Developing a Guideline of Unmanned Aerial Vehicle’s Acquisition Geometry for Landslide Mapping and Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Studies
2.2. Data Collection
2.3. Methodology
3. Results
3.1. Accuracy Asssessment of Orthophotos
3.2. Accuracy Asssessment of DSMs
4. Discussion
5. Conclusions
- It was proved that the acquisition of UAV oblique and nadir imagery and the synergistic processing increase overall centimeter accuracy.
- In general, oblique imagery provides more accurate results in steep terrains compared to nadir imagery. However, in areas that combine high slopes, dense urban settlements, and narrow streets (as in Messarista village), nadir imagery could not be omitted.
- Even in flat areas, such as Patras Port, the combined use of oblique and nadir imagery ameliorates the overall accuracy.
- A UAV flight campaign should be adjusted each time to an investigated area’s characteristics and local topography.
- In steep terrains, an average flight altitude between 70 and 110 m above ground level or a ground spatial resolution of around 3 cm are recommended for both nadir and oblique campaigns in order to assess centimeter accuracy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Westen, C.J. Remote sensing for natural disaster management. Int. Arch. Photogramm. Remote Sens. 2000, 33, 1609–1617. [Google Scholar]
- Garnica-Peña, R.J.; Alcántara-Ayala, I. The use of UAVs for landslide disaster risk research and disaster risk management: A literature review. J. Mt. Sci. 2021, 18, 482–498. [Google Scholar] [CrossRef]
- Salvini, R.; Mastrorocco, G.; Esposito, G.; Di Bartolo, S.; Coggan, J.; Vanneschi, C. Use of a remotely piloted aircraft system for hazard assessment in a rocky mining area (Lucca, Italy). Nat. Hazards Earth Syst. Sci. 2018, 18, 287–302. [Google Scholar] [CrossRef] [Green Version]
- Giordan, D.; Manconi, A.; Remondino, F.; Nex, F. Use of unmanned aerial vehicles in monitoring application and management of natural hazards. Geomat. Nat. Hazards Risk 2016, 8, 1–4. [Google Scholar] [CrossRef]
- Merdaway, A.; Guvenc, I. UAV assisted heterogeneous networks for public safety communications. In Proceedings of the IEEE Wireless Communications and Networking Conference Workshop—2nd International Workshop on Device to Device and Public Safety Communications, New Orleans, LA, USA, 9–12 March 2015; pp. 1–6. [Google Scholar]
- Xu, Z.; Yang, J.; Peng, C.; Wu., Y.; Jiang, X.; Li, R.; Zheng, Y.; Gao, Y.; Liu, S.; Tian, B. Development of an UAS for post-earthquake disaster surveying and its application in Ms7.0 Lushan Earthquake, Sichuan, China. Comput. Geosc. 2014, 68, 22–30. [Google Scholar] [CrossRef]
- Feng, Q.; Liu, J.; Gong, J. Urban Flood Mapping Based on Unmanned Aerial Vehicle Remote Sensing and Random Forest Classifier—A Case of Yuyao, China. Water 2015, 7, 1437–1455. [Google Scholar] [CrossRef]
- Liu, C.-C.; Chen, P.-L.; Matsuo, T.; Chen, C.-Y. Rapidly responding to landslides and debris flow events using a low-cost unmanned aerial vehicle. J. Appl. Remote Sens. 2015, 9, 096016. [Google Scholar] [CrossRef]
- Gomez, C.; Purdie, H. UAV-based photogrammetry and geocomputing for hazards and disaster risk monitoring—A Review. Geoenvironmental Disasters 2016, 3, 23. [Google Scholar] [CrossRef] [Green Version]
- Themistocleous, K.; Hadjimitsis, D.G.; Michaelides, S.; Spizzichino, D.J.; Crosta, G.B.; Fernandez Merodo, J.A.; Bee, E. Best practices for monitoring. mitigation and preservation of cultural heritage sites affected by geo-hazards. In Proceedings of the EGU2018, Vienna, Austria, 8–13 April 2018; Volume 20. [Google Scholar]
