Processing the Artificial Edge-Effects for Finite-Difference Frequency-Domain in Viscoelastic Anisotropic Formations
Abstract
:1. Introduction
2. Theoretical Foundations
2.1. Frequency Domain Elastic VTI Equation
2.2. Absorbing Boundary Condition
2.3. Numerical Implementation
3. Synthetic Examples
3.1. Comparative Analysis of the Stability of PML and M-PML
3.2. Comparative Analysis in Homogeneous Elastic Anisotropic Media
3.3. Wave Propagation in a Complex Anisotropic Medium
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hestholm, S. Acoustic VTI modeling using high-order finite differences. Geophysics 2009, 74, T67. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, W.; Chen, X. Two-dimensional seismic wave simulation in anisotropic media by non-staggered finite difference method. Chin. J. Geophys. 2009, 52, 1536–1546. [Google Scholar]
- Qiao, Z.; Sun, C.; Wu, D. Theory and modeling of constant-Q viscoelastic anisotropic media using fractional derivative. Geophys. J. Int. 2019, 217, 798–815. [Google Scholar] [CrossRef]
- Devaney, A.J. Geophysical Diffraction Tomography. IEEE Trans. Geosci. Remote Sens. 1984, GE-22, 3–13. [Google Scholar] [CrossRef]
- Pratt, R.G.; Worthington, M.H. The application of diffraction tomography to cross-hole seismic data. Geophysics 1988, 53, 1284–1294. [Google Scholar] [CrossRef] [Green Version]
- Baysal, E.; Kosloff, D.; Sherwood, J. Reverse time migration. Geophysics 1983, 48, 1514–1524. [Google Scholar] [CrossRef] [Green Version]
- McMechan, G. Migration by extrapolation of time-dependent boundary values. Geophys. Prospect. 1983, 31, 413–420. [Google Scholar] [CrossRef]
- Dai, W.; Wang, X.; Schuster, G. Least-squares migration of multi-source data with a deblurring filter. Geophysics 2011, 76, R135–R146. [Google Scholar] [CrossRef]
- Tarantola, A. Inversion of seismic reflection data in the acoustic approximation. Geophysics 1984, 49, 1259–1266. [Google Scholar] [CrossRef]
- Pratt, R.G.; Worthington, M.H. Acoustic wave equation inverse theory applied to multi-source cross-hole tomography Part I: Acoustic wave-equation method. Geophys. Prospect. 1990, 38, 287–310. [Google Scholar] [CrossRef]
- Virieux, J.; Operto, S. An overview of full-waveform inversion in exploration geophysics. Geophysics 2009, 74, WCC1–WCC26. [Google Scholar] [CrossRef]
- Marfurt, K.J. Accuracy of finite difference and finite element modeling of scalar and elastic wave equations. Geophysics 1984, 49, 533–549. [Google Scholar] [CrossRef]
- Ben-Hadj-Ali, H.; Operto, S.; Virieux, J. An efficient frequency-domain full-waveform inversion method using simultaneous encoded sources. Geophysics 2011, 76, 109–124. [Google Scholar] [CrossRef]
- Operto, S.; Virieux, J.; Ribodetti, A.; Anderson, J.E. Finite-difference frequency-domain modeling of viscoacoustic wave propagation in 2D tilted transversely isotropic (TTI) media. Geophysics 2009, 74, 75–95. [Google Scholar] [CrossRef] [Green Version]
- Jeong, W.; Min, D.J.; Lee, G.H.; Lee, H.Y. 2D frequency-domain elastic full waveform inversion using finite-element method for VTI media. In SEG Technical Program. Expanded Abstracts 2011; SEG: San Antonio, TX, USA, 2011; pp. 2654–2658. [Google Scholar]
- Zhou, B.; Won, M.; Greenhalgh, S.; Liu, X. Generalizeded stiffness reduction method to remove the artificial edge-effects for seismic wave modeling in elastic anisotropic media. Geophys. J. Int. 2020, 220, 1394–1408. [Google Scholar] [CrossRef]
- Yang, Q.; Zhou, B.; Riahi, M.; Ai-Khaleel, M. A new generalized stiffness reduction method for 2D/2.5D frequency domain seismic wave modeling in viscoelastic anisotropic media. Geophysics 2020, 85, T315–T329. [Google Scholar] [CrossRef]
- Berenger, J.P. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 1994, 114, 185–200. [Google Scholar] [CrossRef]
- Francis, C.; Tsogka, C. Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media. Geophysics 2001, 66, 294–307. [Google Scholar]
