A Study on the Change in Properties by Using an Additive with Water-Soluble Rubber-Asphalt-Based Waterproof Coating Materials
Abstract
:1. Introduction
2. Theoretical Considerations
2.1. Confirmation of the Basic Mixing Ratio and Physical Properties of Materials Used
2.1.1. Basic Mixing Ratio
2.1.2. Confirmation of the Basic Properties of Materials Used
2.2. Additive Selection
2.2.1. Silane Coupling Agent
2.2.2. Filler
2.2.3. EVA (Ethylene Vinyl Acetate)
2.3. Research Flow
3. Confirmation of Single Additive Properties
3.1. Test Plan and Method
3.1.1. Tensile Performance (Tensile Strength, Elongation) and Tearing Performance
3.1.2. Solidity
3.1.3. Viscosity
3.2. Setting the Single Additive’s Mixing Ratio
3.3. Single Additive Test Results
3.3.1. Silane Coupling Agent
3.3.2. Nylon Fiber
3.3.3. EVA
3.4. Analysis of the Single Additive’s Test Results
3.4.1. Analysis of Tensile Strength, Elongation Rate, and Tear Strength Results of the Single Additive
3.4.2. Analysis of Solids and Viscosity Results Using a Single Additive
4. Confirmation of the Properties of Complex Additives
4.1. Setting the Range of the Compound Additive’s Mixing Ratio
4.2. Preparation of the Composite Additive’s Formulation Table
4.3. Composite Additive Mixing Progress
4.4. Composite Additive Test Results
4.4.1. Confirmation of Items Excluded from Evaluation According to the State of the Coating Film
4.4.2. Physical Property Test Results
4.5. Analysis of the Composite Additive’s Test Results
4.5.1. Tensile Strength
4.5.2. Elongation
4.5.3. Tear Strength
4.5.4. Solids
4.5.5. Viscosity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seo, W.I.; Kim, S.Y.; Kwak, G.S.; Oh, S.G. A Study on Complex Waterproofing Method Using Part of Joint Water-Tightness Improved Sheet; The Korea Institute of Building Construction: Seoul, Korea, 2004; Volume 7, pp. 1–6. [Google Scholar]
- Ahn, D.-S. A Study on the Physical Properties Change of Synthetic Rubber Polymer Gel by Using Stirring Screw Mixer. Master’s Thesis, Seoul National University of Science and Technology, Seoul, Korea, 2015. [Google Scholar]
- Oh, S.K.; Sim, J.S. Maintenance for Leakage due to Cracking in Concrete Structures-Guidelines for Repair of Water-Leakage Cracks in Concrete Structures. J. Korea Concr. Inst. 2011, 23, 47–52. [Google Scholar]
- Oh, S.K.; Lee, J.Y.; Choi, S.M. An Experimental Study on the Highly Adhesive Composite Waterproofing Sheet using Reclaimed Rubber. J. Archit. Inst. Korea 2014, 16, 279–284. [Google Scholar]
- Chang, S.-J. Advanced Technology of Waterproofing. J. Archit. Inst. Korea 2005, 49, 57–60. [Google Scholar]
- Muhammad, N.Z.; Keyvanfar, A.; Majid, M.Z.; Shafaghat, A.; Mirza, J. Waterproof Performance of Concrete: A Critical Review on Implemented Approaches. Constr. Build. Mater. 2015, 101, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Cuadri, A.A.; Carrera, V.; Izquierdo, M.A.; García-Morales, M.; Navarro, F.J. Bitumen Modifiers for Reduced Temperature Asphalts: A Comparative Analysis between Three Polymeric and Non-polymeric Additives. Constr. Build. Mater. 2014, 51, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Lsawy, M.M.E.; Taher, M.S.; Ebraheme, A.A.; Farag, R.K.; Saleh, A.M.M. Improvement Performance of Soft Asphalt for Coating Applications. Constr. Build. Mater. 2016, 128, 47–56. [Google Scholar]
- Deckard, C.; Duffy, P.H. Rethinking Waterproofing for Subsurface Structures. In Forensic Engineering 2009: Pathology of the Built Environment, 1st ed.; Chen, S.E., Diaz de Leon, A., Dolhon, A.M., Drerup, M.J., Parfitt, M.K., Eds.; American Society of Civil Engineers (ASCE): Washington, DC, USA, 2009; pp. 298–307. [Google Scholar]
- Cho, G.-S.; Park, W.-Y. The rooftop waterproof of public facilities and the study of improvement way—urethane rubber film waterproof. J. Korean Inst. Build. Constr. 2012, 12, 86–87. [Google Scholar]
- Korea Land & Housing Corporation. Establishment of Measures to Improve Quality of House Waterproofing Methods for Zero Defects in Quality Management; Public Housing Project Office: Seoul, Korea, 2017; pp. 1–3. [Google Scholar]
- KS A 0006; Standard Atmospheric Conditions for Testing. Korean Agency for Technology and Standards: Seoul, Korea, 2000.