- Agüera-Vega, F.; Carvajal-Ramírez, F.; Martínez-Carricondo, P. Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle. Measurement 2017, 98, 221–227. [Google Scholar] [CrossRef]
- Oniga, V.-E.; Breaban, A.-I.; Pfeifer, N.; Chirila, C. Determining the Suitable Number of Ground Control Points for UAS Images Georeferencing by Varying Number and Spatial Distribution. Remote Sens. 2020, 12, 876. [Google Scholar] [CrossRef] [Green Version]
- Bolkas, D. Assessment of GCP Number and Separation Distance for Small UAS Surveys with and without GNSS-PPK Positioning. J. Surv. Eng. 2019, 145, 04019007. [Google Scholar] [CrossRef]
- Tonkin, T.N.; Midgley, N.G. Ground-Control Networks for Image Based Surface Reconstruction: An Investigation of Optimum Survey Designs Using UAV Derived Imagery and Structure-from-Motion Photogrammetry. Remote Sens. 2016, 8, 786. [Google Scholar] [CrossRef] [Green Version]
- Gindraux, S.; Boesch, R.; Farinotti, D. Accuracy Assessment of Digital Surface Models from Unmanned Aerial Vehicles’ Imagery on Glaciers. Remote Sens. 2017, 9, 186. [Google Scholar] [CrossRef] [Green Version]
- Taddia, Y.; González-García, L.; Zambello, E.; Pellegrinelli, A. Quality Assessment of Photogrammetric Models for Façade and Building Reconstruction Using DJI Phantom 4 RTK. Remote Sens. 2020, 12, 3144. [Google Scholar] [CrossRef]
- Žabota, B.; Kobal, M. Accuracy Assessment of UAV-Photogrammetric-Derived Products Using PPK and GCPs in Challenging Terrains: In Search of Optimized Rockfall Mapping. Remote Sens. 2021, 13, 3812. [Google Scholar] [CrossRef]
- Štroner, M.; Urban, R.; Reindl, T.; Seidl, J.; Brouček, J. Evaluation of the Georeferencing Accuracy of a Photogrammetric Model Using a Quadrocopter with Onboard GNSS RTK. Sensors 2020, 20, 2318. [Google Scholar] [CrossRef] [Green Version]
- Štroner, M.; Urban, R.; Seidl, J.; Reindl, T.; Brouček, J. Photogrammetry Using UAV-Mounted GNSS RTK: Georeferencing Strategies without GCPs. Remote Sens. 2021, 13, 1336. [Google Scholar] [CrossRef]
- Amrullah, C.; Suwardhi, D.; Meilano, I. Product accuracy effect of oblique and vertical non-metric digital camera utilization in UAV-photogrammetry to determine fault plane. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Rossi, P.; Mancini, F.; Dubbini, M.; Mazzone, F.; Capra, A. Combining nadir and oblique UAV imagery to reconstruct quarry topography: Methodology and feasibility analysis. Eur. J. Remote Sens. 2017, 50, 211. [Google Scholar] [CrossRef] [Green Version]
- Kyriou, A.; Nikolakopoulos, K.; Koukouvelas, I. How image acquisition geometry of UAV campaigns affects the derived products and their accuracy in areas with complex geomorphology. ISPRS Int. J. Geo-Inf. 2021, 10, 408. [Google Scholar] [CrossRef]
- Nesbit, P.R.; Hubbard, S.M.; Hugenholtz, C.H. Direct georeferencing UAV-SfM in high-relief topography: Accuracy assessment and alternative ground control strategies along steep inaccessible rock slopes. Remote Sens. 2022, 14, 490. [Google Scholar] [CrossRef]
- Tu, Y.-H.; Johansen, K.; Aragon, B.; Stutsel, B.M.; Angel, Y.; Camargo, O.A.L.; Al-Mashharawi, S.K.M.; Jiang, J.; Ziliani, M.G.; McCabe, M.F. Combining nadir, oblique, and façade imagery enhances reconstruction of rock formations using unmanned aerial vehicles. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9987–9999. [Google Scholar] [CrossRef]
- Meinen, B.U.; Robinson, D.T. Mapping erosion and deposition in an agricultural landscape: Optimization of UAV imageacquisition schemes for SfM-MVS. Remote Sens. Environ. 2020, 239, 111666. [Google Scholar] [CrossRef]
