Soil Treatment to Reduce Grounding Resistance by Applying Low-Resistivity Material (LRM) Implemented in Different Grounding Systems Configurations and in Soils with Different Resistivities
Abstract
:1. Introduction
2. Theoretical Framework
2.1. Grounding Systems
2.2. Soil Resistivity
2.3. Grounding Resistance
2.4. Soil Treatment for Grounding Resistance Reduction
3. Experimental Research
3.1. Step 1: Data Collection
3.2. Step 2: Soil Modelling
3.3. Step 3: Implementation of GS Designs
- 1R: One vertical rod.
- 2RP: Two rods connected in a parallel grid.
- 3RP: Three rods connected in a parallel grid.
- 3RT: Three rods connected in a triangular grid.
- 6RR: Six rods connected in a rectangular grid.
3.4. Step 4: GR Calculations
3.4.1. Earth Resistance of a Rod
- : ground resistivity, [Ω·m]
- : rod length, [m]
- b: rod radius, [m]
3.4.2. Ground Resistance of Two Rod Connection
- : ground resistivity, [m]
- : rod length, [m]
- b: rod radius, [m]
- : resistance to earth of the conductor,
- : earth resistance of the rods,
- : mutual resistance between mesh and rods,
- : overall system resistance,
- d: separation distance between two rods, , [m]
- h: conductor burial depth, [m]
- a: conductor radius, [m]
- : is a for the conductor on the surface of the earth, [m] or
- : is for conductors buried at a depth h, [m]
- and : are the coefficients
- : maximum length of braided conductors in x, long, [m]
- : maximum length of mesh conductors in y, width, [m]
3.4.3. Resistance to Earth of the Connection of Three Rods in Line
- : ground resistivity, [m]
- : rod length, [m]
- b: rod radius, [m]
- : resistance to earth of the conductor,
- : earth resistance of the rods,
- : mutual resistance between mesh and rods,
- d: separation distance between two rods, , [m]
- h: conductor burial depth, [m]
- a: conductor radius, [m]
- : is a for the conductor on the surface of the earth, [m] or
- : is for conductors buried at a depth h, [m]
3.4.4. Earth Resistance of a Triangular Mesh
- : ground resistivity, [m]
- : rod length, [m]
- b: rod radius, [m]
- : resistance to earth of the conductor,
- : earth resistance of the rods,
- : mutual resistance between mesh and rods,
- d: separation distance between two rods, , [m]
- h: conductor burial depth, [m]
- a: conductor radius, [m]
- : is a for the conductor on the surface of the earth, [m] or
- : is for conductors buried at a depth h, [m]
- A: is the area covered by the conductors, [m2]
3.4.5. Earth Resistance of Square and Rectangular Meshes
- : ground resistivity, [m]
- : rod length, [m]
- b: rod radius, [m]
- : resistance to earth of the conductor,
- : earth resistance of the rods,
- : mutual resistance between mesh and rods,
- d: separation distance between two rods, , [m]
- h: conductor burial depth, [m]
- a: conductor radius, [m]
- : is a for the conductor on the surface of the earth, [m] or
- : is for conductors buried at a depth h, [m]
- : total length of the conductors connected to the mesh, [m]
- A: is the area covered by the conductors, [m2]
- : number of rods located in the area A
3.5. Step 5: GR Measurements
3.6. Step 6: LRM Implementation
- 1LRMR: One vertical rod with LRM.
- 2LRMRP: Two rods with LRM connected in a parallel grid.
- 3LRMRP: Three rods with LRM connected in a parallel grid.
- 3LRMRT: Three rods with LRM connected in a triangular grid.
- 6LRMRR: Six rods with LRM connected in a rectangular grid.
3.7. Step 7: Measurement of the GR
4. Results
4.1. Results of Resistivity Measurements
4.2. Soil Modelling Results
4.3. Results of GR Calculations and Measurements
5. Analysis of the Results
5.1. LRM Effects on Soils with Different Resistivity Values
5.2. LRM Effect as a Function of GS Design
5.3. Ranges of LRM GR Variation
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Androvitsaneas, V.P.; Gonos, I.F.; Stathopulos, I.A. Research and applications of ground enhancing compounds in grounding systems. IET Gener. Transm. Distrib. 2017, 11, 3195–3201. [Google Scholar] [CrossRef]
- Montaña, J. Teoría de Puestas a Tierra, 1st ed.; Editorial Universidad del Norte: Barranquilla, Colombia, 2011. [Google Scholar]
- IEEE Std 80-2013 (Revision of IEEE Std 80-2000/ Incorporates IEEE Std 80-2013/Cor 1-2015); IEEE Guide for Safety in AC Substation Grounding. IEEE: Piscataway, NJ, USA, 2015; pp. 1–226.
