Computational Imaging for Simultaneous Image Restoration and Super-Resolution Image Reconstruction of Single-Lens Diffractive Optical System
Abstract
:1. Introduction
2. Analysis of Imaging Properties of HDOE in Wide-Bandwidth Spectrum
2.1. Analysis of Spectral Characteristics of HDOE
2.2. Analysis of Image Quality Degradation of HDOE Imaging
3. Deep Dense Zoned Multipath Residual Network for Image Restoration and Simultaneous Super-Resolution Image Reconstruction
3.1. Deep Dense Zoned Multipath Residual Network
3.2. Multimodal Loss Function
4. Imaging Experiment and Analysis
4.1. Network Training Details
4.2. Imaging and Computational Reconstruction
4.3. Ablation Study Evaluation
4.4. Application of the DDZME Network in Normal Image Super-Resolution Tasks
5. Test Results
6. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
DOE | Diffractive optical elements |
HDOE | Harmonic diffractive optical element |
MDL | Multi-order diffractive lens |
DDZMR | Deep dense zoned multipath residual |
SHDCIS | Single-lens harmonic diffraction computational imaging system |
PSF | Point spread function |
OTF | Optical transfer function |
DRTSAB | Double residual tandem spatial attention block |
RDCB | Residual dense concatenation block |
References
- Atcheson, P.; Domber, J.; Whiteaker, K.; Britten, J.A.; Farmer, B. MOIRE: Ground demonstration of a large aperture diffractive transmissive telescope. In Proceedings of the Spie Astronomical Telescopes + Instrumentation, Montreal, QC, Canada, 22–26 June 2014. [Google Scholar]
- Heide, F.; Qiang, F.; Peng, Y.; Heidrich, W. Encoded diffractive optics for full-spectrum computational imaging. Sci. Rep. 2016, 6, 33543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuschmierz, R.; Scharf, E.; Ortegón-González, D.; Glosemeyer, T.; Czarske, J.W. Ultra-thin 3D lensless fiber endoscopy using diffractive optical elements and deep neural networks. Light. Adv. Manuf. 2021, 2, 30. [Google Scholar] [CrossRef]
- Peng, Y.; Sun, Q.; Dun, X.; Wetzstein, G.; Heide, F. Learned large field-of-view imaging with thin-plate optics. ACM Trans. Graph. 2019, 38, 219. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Pang, H.; Cao, A.; Deng, Q. Alternative Design of Binary Phase Diffractive Optical Element with Non-π Phase Difference. Appl. Sci. 2021, 11, 1116. [Google Scholar] [CrossRef]
- Lin, H.; Xu, Z.; Cao, G.; Zhang, Y.; Zhou, J.; Wang, Z.; Wan, Z.; Liu, Z.; Loh, K.P.; Qiu, C.; et al. Diffraction-limited imaging with monolayer 2D material-based ultrathin flat lenses. Light. Sci. Appl. 2020, 9, 137. [Google Scholar] [CrossRef]
- Sun, Q.; Tseng, E.; Fu, Q.; Heidrich, W.; Heide, F. Learning Rank-1 Diffractive Optics for Single-Shot High Dynamic Range Imaging. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 1383–1393. [Google Scholar]
- Sitzmann, V.; Diamond, S.; Peng, Y.; Dun, X.; Boyd, S.P.; Heidrich, W.; Heide, F.; Wetzstein, G. End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging. ACM Trans. Graph. (TOG) 2018, 37, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Luo, R.; Liu, X.; Hao, X. Spectral imaging with deep learning. Light. Sci. Appl. 2022, 11, 61. [Google Scholar] [CrossRef] [PubMed]
- Nikonorov, A.V.; Petrov, M.V.; Bibikov, S.A.; Yakimov, P.Y.; Kutikova, V.V.; Yuzifovich, Y.V.; Morozov, A.A.; Skidanov, R.V.; Kazanskiy, N.L. Toward Ultralightweight Remote Sensing With Harmonic Lenses and Convolutional Neural Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3338–3348. [Google Scholar] [CrossRef]