- Vacca, G.; Dessì, A.; Sacco, A. The use of nadir and oblique UAV images for building knowledge. ISPRS Int. J. Geo-Inf. 2017, 6, 393. [Google Scholar] [CrossRef] [Green Version]
- Lingua, A.; Noardo, F.; Spanò, A.; Sanna, S.; Matrone, F. 3D model generation using oblique images acquired by UAV. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 151, 146–152. [Google Scholar] [CrossRef] [Green Version]
- Nesbit, P.R.; Hugenholtz, C.H. Enhancing UAV–SfM 3D Model Accuracy in High-Relief Landscapes by Incorporating Oblique Images. Remote Sens. 2019, 11, 239. [Google Scholar] [CrossRef] [Green Version]
- Anis, Z.; Wissem, G.; Riheb, H.; Biswajeet, P.; Essghaier, G.M. Effects of clay properties in the landslides genesis in flysch massif: Case study of Aïn Draham, North Western Tunisia. J. Afr. Earth Sci. 2018, 151, 146–152. [Google Scholar] [CrossRef]
- Cushing, M. Evolution structurale de la marge nord ouest hellénique dans l’ île de Levkas et ses environs (Grèce nord occidentale). In Thèse 3me Cycle; Univ. de Paris-Sud: Paris, France, 1985; p. 67. [Google Scholar]
- Rondoyianni, T.; Mettos, A.; Paschos, P.; Georgiou, C. Neotectonic Map of Greece, Scale 1:100.000, Lefkada Sheet; I.G.M.E.: Athens, Greece, 2007. [Google Scholar]
- Tsangaratos, P.; Loupasakis, C.; Nikolakopoulos, K.; Angelitsa, V.; Ilia, I. Developing a landslide susceptibility map based on remote sensing, fuzzy logic and expert knowledge of the Island of Lefkada, Greece. Environ. Earth Sci. 2018, 77, 363. [Google Scholar] [CrossRef]
- Fernández-Blanco, D.; de Gelder, G.; Lacassin, R.; Armijo, R. A new crustal fault formed the modern Corinth Rift. Earth-Science Rev. 2019, 199, 102919. [Google Scholar] [CrossRef] [Green Version]
- Jolivet, L.; Labrousse, L.; Agard, P.; Lacombe, O.; Bailly, V.; Lecomte, E.; Mouthereau, F.; Mehl, C. Rifting and shallow-dipping detachments, clues from the Corinth Rift and the Aegean. Tectonophysics 2010, 483, 287–304. [Google Scholar] [CrossRef] [Green Version]
- Coded Targets and Scale Bars. Available online: https://agisoft.freshdesk.com/support/solutions/articles/31000148855-coded-targets-and-scale-bars (accessed on 1 March 2022).
- Westoby, M.; Brasington, J.; Glasser, N.; Hambrey, M.; Reynolds, J. ‘Structure-from-Motion’ photogrammetry: A low-cost. effectivetool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Eltner, A.; Sofia, G. Structure from motion photogrammetric technique. In Developments in Earth Surface Processes; Tarolli, P., Mudd, S.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 23, pp. 1–24. [Google Scholar]
- Micheletti, N.; Chandler, J.; Lane, S.N. Structure from motion (SFM) photogrammetry. In Geomorphological Techniques; British Society for Geomorphology: London, UK, 2015. [Google Scholar]
- Clapuyt, F.; Vanacker, V.; Van Oost, K.; Clapuyt, F.; Vanacker, V.; Van Oost, K. Reproducibility of UAV-based earth topography reconstructions based on Structure-from-Motion algorithms. Geomorphology 2016, 260, 4–15. [Google Scholar] [CrossRef]
- Agisoft Metashape User Manual. Available online: https://www.agisoft.com/pdf/metashape-pro_1_7_en.pdf (accessed on 8 March 2022).
- Tamani, F.; Hadji, R.; Hamad, A.; Hamed, Y. Integrating Remotely Sensed and GIS Data for the Detailed Geological Mapping in Semi-Arid Regions: Case of Youks les Bains Area, Tebessa Province, NE Algeria. Geotech. Geol. Eng. 2019, 37, 2903–2913. [Google Scholar] [CrossRef]
- ArcMap (Mean Center). Available online: https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-statistics-toolbox/mean-center.htm (accessed on 5 March 2022).
