Elastic Reverse Time Migration for Weakly Illuminated Structure
Abstract
:1. Introduction
2. Methodology
2.1. Vector-Decoupled Wave Equation
2.2. Stained VDWE
2.3. Inner Product Imaging Condition with Filters
3. Numerical Examples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baysal, E.; Dan, D.K.; Sherwood, J. Reverse-Time Migration. Geophysics 1983, 48, 1514–1524. [Google Scholar] [CrossRef] [Green Version]
- McMechan, G. Migration by extrapolation of time-dependent boundary values. Geophys. Prospect. 1983, 31, 413–420. [Google Scholar] [CrossRef]
- Leveille, J.P.; Jones, I.F.; Zhou, Z.Z.; Wang, B.; Liu, F.Q. Subsalt imaging for exploration, production, and development: A review. Geophysics 2011, 76, WB3–WB20. [Google Scholar] [CrossRef]
- Liu, Y.; Chang, X.; Jin, D.; He, R.; Sun, H.; Zheng, Y. Reverse time migration of multiples for subsalt imaging. Geophysics 2011, 76, WB209–WB216. [Google Scholar] [CrossRef]
- Vigh, D.; Kapoor, J.; Moldoveanu, N.; Li, H. Breakthrough acquisition and technologies for subsalt imaging. Geophysics 2011, 76, WB41–WB51. [Google Scholar] [CrossRef]
- Regone, C. Using 3D finite-difference modeling to design wide-azimuth surveys for improved subsalt imaging. In Proceedings of the 2006 SEG International Exposition and Annual Meeting, New Orleans, LA, USA, 1–6 October 2006. [Google Scholar]
- Gherasim, M.; Albertin, U.; Nolte, B.; Askim, O.; Trout, M.; Hartman, K. Wave-equation angle-based illumination weighting for optimized subsalt imaging. In Proceedings of the 2010 SEG International Exposition and Annual Meeting, Denver, CO, USA, 17–22 October 2010. [Google Scholar]
- Cao, J.; Wu, R. Fast acquisition aperture correction in prestack depth migration using beamlet decomposition. Geophysics 2009, 74, S67–S74. [Google Scholar] [CrossRef]
- Chen, B.; Jia, X. Staining algorithm for seismic modeling and migration. Geophysics 2014, 79, S121–S129. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Jia, X. Generalized staining algorithm for seismic modeling and migration. Geophysics 2017, 82, T17–T26. [Google Scholar] [CrossRef]
- Song, L.; Shi, Y.; Chen, S. Target-oriented reverse time migration in transverse isotropy media. Acta Geophys. 2021, 69, 125–134. [Google Scholar] [CrossRef]
- Sun, R.; McMechan, G.; Lee, C.; Chow, J.; Chen, C. Prestack scalar reverse-time depth migration of 3D elastic seismic data. Geophysics 2006, 71, S199–S207. [Google Scholar] [CrossRef]
- Yan, J.; Sava, P. Isotropic angle-domain elastic reverse-time migration. Geophysics 2008, 73, 229–239. [Google Scholar] [CrossRef] [Green Version]
- Du, Q.; Zhu, Y.; Ba, J. Polarity reversal correction for elastic reverse time migration. Geophysics 2012, 77, S31–S41. [Google Scholar] [CrossRef]
- Li, Z.; Ma, X.; Fu, C.; Liang, G. Wavefield separation and polarity reversal correction in elastic reverse time migration. J. Appl. Geophys. 2016, 127, 56–67. [Google Scholar] [CrossRef]
- Zhang, W.; Shi, Y. Imaging conditions for elastic reverse time migration. Geophysics 2019, 84, S95–S111. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J. Practical issues in reverse time migration: True amplitude gathers, noise removal and harmonic source encoding. First Break 2009, 27, 53–59. [Google Scholar] [CrossRef]
- Sava, P.C.; Fomel, S. Angle-domain common-image gathers by wavefield continuation methods. Geophysics 2003, 68, 1065–1074. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, J. Efficient dip-angle adcig estimation using poynting vector in acoustic RTM and its application in noise suppression. Geophys. Prospect. 2018, 66, 1714–1725. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Zhang, G.; Morton, S.A.; Leveille, J.P. An effective imaging condition for reverse-time migration using wavefield decomposition. Geophysics 2011, 76, S29–S39. [Google Scholar] [CrossRef]
- Fei, T.; Luo, Y.; Yang, J.; Liu, H.; Qin, F. Removing false images in reverse time migration: The concept of de-primary. Geophysics 2015, 80, S237–S244. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, Y.; Xue, Q.; Chang, X.; Tong, F.; Luo, Y. Reverse time migration with Hilbert transform based full wavefield decomposition. Chin. J. Geophys. 2016, 59, 4200–4211. [Google Scholar]
- Guo, X.; Shi, Y.; Wang, W.; Jing, H.; Zhang, Z. Wavefield decomposition in arbitrary direction and an imaging condition based on stratigraphic dip. Geophysics 2020, 85, S299–S312. [Google Scholar] [CrossRef]
- Wang, W.; McMechan, G. Vector-based elastic reverse time migration. Geophysics 2015, 80, 245–258. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Liu, Q.; Zhang, J.; Yang, K.; Sun, H. Poynting and polarization vectors based wavefield decomposition and their application on elastic reverse time migration in 2D transversely isotropic media. Geophys. Prospect. 2019, 67, 1296–1311. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, L.; Shi, Y.; Liu, W.; Zhao, Q. Elastic Reverse Time Migration for Weakly Illuminated Structure. Appl. Sci. 2022, 12, 5264. https://doi.org/10.3390/app12105264
Song L, Shi Y, Liu W, Zhao Q. Elastic Reverse Time Migration for Weakly Illuminated Structure. Applied Sciences. 2022; 12(10):5264. https://doi.org/10.3390/app12105264
Chicago/Turabian StyleSong, Liwei, Ying Shi, Wei Liu, and Qiang Zhao. 2022. "Elastic Reverse Time Migration for Weakly Illuminated Structure" Applied Sciences 12, no. 10: 5264. https://doi.org/10.3390/app12105264
APA StyleSong, L., Shi, Y., Liu, W., & Zhao, Q. (2022). Elastic Reverse Time Migration for Weakly Illuminated Structure. Applied Sciences, 12(10), 5264. https://doi.org/10.3390/app12105264