The Combined Compact Difference Scheme Applied to Shear-Wave Reverse-Time Migration
Abstract
:1. Introduction
2. Principle of RTM and Combined Compact Difference Scheme
2.1. Principle of RTM
- (1)
- The source wavefield is obtained by using the source constructed manually or extracted from actual data, and the corresponding model is numerically simulated to obtain the source wavefield , where is the space vector.
- (2)
- Using the seismic data obtained at the receiver, the reverse continuation propagation passes through the same velocity model, and the corresponding receiver wavefield is obtained, where the position of the receiver is .
- (3)
- Applying appropriate imaging conditions, such as cross-correlation, we obtain
2.2. Principle of Combined Compact Difference Scheme
3. Analysis of CCD and CSCD
3.1. Analysis of Truncation Error
3.2. Dispersion Analysis
3.3. The Numerical Simulation Accuracy Analysis
3.4. Comparison of Spatial Dispersion Suppression Effect
3.5. Time Dispersion Suppression Comparison
4. Shear-Wave (SH) RTM
4.1. Implementation of SH-RTM
- Forward extrapolating of the source wavefield: starting from a given or estimated source wavefield, we solve the equation to forward propagate the source wavefield. Thus, for a source emitting at source positions ,
- Shear-wave reverse continuation: For receiver wavefield propagation, we reverse the R of the seismic receiver recorded in time and then set the initial receiver position as the initial boundary condition. We then use the selected finite difference scheme to solve the shear-wave equation (Equation (5)) iteratively to obtain the receiver wavefield. As shown in the following equation, where is the position of the source transmitter and receiver, and is the total duration of forward propagation.
- Imaging conditions of shear-wave application: the last step is to use the cross-correlation of source wavefield and receiver wavefield obtained in the previous two steps to obtain the image of the underground structure.
4.2. Shear-Wave Reverse-Time Migration in Marmousi Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gray, S.H.; Etgen, J.; Dellinger, J.; Whitmore, D. Seismic migration problems and solutions. Geophysics 2001, 66, 1622–1640. [Google Scholar] [CrossRef]
- Yilmaz, O. Seismic data analysis. Soc. Expl. Geophys. 2001, 1230–1280. [Google Scholar]
- Leveille, J.P.; Jones, I.F.; Zhou, Z.Z.; Wang, B.; Liu, F. Subsalt imaging for exploration, production, and development: A review. Geophysics 2017, 76, WB3–WB20. [Google Scholar] [CrossRef]
- Liu, H.; Dai, N.; Niu, F.; Wu, W. An explicit time evolution method for acoustic wave propagation. Geophysics 2014, 79, T117–T124. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.Q.; Li, Z.C.; Huang, J.P.; Zhang, J.; Sun, W. Lebedev grid high-order finite-difference modeling and elastic wave-mode separation for TTI media. Oil Geophys. Prospect. 2017, 52, 915–927. [Google Scholar]
- Amundsen, L.; Ørjan, P. Time step n-tupling for wave equations. Geophysics 2017, 82, T249–T254. [Google Scholar] [CrossRef]
- Chu, C.L.; Stoffa, P.L. An implicit finite-difference operator for the Helmholtz equation. Geophysics 2012, 77, T97–T107. [Google Scholar] [CrossRef]
- Jiang, Z.D.; Fan, C.W.; Li, X.Z.; Deng, G.J.; Chen, K.; Li, Y.S. Numerical simulation of marine ghost wave based on high order finite difference method with variable grids. Prog. Geophys. 2021, 36, 365–373. [Google Scholar] [CrossRef]
- Li, B.; Liu, Y.; Sen, M.K.; Ren, Z. Time-space-domain mesh-free finite difference based on least squares for 2D acoustic-wave modeling. Geophysics 2017, 82, T143–T157. [Google Scholar] [CrossRef]