- Mitchell, A. The ESRI Guide to GIS Analysis, 1st ed.; ESRI Press: Redlands, CA, USA, 2005; Volume 2. [Google Scholar]
- ArcMap (Near Analysis). Available online: https://desktop.arcgis.com/en/arcmap/10.3/tools/analysis-toolbox/near.htm (accessed on 5 March 2022).
- Lucieer, A.; de Long, S.M.; Turner, D. Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Prog. Phys. Geogr. 2014, 38, 97–116. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Sam, L.; Akanksha; Martín-Torres, F.J.; Kumar, R. UAVs as remote sensing platform in glaciology: Present applications and future prospects. Remote Sens. Environ. 2016, 175, 196–204. [Google Scholar] [CrossRef]
- Eltner, A.; Baumgart, P.; Maas, H.-G.; Faust, D. Multi-temporal UAV data for automatic measurement of rill and interrill erosion on loess soil. Earth Surf. Process. Landforms 2014, 40, 741–755. [Google Scholar] [CrossRef]
Case Study ID | Locations | Topography Description | Vegetation |
---|---|---|---|
1 | Moira | Steep slope, large extent, grassland 1 | Low and sparse vegetation |
2 | Egkremni | Steep slope, coastal area, grassland | Very sparse vegetation |
3 | Zachlorou | Steep slope, narrow gorge, grassland | Low vegetation |
4 | Messarista | Steep slope, urban settlement, narrow roads, densely build-up area | Low vegetation |
5 | Patras Port | Flat, industrial environment | No vegetation |
Case Study ID | Acquisition Geometry | Number of Photos | Average Flight Altitude (m) | Average GSD (cm) | Along the Track Overlap % | Along the Track Overlap % |
---|---|---|---|---|---|---|
Moira | Nadir | 189 | 110 | 3.5 | 90 | 75 |
Oblique | 174 | |||||
Synergistic use | 363 | |||||
Egremni | Nadir | 97 | 60 | 2.3 | 90 | 75 |
Oblique | 84 | |||||
Synergistic use | 181 | |||||
Zachlorou | Nadir | 60 | 70 | 2.5 | 90 | 75 |
Oblique | 210 | |||||
Synergistic use | 286 | |||||
Messarista | Nadir | 65 | 110 | 3.5 | 90 | 75 |
Oblique | 70 | |||||
Synergistic use | 135 | |||||
Patras Port | Nadir | 96 | 60 | 2.3 | 90 | 75 |
Oblique | 85 | |||||
Synergistic use | 181 |
Case Study ID | Acquisition Geometry | Length Line 1 (m) | Difference (m) | Difference % | Length Line 2 (m) | Difference (m) | Difference % |
---|---|---|---|---|---|---|---|
Reference line | 226.676 | 129.881 | |||||
Moira | Nadir | 226.933 | −0.257 | −0.113% | 129.550 | 0.331 | 0.254% |
Oblique | 226.745 | −0.069 | −0.030% | 129.937 | −0.056 | −0.043% | |
Synergistic use | 226.734 | −0.058 | −0.029% | 129.725 | 0.156 | 0.120% | |
Reference line | 32.898 | 23.221 | |||||
Egremni | Nadir | 32.861 | 0.038 | 0.112% | 23.274 | −0.054 | −0.228% |
Oblique | 32.906 | −0.007 | −0.024% | 23.229 | −0.008 | −0.034% | |
Synergistic use | 32.868 | 0.030 | 0.091% | 23.229 | −0.008 | −0.034% | |
Reference line | 8.938 | 16.152 | |||||
Zachlorou | Nadir | 8.921 | 0.017 | 0.190% | 16.179 | −0.027 | −0.167% |
Oblique | 8.944 | −0.006 | −0.067% | 16.179 | −0.027 | −0.167% | |
Synergistic use | 8.938 | 0.000 | 0.000% | 16.177 | −0.025 | −0.154% | |
Reference line | 60.524 | 23.064 | |||||