- Nikonorov, A.V.; Skidanov, R.V.; Fursov, V.A.; Petrov, M.V.; Bibikov, S.A.; Yuzifovich, Y.V. Fresnel lens imaging with post-capture image processing. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Boston, MA, USA, 7–12 June 2015; pp. 33–41. [Google Scholar]
- Peng, Y.; Fu, Q.; Heide, F.; Heidrich, W. The diffractive achromat full spectrum computational imaging with diffractive optics. In Proceedings of the SIGGRAPH ASIA 2016 Virtual Reality Meets Physical Reality: Modelling and Simulating Virtual Humans and Environments, Venetian Macao, Macao, 5 December 2016. [Google Scholar]
- Heide, F.; Rouf, M.; Hullin, M.B.; Labitzke, B.; Heidrich, W.; Kolb, A. High-quality computational imaging through simple lenses. ACM Trans. Graph. 2013, 32, 149. [Google Scholar] [CrossRef]
- Sun, T.; Peng, Y.; Heidrich, W. Revisiting Cross-Channel Information Transfer for Chromatic Aberration Correction. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 3268–3276. [Google Scholar]
- Wang, F.; Bian, Y.; Wang, H.; Lyu, M.; Pedrini, G.; Osten, W.; Barbastathis, G.; Situ, G. Phase imaging with an untrained neural network. Light. Sci. Appl. 2020, 9, 77. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.; Yim, C. Convolutional Neural Networks Using Skip Connections with Layer Groups for Super-Resolution Image Reconstruction Based on Deep Learning. Appl. Sci. 2020, 10, 1959. [Google Scholar] [CrossRef] [Green Version]
- Zamir, S.W.; Arora, A.; Khan, S.H.; Hayat, M.; Khan, F.S.; Yang, M.H.; Shao, L. Learning Enriched Features for Real Image Restoration and Enhancement. arXiv 2020, arXiv:2003.06792. [Google Scholar]
- Ahn, N.; Kang, B.; Ah Sohn, K. Fast, Accurate, and, Lightweight Super-Resolution with Cascading Residual Network. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Kim, S.; Jun, D.; Kim, B.G.; Lee, H.; Rhee, E. Single Image Super-Resolution Method Using CNN-Based Lightweight Neural Networks. Appl. Sci. 2021, 11, 1092. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar]
- Lai, W.S.; Huang, J.B.; Ahuja, N.; Yang, M.H. Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5835–5843. [Google Scholar]
- Zhang, K.; Zuo, W.; Zhang, L. Learning a Single Convolutional Super-Resolution Network for Multiple Degradations. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3262–3271. [Google Scholar]
- Jiang, Z.; Huang, Y.; Hu, L. Single Image Super-Resolution: Depthwise Separable Convolution Super-Resolution Generative Adversarial Network. Appl. Sci. 2020, 10, 375. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Cao, J.; Yan, A.; Zhang, J.; Qu, E.; Wang, F. Harmonic Diffractive Optical Element Wave Crest Drift with Incident Angles. Acta Photonica Sin. 2013, 42, 1208–1211. [Google Scholar]
- Zheng, Y.; Huang, W.; Pan, Y.; Xu, M. Optimal PSF Estimation for Simple Optical System Using a Wide-Band Sensor Based on PSF Measurement. Sensors 2018, 18, 3552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamir, S.W.; Arora, A.; Khan, S.; Hayat, M.; Khan, F.S.; Yang, M.H.; Shao, L. Learning enriched features for real image restoration and enhancement. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 492–511. [Google Scholar]
- Mehri, A.; Ardakani, P.B.; Sappa, A.D. MPRNet: Multi-Path Residual Network for Lightweight Image Super Resolution. In Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 5–9 January 2021; pp. 2703–2712. [Google Scholar]
- Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883. [Google Scholar]
- Lu, J.; Yang, J.; Batra, D.; Parikh, D. Hierarchical Co-Attention for Visual Question Answering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Panetta, K.; Gao, C.; Agaian, S.S. Human-Visual-System-Inspired Underwater Image Quality Measures. IEEE J. Ocean. Eng. 2016, 41, 541–551. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, X.; Yang, L.; Liu, H. An improved Sobel edge detection. In Proceedings of the 2010 3rd International Conference on Computer Science and Information Technology, Chengdu, China, 9–11 July 2010; Volume 5, pp. 67–71. [Google Scholar]
- Islam, M.J.; Luo, P.; Sattar, J. Simultaneous Enhancement and Super-Resolution of Underwater Imagery for Improved Visual Perception. arXiv 2020, arXiv:2002.01155. [Google Scholar]
- Justin, J.; Alexandre, A.; Yang, L.; Li, F. Perceptual Losses for Real-Time Style Transfer and Super-Resolution. In Proceedings of the European Conference on Computer Vision (ECCV 2016), Amsterdam, The Netherlands, 11–16 October 2016. [Google Scholar]
- Martin, D.R.; Fowlkes, C.C.; Tal, D.; Malik, J. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings of the Eighth IEEE International Conference on Computer Vision (ICCV 2001), Vancouver, BC, Canada, 7–14 July 2001; Volume 2, pp. 416–423. [Google Scholar]
- Huang, J.B.; Singh, A.; Ahuja, N. Single image super-resolution from transformed self-exemplars. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 5197–5206. [Google Scholar]
- Chang, X.; Bian, L.; Zhang, J. Large-scale phase retrieval. eLight 2021, 1, 4. [Google Scholar] [CrossRef]
- Zuo, C.; Qian, J.; Feng, S.; Yin, W.; Li, Y.; Fan, P.; Han, J.; Qian, K.; Chen, Q. Deep learning in optical metrology: A review. Light. Sci. Appl. 2022, 11, 39. [Google Scholar] [CrossRef] [PubMed]
Method | PSNR | SSIM | Training Time (h) | Processing Time (ms) |
---|---|---|---|---|
DDZMR | 28.69 | 0.7045 | 45 | 413 |
DDZMR without the multimodal loss function | 25.57 | 0.6754 | 53 | 402 |
DDZMR without the image regional division and channel selection module | 26.78 | 0.6842 | 67 | 425 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Yu, X.; Xu, Y.; Xu, Y.; Yao, Y.; Di, N.; Wang, Y.; Wang, H.; Shen, H. Computational Imaging for Simultaneous Image Restoration and Super-Resolution Image Reconstruction of Single-Lens Diffractive Optical System. Appl. Sci. 2022, 12, 4753. https://doi.org/10.3390/app12094753
Liu K, Yu X, Xu Y, Xu Y, Yao Y, Di N, Wang Y, Wang H, Shen H. Computational Imaging for Simultaneous Image Restoration and Super-Resolution Image Reconstruction of Single-Lens Diffractive Optical System. Applied Sciences. 2022; 12(9):4753. https://doi.org/10.3390/app12094753
Chicago/Turabian StyleLiu, Kai, Xiao Yu, Yongsen Xu, Yulei Xu, Yuan Yao, Nan Di, Yefei Wang, Hao Wang, and Honghai Shen. 2022. "Computational Imaging for Simultaneous Image Restoration and Super-Resolution Image Reconstruction of Single-Lens Diffractive Optical System" Applied Sciences 12, no. 9: 4753. https://doi.org/10.3390/app12094753
APA StyleLiu, K., Yu, X., Xu, Y., Xu, Y., Yao, Y., Di, N., Wang, Y., Wang, H., & Shen, H. (2022). Computational Imaging for Simultaneous Image Restoration and Super-Resolution Image Reconstruction of Single-Lens Diffractive Optical System. Applied Sciences, 12(9), 4753. https://doi.org/10.3390/app12094753