Performance increment in Domestic Refrigerator: A Literature Review. Int. J. Eng. Res. Technol. 2014, 3, 768–772. [Google Scholar]
- Fukiba, K.; Ota, K.; Harashina, Y. Heat transfer enhancement of a heated cylinder with synthetic jet impingement from multiple orifice. Int. Commun. Heat Mass Transf. 2018, 99, 1–6. [Google Scholar] [CrossRef]
- Zhou, J.-H.; Yang, C.-X. Design and simulation of the CPU fan and heat sinks. IEEE Trans. Compon. Packag. Technol. 2008, 31, 890–903. [Google Scholar] [CrossRef]
Name | Relative Uncertainty | Absolute Uncertainty |
---|---|---|
T∞ | - | ±0.25 K |
Tb | - | ±0.15 K |
P | ±0.55% | - |
R | ±3.4% | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smyk, E.; Gil, P.; Gałek, R.; Przeszłowski, Ł. Comparison of the Axial Fan and Synthetic Jet Cooling Systems. Appl. Sci. 2022, 12, 4349. https://doi.org/10.3390/app12094349
Smyk E, Gil P, Gałek R, Przeszłowski Ł. Comparison of the Axial Fan and Synthetic Jet Cooling Systems. Applied Sciences. 2022; 12(9):4349. https://doi.org/10.3390/app12094349
Chicago/Turabian StyleSmyk, Emil, Paweł Gil, Rafał Gałek, and Łukasz Przeszłowski. 2022. "Comparison of the Axial Fan and Synthetic Jet Cooling Systems" Applied Sciences 12, no. 9: 4349. https://doi.org/10.3390/app12094349
APA StyleSmyk, E., Gil, P., Gałek, R., & Przeszłowski, Ł. (2022). Comparison of the Axial Fan and Synthetic Jet Cooling Systems. Applied Sciences, 12(9), 4349. https://doi.org/10.3390/app12094349