- KS F 3211; Waterproofing Membrane Coating for Construction. Korean Agency for Technology and Standards: Seoul, Korea, 2015.
- ASTM D 5892; Standard Specification for Type IV Polymer-Modified Asphalt Cement for Use in Pavement Construction (Withdrawn 2005). ASTM: West Conshohocken, PA, USA, 2000.
- LH Guide Specifications 42531; Rubber Asphalt Sheet Double Waterproofing. Korea Land & Housing Corporation: Seoul, Korea, 2015.
- Ko, J.S.; Yun, J.W.; Lee, S.B.; Lee, M.W. Prevention Technology for Air Pocket of Membrane Waterproofing in Concrete Structures. J. Korea Concr. Inst. 2007, 19, 59–65. [Google Scholar]
- Lee, J.-Y.; Seo, H.-J.; Oh, K.-H.; Bo, J.; Oh, S.-K. Crack-Bridging Property Evaluation of Synthetic Polymerized Rubber Gel (SPRG) through Yield Stress Parameter Identification. Materials 2021, 14, 7599. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.-Y.; Kim, S.-Y.; Oh, S.-K. Waterproofing Performance Grade Proposal through Standard Test Result Comparison of Self Adhesive Rubberized Asphalt Sheet. Appl. Sci. 2020, 10, 7857. [Google Scholar] [CrossRef]
- Ibrahim, B.; Helwani, Z.; Fadhillah, I.; Wiranata, A.; Miharyono, J. Properties of Emulsion Paint with Modified Natural Rubber Latex/Polyvinyl Acetate Blend Binder. Appl. Sci. 2022, 12, 296. [Google Scholar] [CrossRef]
- Li, H.; Li, W.; Temitope, A.A.; Zhao, D.; Zhao, G.; Ma, Q. Analysis of the Influence of Production Method, Crumb Rubber Content and Stabilizer on the Performance of Asphalt Rubber. Appl. Sci. 2020, 10, 5447. [Google Scholar] [CrossRef]
- Qu, F.; Lv, S.; Gao, J.; Liu, C. Performance and Mechanism of Asphalt Modified by Buton-Rock Asphalt and Different Types of Styrene-Butadiene-Rubber. Appl. Sci. 2020, 10, 3077. [Google Scholar] [CrossRef]
Material Type | Ratio (%) |
---|---|
Emulsifier | 0.1–5.0 |
Latex | 20–50 |
Asphalt | 30–70 |
Water | 1–10 |
Others | 1.0–5.0 |
Quality Standard Criteria | Performance Result | Quality Standard | Performance Enhancement Compared to Quality Standard | |
---|---|---|---|---|
Tensile Performance | Tensile Strength (N/mm2) | 0.33 | More than 0.3 | 110% |
Elongation (%) | 1352 | More than 600 | 225% | |
Shear Strength (N/mm) | 3.21 | More than 2.9 | 111% | |
Solidity Ratio (%) | 73.33 (Standard value = 75) | ±3% compared to standard | 1.7% | |
Viscosity (mPa/s) (LV 3 Spindle 20 rpm, 23 °C) | 522 | N/A | N/A |
Chemical Name | Minimum Area (m2/g) | CAS No. |
---|---|---|
Vinyl Trichloro Silane | 480 | 75-94-5 |
Vinyl Trimethoxy Silane | 515 | 2768-02-7 |
Vinyl Ris(2-Methoxy Ethoxy) Silane | 410 | 1067-53-4 |
2-(3,4 Epoxycyclohexyl) Ethyltrimethoxy Silane | 278 | 3388-04-3 |
3-Glycidyloxy Propyl Trimethoxy Silane | 317 | 2530-83-8 |
3-Glycidyloxy Propyl Methyl Diethoxy Silane | 330 | 2897-60-1 |
3-Glycidyloxy Propyl Triethoxy Silane | 356 | 2602-34-8 |
3-Methacryloxy Propyl Methyl Dimethoxy Silane | 280 | 14513-34-9 |
3-Methacryloxy Propyl Trimethoxy Silane | 314 | 2530-85-0 |