- Komatitsch, D.; Tromp, J. A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation. Geophys. J. Int. 2003, 154, 146–153. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Niu, F. An unsplit complex frequency-shifted perfectly matched layer for second-order acoustic wave equations. Sci. China Earth Sci. 2021, 64, 992–1004. [Google Scholar] [CrossRef]
- Zhang, W.; Shen, Y. Unsplit complex frequency-shifted PML implementation using auxiliary differential equations for seismic wave modeling. Geophysics 2010, 75, T141–T154. [Google Scholar] [CrossRef] [Green Version]
- Opertp, S.; Virieux, J.; Amestoy, P.; L’Excellent, J.; Giraud, L.; Ali, H. 3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: A feasibility study. Geophysics 2007, 72, 195–211. [Google Scholar] [CrossRef] [Green Version]
- Oskooi, A.; Johnson, S.G. Distinguishing correct from incorrect PML proposals and a corrected unsplit PML for anisotropic dispersive media. J. Comput. Phys. 2011, 230, 2369–2377. [Google Scholar] [CrossRef]
- Meza-Fajardo, K.C.; Papageorgiou, A.S. A non-convolutional, split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: Stability analysis. Bull. Seism. Soc. Am. 2008, 98, 1811–1836. [Google Scholar] [CrossRef]
- Ping, P.; Zhang, Y.; Xu, Y. A multi-axial perfectly matched layer (M-PML) for the long-time simulation of elastic wave propagation in the second-order equations. J. Appl. Geophys. 2014, 101, 124–135. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, W.; Chen, X. Complex frequency-shifted multi-axial perfectly matched layer for elastic wave modeling on curvilinear grids. Geophys. J. Int. 2014, 198, 140–153. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, L. Weak elastic anisotropy. Geophysics 1986, 51, 1954–1966. [Google Scholar] [CrossRef]
- Toksoz, M.N.; Johnston, D.H. Seismic Wave Attenuation; SEG Geophysical Reprint Series, No. 2; Society of Exploration Geophysicists: Houston, TX, USA, 1981. [Google Scholar]
- Zeng, Y.; He, J.; Liu, Q. The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media. Geophysics 2001, 66, 1258–1266. [Google Scholar] [CrossRef]
- Daley, P.F.; Hron, F. Reflection and transmission coefficients for transversely isotropic media. Bull. Seism. Soc. Am. 1977, 67, 661–675. [Google Scholar] [CrossRef]
Medium | Density (kg/m3) | Qp | Qs | Elastic Moduli (GPa) |
---|---|---|---|---|
Medium 1 | 3200 | 20 | 10 | |
Medium 2 | 8900 | 20 | 10 | |
Medium 3 | 1000 | — | — |
Layer Media | Vp (m/s) | Vs (m/s) | Qp | Qs | ε | δ | ρ (kg/m3) |
---|---|---|---|---|---|---|---|
Layer 1 | 1875 | 826 | 10 | 10 | 0.225 | 0.100 | 2000 |
Layer 2 | 2202 | 969 | 10 | 10 | 0.015 | 0.060 | 2250 |
Layer 3 | 2868 | 1350 | 15 | 15 | 0.970 | −0.090 | 1860 |
Layer 4 | 3368 | 1829 | 21 | 18 | 0.110 | −0.035 | 2500 |
Layer 5 | 3688 | 2774 | 30 | 19 | 0.081 | 0.057 | 2730 |
Layer 6 | 3901 | 2682 | 38 | 25 | 0.137 | −0.012 | 2640 |
Layer 7 | 4296 | 2471 | 42 | 35 | 0.081 | 0.129 | 2660 |
Layer 8 | 4529 | 2703 | 50 | 40 | 0.034 | 0.211 | 2520 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; He, X.; Chen, H. Processing the Artificial Edge-Effects for Finite-Difference Frequency-Domain in Viscoelastic Anisotropic Formations. Appl. Sci. 2022, 12, 4719. https://doi.org/10.3390/app12094719
Yang J, He X, Chen H. Processing the Artificial Edge-Effects for Finite-Difference Frequency-Domain in Viscoelastic Anisotropic Formations. Applied Sciences. 2022; 12(9):4719. https://doi.org/10.3390/app12094719
Chicago/Turabian StyleYang, Jixin, Xiao He, and Hao Chen. 2022. "Processing the Artificial Edge-Effects for Finite-Difference Frequency-Domain in Viscoelastic Anisotropic Formations" Applied Sciences 12, no. 9: 4719. https://doi.org/10.3390/app12094719
APA StyleYang, J., He, X., & Chen, H. (2022). Processing the Artificial Edge-Effects for Finite-Difference Frequency-Domain in Viscoelastic Anisotropic Formations. Applied Sciences, 12(9), 4719. https://doi.org/10.3390/app12094719