- Al-Arainy, A.A.; Khan, Y.; Qureshi, M.I.; Malik, N.H.; Pazheri, F.R. Optimized pit configuration for efficient grounding of the power system in high resistivity soils using low resistivity materials. In Proceedings of the 2011 Fourth International Conference on Modeling, Simulation and Applied Optimization, Kuala Lumpur, Malaysia, 19–21 April 2011; pp. 1–5. [Google Scholar] [CrossRef]
- Sinchi, F.M.; Quizhpi, F.A.; Guillén, H.P.; Quinde, S.N. Soil Treatment to Reduce Grounding Resistance by Applying Low-Resistivity Material (LRM) and Chemical Ground Electrode in Different Grounding Systems Configurations. In Proceedings of the 2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 14–16 November 2018; pp. 1–6. [Google Scholar]
- Sengar, K.P.; Chandrasekaran, K. Comparative Analysis of Grounding Grid Configurations with Equal and Unequal Spaced Design. In Proceedings of the 2019 IEEE 1st International Conference on Energy, Systems and Information Processing (ICESIP), Chennai, India, 4–6 July 2019; pp. 1–6. [Google Scholar]
- He, J.; Zeng, R.; Zhang, B. Methodology and Technology for Power System Grounding; John Wiley & Sons Singapore Pte. Ltd.: Singapore, 2012. [Google Scholar] [CrossRef]
- Reynolds, J.M. An Introduction to Applied and Environmental Geophysics, 2nd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2011; p. 710. [Google Scholar]
- Gilbert, G. High Voltage Grounding Systems. Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, 2011. [Google Scholar]
- UNE-EN 50522; Puesta a Tierra en Instalaciones de Tesión Superior a 1 kV en Corriente Alterna. Aenor Norma Española: Madrid, Spain, 2012; p. 71.
- Sinchi, F.; Guillén, H. Diseño y Determinación de Sistemas de Puesta a Tierra Mediante Pruebas de Campo con Elementos Comunes Utilizados en la Región, Incluyendo GEM y Electrodo Químico. Ph.D. Thesis, Universidad Politécnica Salesiana, Cuenca, Ecuador, 2017. Available online: http://dspace.ups.edu.ec/handle/123456789/14487 (accessed on 21 February 2022).
- Lai, W.L.; Ahmad, W.F.H.W.; Jasni, J.; Ab Kadir, M.Z.A. A review on the usage of Zeolite, Perlite and Vermiculite as natural enhancement materials for grounding system installations. In Proceedings of the 2017 IEEE 15th Student Conference on Research and Development (SCOReD), Wilayah Persekutuan Putrajaya, Malaysia, 13–14 December 2017; pp. 338–343. [Google Scholar]
- Eduful, G.; Cole, J.E.; Okyere, P. Optimum mix of ground electrodes and conductive backfills to achieve a low ground resistance. In Proceedings of the 2009 2nd International Conference on Adaptive Science & Technology (ICAST), Accra, Ghana, 14–16 January 2009; pp. 140–145. [Google Scholar] [CrossRef]
- Prabhakar, C.; Deshpande, R.A. Evaluation of soil resistivity and design of grounding system for hydroelectric generating station in a hilly terrain—A case study. In Proceedings of the 2014 International Conference on Advances in Energy Conversion Technologies (ICAECT), Manipal, India, 23–25 January 2014; pp. 104–107. [Google Scholar]
- Jones, W. Bentonite Rods Assure Ground Rod Installation In Problem Soils. IEEE Trans. Power Appar. Syst. 1980, PAS-99, 1343–1346. [Google Scholar] [CrossRef]
- Khan, Y.; Malik, N.H.; Al-Arainy, A.A.; Qureshi, M.I.; Pazheri, F.R. Efficient use of low resistivity material for grounding resistance reduction in high soil resistivity areas. In Proceedings of the TENCON 2010—2010 IEEE Region 10 Conference, Fukuoka, Japan, 21–24 November 2010; pp. 620–624. [Google Scholar] [CrossRef]
- Tu, Y.; He, J.; Zeng, R. Lightning impulse performances of grounding devices covered with low-resistivity materials. IEEE Trans. Power Deliv. 2006, 21, 1706–1713. [Google Scholar] [CrossRef]
- Kostic, M.; Radakovic, Z.; Radovanovic, N.; Tomasevic-Canovic, M. Improvement of electrical properties of grounding loops by using bentonite and waste drilling mud. IEE Proc.-Gener. Transm. Distrib. 1999, 146, 1. [Google Scholar] [CrossRef]
- Androvitsaneas, V.P.; Asimakopoulou, F.E.; Gonos, I.F.; Stathopulos, I.A. Estimation of ground enhancing compound performance using Artificial Neural Network. In Proceedings of the 2012 International Conference on High Voltage Engineering and Application, Shanghai, China, 17–20 September 2012; pp. 145–149. [Google Scholar] [CrossRef]
- Al-Ammar, E.; Khan, Y.; Malik, N.; Wani, N. Development of low resistivity material for grounding resistance reduction. In Proceedings of the 2010 IEEE International Energy Conference, Manama, Bahrain, 18–22 December 2010; pp. 700–703. [Google Scholar] [CrossRef]
- Hidalgo, N.; Senese, A.; Cano, E.; Sarquís, P. Caracterización y evaluación de la calidad de bentonitas provenientes de las provincias de San Juan y Río Negro (Argentina) para uso en industria petrolera y cerámica. Bol. Geol. Min. 2016, 127, 791–806. [Google Scholar] [CrossRef]
- Tapia, M.E.F. The Ineffectiveness of the Bond Issued in Favor of the Federal Treasury. Chapter 1. Research Project. 2004. Available online: http://catarina.udlap.mx/u$_$dl$_$a/tales/documentos/ledf/flores$_$t$_$me/ (accessed on 10 January 2022).