3-Methacryloxy Propyl Nethyl Diethoxy Silane | 300 | 65100-04-1 |
N-2(Amino Ethyl)2-Amino Propyl methyl dimethoxy Silane | 380 | 3069-29-2 |
N-2(Amino Ethyl)2-Amino Propyl Trimethoxy Silane | 351 | 1760-24-3 |
N-2(Amino Ethyl)2-Amino Propyl Triethoxy Silane | 295 | 5089-72-5 |
3-Amino Propyl Trimethoxy Silane | 436 | 13822-56-5 |
3-Amino Propyl Triethoxy Silane | 353 | 919-30-2 |
N-Phenyl-3-Amino Propyl Trinethoxy Silane | 307 | 3068-76-6 |
3-Chloro Propyl Trimethoxy Silane | 393 | 2530-87-2 |
3-Mercapto Propyl Trimethoxy Silane | 398 | 4420-74-0 |
Items | Types | ||||||
---|---|---|---|---|---|---|---|
Urethane Rubber Type 1 | Acrylic Rubber | Chloroprene Rubber | Silicone Rubber | Urethane Rubber Type 2 | Rubber Asphalt | ||
Tensile Performance | Tensile Strength (N/mm2) | More than 2.5 | More than 1.5 | More than 1.5 | More than 0.5 | More than 2.0 | More than 0.3 |
Elongation (%) | More than 450 | More than 300 | More than 450 | More than 600 | More than 550 | More than 600 | |
Tear-Resistance Performance | Tear-Resistance Strength (N/mm) | More than 14.7 | More than 6.9 | More than 14.7 | More than 2.9 | More than 12.8 | More than 2.9 |
Solidity Ratio (%) | Increase from standard value ± 3 |
Item | Mixture Ratio | Increment | Input |
---|---|---|---|
Silane coupling agent | Min 0.0%–Max 1.5% | 0.3% unit increase | 0.3%, 0.6%, 0.9%, 1.2%, 1.5% |
Nylon fibre | Min 0.0%–Max 2.5% | 0.5% unit increase | 0.5%, 1.0%, 1.5%, 2.0%, 2.5% |
EVA | Min 0.0%–Max 2.5% | 0.5% unit increase | 0.5%, 1.0%, 1.5%, 2.0%, 2.5% |
Item (Code) | Mixture Ratio | Test Results | ||||||
---|---|---|---|---|---|---|---|---|
Soluble Rubber Asphalt Waterproof Coating | Tensile Strength (N/mm2) | Elongation (%) | Tear Resistance (N/mm2) | Solidity Ratio (%) | Viscosity (mPa·s) | |||
Silane Coupling Agent (SCA) | Nylon Fibre (NF) | EVA | ||||||
STD | - | - | - | 0.33 | 1352 | 3.21 | 73.33 | 522 |
SCA 0.3 | 0.3% | - | - | 0.57 | 1044 | 5.31 | 79.33 | 726 |
SCA 0.6 | 0.6% | - | - | 0.63 | 997 | 6.34 | 80.67 | 1297 |
SCA 0.9 | 0.9% | - | - | 0.70 | 906 | 7.02 | 82.67 | 1840 |
SCA 1.2 | 1.2% | - | - | 0.78 | 832 | 7.67 | 84.00 | 2715 |
SCA 1.5 | 1.5% | - | - | 0.81 | 711 | 8.24 | 85.33 | 3313 |
NF 0.5 | - | 0.5% | - | 0.68 | 704 | 6.25 | 85.33 | 1327 |
NF 1.0 | - | 1.0% | - | 1.12 | 412 | 8.56 | 87.33 | 2034 |
NF 1.5 | - | 1.5% | - | 1.54 | 318 | 11.23 | 88.67 | 2877 |
NF 2.0 | - | 2.0% | - | 1.97 | 181 | 14.54 | 90.67 | 3561 |
NF 2.5 | - | 2.5% | - | 2.43 | 83 | 17.78 | 91.33 | 4322 |
EVA 0.5 | - | - | 0.5% | 0.30 | 1418 | 2.51 | 77.33 | 690 |
EVA 1.0 | - | - | 1.0% | 0.28 | 1733 | 2.18 | 80.00 | 1221 |
EVA 1.5 | - | - | 1.5% | 0.25 | 2154 | 1.77 | 82.67 | 1765 |
EVA 2.0 | - | - | 2.0% | 0.24 | 2214 | 1.72 | 84.67 | 2113 |
EVA 2.5 | - | - | 2.5% | 0.24 | 2291 | 1.73 | 86.00 | 2468 |
Item (Code) | Tensile Strength | Elongation | Tear Resistance | Solidity Ratio | Viscosity | |||||
---|---|---|---|---|---|---|---|---|---|---|