- Liu, L.B.; Duan, P.R.; Zhang, Y.Y.; Tian, K.; Tan, M.Y.; Li, Z.C.; Dou, J.Y.; Li, Q.Y. Overview of mesh-free method of seismic forward numerical simulation. Prog. Geophys. 2020, 35, 1815–1825. [Google Scholar] [CrossRef]
- Wang, E.J.; Liu, Y.; Sen, M.K. Effective finite-difference modelling methods with 2-D acoustic wave equation using a combination of cross and rhombus stencils. Geophys. J. Int. 2016, 206, 1933–1958. [Google Scholar] [CrossRef]
- Zhang, B.Q.; Zhou, H.; Chen, H.M.; Shen, S.B. Time-space domain high-order finite difference method for seismic wave numerical simulation based on new stencils. Chin. J. Geophys. 2016, 59, 1804–1814. [Google Scholar] [CrossRef]
- Duan, Y.T.; Sava, P. Scalar imaging condition for elastic reverse time migration. Geophysics 2015, 80, S127–S136. [Google Scholar] [CrossRef] [Green Version]
- Adams, N.A.; Shariff, K.A. High-resolution hybrid compact-ENO scheme for Shock-Turbulence interaction problems. J. Comput. Phys. 1996, 127, 27–51. [Google Scholar] [CrossRef]
- Dennis, S.C.R.; Hundson, J.D. Compact h4 finite-difference approximations to operators of Navier-Stokes type. J. Comput. Phys. 1989, 85, 390–416. [Google Scholar] [CrossRef]
- Lele, S.K. Compact finite difference scheme with spectral-like resolution. J. Comput. Phys. 1992, 103, 16–42. [Google Scholar] [CrossRef]
- Chu, P.C.; Fan, C.W. A three-point combined compact difference scheme. J. Comput. Phys. 1998, 140, 370–399. [Google Scholar] [CrossRef] [Green Version]
- Chang, W.; McMechan, G.A. 3-D elastic prestack, reverse-time depth migration. Geophysics 1994, 59, 597–609. [Google Scholar] [CrossRef]
- Du, Q.Z.; Zhu, Y.T.; Ba, J. Polarity reversal correction for elastic reverse time migration. Geophysics 2012, 77, S31–S41. [Google Scholar] [CrossRef]
- Dai, N.; Wu, W.; Zhang, W.; Wu, X. TTI RTM using variable grid in depth. In Proceedings of the International Petroleum Technology Conference, Bangkok, Thailand, 7–9 February 2012; pp. 1–7. [Google Scholar]
- Zhang, J.; Tian, Z.; Wang, C. P- and S-wave separated elastic wave equation numerical modeling using 2D staggered-grid. In Proceedings of the 77th Annual International Meeting, SEG, San Antonio, TX, USA, 14 September 2007; pp. 2104–2109. [Google Scholar]
- Xiao, X.; Leaney, W.S. Local vertical seismic profiling (VSP)elastic reverse-time migration and migration resolution: Salt-flank imaging with transmitted P-to-S waves. Geophysics 2010, 75, S35–S49. [Google Scholar] [CrossRef]
- Gu, B.; Li, Z.; Ma, X.; Liang, G. Multi-component elastic reverse time migration based on the P and S separating elastic velocity-stress equation. J. Appl. Geophys. 2015, 112C, 62–78. [Google Scholar] [CrossRef]
- Wang, W.; McMechan, G.A.; Zhang, Q. Comparison of two algorithms for isotropic elastic P and S decomposition in the vector domain. Geophysics 2015, 80, T147–T160. [Google Scholar] [CrossRef] [Green Version]
- Du, Q.; Gong, X.; Zhang, M.; Zhu, Y.; Fang, G. 3D PS-wave imaging with elastic reverse-time migration. Geophysics 2014, 79, S173–S184. [Google Scholar] [CrossRef]
- Zhang, Q.; McMechan, G.A. 2D and 3D elastic wavefield vector decomposition in the wavenumber domain for VTI media. Geophysics 2010, 75, D13–D26. [Google Scholar] [CrossRef]
- Du, Q.Z.; Guo, C.F.; Zhao, Q.; Gong, X.; Wang, C.; Li, X.Y. Vector-based elastic reverse time migration based on scalar imaging condition. Geophysics 2017, 82, S111–S127. [Google Scholar] [CrossRef]
- Nguyen, B.D.; McMechan, G.A. Five ways to avoid storing source wavefield snapshots in 2D elastic prestack reverse time migration. Geophysics 2015, 80, S1–S18. [Google Scholar] [CrossRef]
- Li, X.; Zhang, S. Forty years of shear-wave splitting in seismic exploration: An overview. Geophys. Prospect. Pet. 2021, 60, 190–209. [Google Scholar]