Messarista | Nadir | 60.577 | −0.053 | −0.088% | 23.149 | −0.085 | −0.368% |
Oblique | 61.002 | −0.478 | −0.790% | 23.299 | −0.235 | −1.018% | |
Synergistic use | 60.539 | −0.015 | −0.014% | 23.097 | −0.033 | −0.143% | |
Reference line | 84.240 | 74.220 | |||||
Patras Port | Nadir | 84.559 | −0.319 | −0.379% | 74.492 | −0.272 | −0.366% |
Oblique | 84.117 | 0.123 | 0.146% | 73.988 | 0.232 | 0.312% | |
Synergistic use | 84.228 | 0.012 | 0.012% | 74.208 | 0.012 | 0.016% |
Case Study ID | Acquisition Geometry | Near Distance (m) Mean Center of Line 1 | Near Distance (m) Mean Center of Line 2 |
---|---|---|---|
Moira | Nadir | 0.023 | 0.095 |
Oblique | 0.015 | 0.049 | |
Synergistic use | 0.013 | 0.012 | |
Egkremni | Nadir | 0.020 | 0.022 |
Oblique | 0.025 | 0.014 | |
Synergistic use | 0.038 | 0.021 | |
Zachlorou | Nadir | 0.006 | 0.016 |
Oblique | 0.070 | 0.068 | |
Synergistic use | 0.023 | 0.010 | |
Messarista | Nadir | 0.064 | 0.036 |
Oblique | 0.477 | 0.305 | |
Synergistic use | 0.082 | 0.034 | |
Patras Port | Nadir | 0.700 | 0.812 |
Oblique | 0.946 | 0.890 | |
Synergistic use | 0.024 | 0.009 |
Case Study ID | Acquisition Geometry | Length (m) | Difference (m) | Difference % | Area (m2) | Difference (m2) | Difference % |
---|---|---|---|---|---|---|---|
Reference | 0.538 | 0.150 | |||||
Zachlorou | Nadir | 0.546 | −0.008 | −1.486% | 0.149 | 0.001 | 0.666% |
Oblique | 0.548 | −0.010 | −1.858% | 0.148 | 0.002 | 1.332% | |
Synergistic use | 0.542 | −0.004 | −0.743% | 0.151 | −0.001 | −0.666% |
Case Study ID | Acquisition Geometry | RMSE (m) |
---|---|---|
Moira | Nadir | 0.380 |
Oblique | 0.260 | |
Synergistic use | 0.140 | |
Egkremni | Nadir | 0.092 |
Oblique | 0.085 | |
Synergistic use | 0.083 | |
Zachlorou | Nadir | 0.506 |
Oblique | 0.498 | |
Synergistic use | 0.475 | |
Messarista | Nadir | 0.162 |
Oblique | 0.357 | |
Synergistic use | 0.090 | |
Patras Port | Nadir | 0.159 |
Oblique | 0.236 | |
Synergistic use | 0.047 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolakopoulos, K.G.; Kyriou, A.; Koukouvelas, I.K. Developing a Guideline of Unmanned Aerial Vehicle’s Acquisition Geometry for Landslide Mapping and Monitoring. Appl. Sci. 2022, 12, 4598. https://doi.org/10.3390/app12094598
Nikolakopoulos KG, Kyriou A, Koukouvelas IK. Developing a Guideline of Unmanned Aerial Vehicle’s Acquisition Geometry for Landslide Mapping and Monitoring. Applied Sciences. 2022; 12(9):4598. https://doi.org/10.3390/app12094598
Chicago/Turabian StyleNikolakopoulos, Konstantinos G., Aggeliki Kyriou, and Ioannis K. Koukouvelas. 2022. "Developing a Guideline of Unmanned Aerial Vehicle’s Acquisition Geometry for Landslide Mapping and Monitoring" Applied Sciences 12, no. 9: 4598. https://doi.org/10.3390/app12094598
APA StyleNikolakopoulos, K. G., Kyriou, A., & Koukouvelas, I. K. (2022). Developing a Guideline of Unmanned Aerial Vehicle’s Acquisition Geometry for Landslide Mapping and Monitoring. Applied Sciences, 12(9), 4598. https://doi.org/10.3390/app12094598