Result (N/mm) | Change from STD (%) | Result (%) | Change from STD (%) | Result (N/mm) | Change from STD (%) | Result (%) | Change from STD (%) | Result (mPa·s) | Change from STD (%) | |
STD | 0.33 | - | 1352 | - | 3.21 | - | 73.33 | - | 522 | - |
SCA 0.3 | 0.57 | 173 | 1044 | 77 | 5.31 | 165 | 79.33 | 108 | 726 | 139 |
SCA 0.6 | 0.63 | 191 | 997 | 74 | 6.34 | 198 | 80.67 | 110 | 1297 | 248 |
SCA 0.9 | 0.7 | 212 | 906 | 67 | 7.02 | 219 | 82.67 | 113 | 1840 | 352 |
SCA 1.2 | 0.78 | 236 | 832 | 61 | 7.67 | 239 | 84 | 115 | 2715 | 520 |
SCA 1.5 | 0.81 | 245 | 711 | 53 | 8.24 | 257 | 85.33 | 116 | 3313 | 635 |
Item (Code) | Tensile Strength | Elongation | Tear Resistance | Solidity Ratio | Viscosity | |||||
---|---|---|---|---|---|---|---|---|---|---|
Result (N/mm) | Change from STD (%) | Result (%) | Change from STD (%) | Result (N/mm) | Change from STD (%) | Result (%) | Change from STD (%) | Result (mPa·s) | Change from STD (%) | |
STD | 0.33 | - | 1352 | - | 3.21 | - | 73.33 | - | 522 | - |
NF 0.5 | 0.68 | 206 | 704 | 52 | 6.25 | 195 | 85.33 | 116 | 1327 | 254 |
NF 1.0 | 1.12 | 339 | 412 | 30 | 8.56 | 267 | 87.33 | 119 | 2034 | 390 |
NF 1.5 | 1.54 | 467 | 318 | 24 | 11.23 | 350 | 88.67 | 121 | 2877 | 551 |
NF 2.0 | 1.97 | 597 | 181 | 13 | 14.54 | 453 | 90.67 | 124 | 3561 | 682 |
NF 2.5 | 2.43 | 736 | 83 | 6 | 17.78 | 554 | 91.33 | 125 | 4322 | 828 |
Item (Code) | Tensile Strength | Elongation | Tear Resistance | Solidity Ratio | Viscosity | |||||
---|---|---|---|---|---|---|---|---|---|---|
Result (N/mm) | Change from STD (%) | Result (%) | Change from STD (%) | Result (N/mm) | Change from STD (%) | Result (%) | Change from STD (%) | Result (mPa·s) | Change from STD (%) | |
STD | 0.33 | - | 1352 | - | 3.21 | - | 73.33 | - | 522 | - |
EVA 0.5 | 0.30 | 91 | 1418 | 105 | 2.51 | 78 | 64.00 | 105 | 488 | 132 |
EVA 1.0 | 0.28 | 85 | 1733 | 128 | 2.18 | 68 | 66.00 | 109 | 671 | 234 |
EVA 1.5 | 0.25 | 76 | 2154 | 159 | 1.77 | 55 | 67.33 | 113 | 851 | 338 |
EVA 2.0 | 0.24 | 73 | 2214 | 164 | 1.72 | 54 | 71.33 | 115 | 913 | 405 |
EVA 2.5 | 0.24 | 73 | 2291 | 169 | 1.73 | 54 | 74.67 | 117 | 1094 | 473 |
Item | SCA | NF | EVA |
---|---|---|---|
Additive Ratio (%) | 1.3 | 1.8 | 1.6 |
1.4 | 2.0 | 1.8 | |
1.5 | 2.2 | 2.0 |
Item | ||||
---|---|---|---|---|
SCA | NF | EVA | Total Additive | Test Code |
1.3 | 1.8 | 1.6 | 4.7 | CA 01 |
1.8 | 4.9 | CA 02 | ||
2.0 | 5.1 | CA 03 | ||
2.0 | 1.6 | 4.9 | CA 04 | |
1.8 | 5.1 | CA 05 | ||
2.0 | 5.3 | CA 06 | ||
2.2 | 1.6 | 5.1 | CA 07 | |
1.8 | 5.3 | CA 08 | ||
2.0 | 5.5 | CA 09 | ||
1.4 | 1.8 | 1.6 | 4.8 | CA 10 |
1.8 | 5.0 | CA 11 | ||
2.0 | 5.2 | CA 12 | ||
2.0 | 1.6 | 5.0 | CA 13 | |
1.8 | 5.2 | CA 14 | ||
2.0 | 5.4 | CA 15 | ||
2.2 | 1.6 | 5.2 | CA 16 | |
1.8 | 5.4 | CA 17 | ||
2.0 | 5.6 | CA 18 | ||
1.5 | 1.8 | 1.6 | 4.9 | CA 19 |
1.8 | 5.1 | CA 20 | ||
2.0 | 5.3 | CA 21 | ||
2.0 | 1.6 | 5.1 | CA 22 | |
1.8 | 5.3 | CA 23 | ||
2.0 | 5.5 | CA 24 | ||
2.2 | 1.6 | 5.3 | CA 25 | |