- Bouchaala, F.; Ali, M.Y.; Matsushima, J. Compressional and shear wave attenuations from walkway VSP and sonic data in an offshore Abu Dhabi oilfield. Comptes Rendus Géosci. 2021, 353, 337–354. [Google Scholar] [CrossRef]
- Wu, Y.; He, Z.; Hu, J.; Deng, Z.; Wang, Y.; Yin, W. P-wave and S-wave Joint Acquisition Technology and Its Application in Sanhu Area. In Proceedings of the 88th Annual International Meeting, Anaheim, CA, USA, 14 October 2018; pp. 1–5. [Google Scholar]
- Wang, S.Q.; Yang, D.H.; Yang, K.D. Compact finite difference scheme for elastic equations. J. Tsinghua Univ. 2002, 42, 1128–1131. [Google Scholar]
- Bouchaala, F.; Guennou, C. Estimation of viscoelastic attenuation of real seismic data by use of ray tracing software: Application to the detection of gas hydrates and free gas. Comptes Rendus Géosci. 2012, 344, 57–66. [Google Scholar] [CrossRef]
- Zhu, T.; Harris, J.M.; Biondi, B. Q-compensated reverse-time migration. Geophysics 2014, 79, S77–S87. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Zhang, G.; Morton, S.A.; Leveille, J.P. An effective imaging condition for reverse-time migration using wavefield decomposition. Geophysics 2011, 76, S29–S39. [Google Scholar] [CrossRef]
- Moradpouri, F.; Moradzadeh, A.; Pestana, R.N.C.; Ghaedrahmati, R.; Soleimani, M. An improvement in wave-field extrapolation and imaging condition to suppress RTM artifacts. Geophysics 2017, 82, S403–S409. [Google Scholar] [CrossRef]
- Moradpouri, F.; Morad-Zadeh, A.; Pestana, R.C.; Soleimani, M. Seismic reverse time migration using a new wave field extrapolator and a new imaging condition. Acta Geophys. 2016, 64, 1673–1690. [Google Scholar] [CrossRef] [Green Version]
- Virieux, J. SH-wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics 1984, 49, 1933–1942. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, H.G.; Zhou, C.Y.; Gui, Z.X. Numerical simulation of 2D seismic wave-field used combined compact difference scheme. Chin. J. Geophys. 2018, 61, 4568–4583. [Google Scholar]
- Dong, L.; Zhan, J. Combined super compact finite difference scheme and application to simulation of shallow water equations. Chin. J. Comput. Mech. 2008, 25, 791–796. [Google Scholar]
- Blayo, E. Compact finite difference schemes for ocean models. J. Comput. Phys. 2000, 164, 241–257. [Google Scholar] [CrossRef]
- Sengupta, T.K.; Ganeriwal, G.; De, S. Analysis of central and upwind compact schemes. J. Comput. Phys. 2003, 192, 677–694. [Google Scholar] [CrossRef]
- Wu, G.C.; Wang, H.Z. Analysis of numerical dispersion in wave2field simulation. Prog. Geophys. 2005, 20, 58–65. [Google Scholar]
Truncation Error | |||||||
---|---|---|---|---|---|---|---|
CFD | 0 | 0 | 3/2 | −3/5 | 1/10 | ||
CD | 2/11 | 0 | 12/11 | 3/11 | 0 | ||
CCD | / | ||||||
CSCD | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; Wu, W.; Sun, P.; Yin, W.; Li, X. The Combined Compact Difference Scheme Applied to Shear-Wave Reverse-Time Migration. Appl. Sci. 2022, 12, 7047. https://doi.org/10.3390/app12147047
Zhou C, Wu W, Sun P, Yin W, Li X. The Combined Compact Difference Scheme Applied to Shear-Wave Reverse-Time Migration. Applied Sciences. 2022; 12(14):7047. https://doi.org/10.3390/app12147047
Chicago/Turabian StyleZhou, Chengyao, Wei Wu, Pengyuan Sun, Wenjie Yin, and Xiangyang Li. 2022. "The Combined Compact Difference Scheme Applied to Shear-Wave Reverse-Time Migration" Applied Sciences 12, no. 14: 7047. https://doi.org/10.3390/app12147047
APA StyleZhou, C., Wu, W., Sun, P., Yin, W., & Li, X. (2022). The Combined Compact Difference Scheme Applied to Shear-Wave Reverse-Time Migration. Applied Sciences, 12(14), 7047. https://doi.org/10.3390/app12147047