1.8 | 5.5 | CA 26 | ||
2.0 | 5.7 | CA 27 |
Mixing Procedure | Mixing Procedure |
---|---|
Content | Content |
1. Melting of water-soluble rubber asphalt (raw material) | 2. Weighing of water-soluble rubber asphalt (raw material) |
- Asphalt has excellent temperature sensitivity and hardens at low temperatures or increases in viscosity. | - For accurate weighing of additives, weighing of raw materials precedes. |
3. Additive Weighing | Mixing temperature control |
- Measure each additive according to the raw material weighing ratio. | - Prevention of non-homogeneous mixing, such as material aggregation and deflection. |
Additive input | Material application |
- Induces homogeneous mixing of asphalt and additives at high temperatures. | - Apply the blended material to the acrylic plate equipped with a level so that the thickness of the material is not deflected. |
Item (Code) | Test Results | Item (Code) | Test Results | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Tensile Strength (N/mm2) | Elongation (%) | Tear Resistance (N/mm) | Solidity Ratio (%) | Viscosity (mPa·s) | Tensile Strength (N/mm2) | Elongation (%) | Tear Resistance (N/mm) | Solidity Ratio (%) | Viscosity (mPa·s) | ||
STD | 0.33 | 1352 | 3.21 | 73.33 | 522 | - | |||||
CA 01 | 1.89 | 721 | 9.78 | 88.67 | 3480 | CA 13 | 2.45 | 449 | 14.65 | 90.00 | 3947 |
CA 02 | 1.82 | 767 | 9.10 | 88.67 | 3665 | CA 14 | 2.32 | 478 | 12.78 | 91.33 | 4443 |
CA 04 | 2.21 | 597 | 11.51 | 89.33 | 3761 | CA 16 | 2.61 | 389 | 14.88 | 92.67 | 4511 |
CA 05 | 2.04 | 752 | 10.68 | 90.67 | 4291 | CA 19 | 2.22 | 536 | 12.14 | 89.33 | 3714 |
CA 07 | 2.34 | 451 | 13.68 | 92.67 | 4415 | CA 20 | 2.08 | 513 | 10.98 | 90.67 | 4139 |
CA 10 | 2.10 | 649 | 11.12 | 88.67 | 3574 | CA 22 | 2.56 | 402 | 15.24 | 91.33 | 4253 |
CA 11 | 1.95 | 579 | 10.11 | 90.00 | 3916 | CA 23 | 2.47 | 432 | 14.12 | 92.00 | 4331 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, S.-h.; Heo, N.-h.; An, K.-w.; Oh, S.-k. A Study on the Change in Properties by Using an Additive with Water-Soluble Rubber-Asphalt-Based Waterproof Coating Materials. Appl. Sci. 2022, 12, 4599. https://doi.org/10.3390/app12094599
Yoon S-h, Heo N-h, An K-w, Oh S-k. A Study on the Change in Properties by Using an Additive with Water-Soluble Rubber-Asphalt-Based Waterproof Coating Materials. Applied Sciences. 2022; 12(9):4599. https://doi.org/10.3390/app12094599
Chicago/Turabian StyleYoon, Sung-hwan, Neung-hoe Heo, Ki-won An, and Sang-keun Oh. 2022. "A Study on the Change in Properties by Using an Additive with Water-Soluble Rubber-Asphalt-Based Waterproof Coating Materials" Applied Sciences 12, no. 9: 4599. https://doi.org/10.3390/app12094599
APA StyleYoon, S. -h., Heo, N. -h., An, K. -w., & Oh, S. -k. (2022). A Study on the Change in Properties by Using an Additive with Water-Soluble Rubber-Asphalt-Based Waterproof Coating Materials. Applied Sciences, 12(9), 4599. https://doi.org/10.3390/app12094599