- Francry Maigualida. Métodos de Recolección de Datos. Ph.D. Thesis, Universidad de Carabobo, Valencia, Spain, 2004.
- Dwight, H.B. Calculation of Resistances to Ground. Trans. Am. Inst. Electr. Eng. 1936, 55, 1319–1328. [Google Scholar] [CrossRef]
- Sinchi, F.M.; Quizhpi, F.A.; Guillén, H.P. Calculation of the earth resistance of the union of two and three rods by modified Schwarz equations and field tests. In Proceedings of the 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 8–10 November 2017; pp. 1–6. [Google Scholar]
- IEEE Std 81-2012 (Revision of IEEE Std 81-1983)—Redline; IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Grounding System—Redline. IEEE: Piscataway, NJ, USA, 2012; pp. 1–192.
- Alvaro, J.; Uvidia, C. Comportamiento de la Resistividad Eléctrica de los Suelos ante Variaciones de Humedad y Grado de Compactación. Ph.D. Thesis, Universidad de Cuenca, Cuenca, Ecuador, 2015. [Google Scholar]
- Pacheco, Á.; Jiménez, J.; Quizhpi, F. Diseño De Sistemas De Puesta a Tierra Partiendo De Un Modelo Biestratificado De Terreno, Aplicando Un Software Computacional En El Sector Industrial. Ph.D. Thesis, Universidad Politécnica Salesiana, Cuenca, Ecuador, 2013. [Google Scholar]
- Barros, H.; Ortega, L. Análisis y Diseño de la Instalación Eléctrica de una Electrolinera en la Ciudad de Cuenca. Ph.D. Thesis, Universidad Politécnica Salesiana, Cuenca, Ecuador, 2018. [Google Scholar]
- Reffin, M.S.; Nor, N.M.; Abdullah, S.; Ahmad, N.; Othman, M. Impulse Characteristics of Earth Electrodes in Different Soil Resistivity by Field Measurements. In Proceedings of the 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Kota Kinabalu, Malaysia, 7–10 October 2018; pp. 331–334. [Google Scholar] [CrossRef]
- Choun, L.W.; Gomes, C.; Ab Kadir, M.Z.; Ahmad, W.F. Analysis of earth resistance of electrodes and soil resistivity at different environments. In Proceedings of the 2012 International Conference on Lightning Protection (ICLP), Vienna, Austria, 2–7 September 2012; pp. 1–9. [Google Scholar] [CrossRef]
- Rio, H.D.; Bambang, A.S. Characteristic study of vertical configuration grounding system with two layer modified using type of different soil for variation of diameter and frequency injection. In Proceedings of the 2nd IEEE Conference on Power Engineering and Renewable Energy (ICPERE) 2014, Bali, Indonesia, 9–11 December 2014; pp. 214–219. [Google Scholar] [CrossRef]
- Wan Ahmad, W.F.H.; Lai, W.L.; Jasni, J.; Ab-Kadir, M.Z.A. Variations of Soil Resistivity Values due to Grounding System Installations with Natural Enhancement Material Mixtures. In Proceedings of the 2018 34th International Conference on Lightning Protection (ICLP), Rzeszow, Poland, 2–7 September 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Wan Ahmad, W.F.H.; Hamzah, N.H.; Jasni, J.; Ab-Kadir, M.Z.A.; Gomes, C. A Study on Bentonite and Kenaf Properties for Grounding Purposes. In Proceedings of the 2018 34th International Conference on Lightning Protection (ICLP), Rzeszow, Poland, 2–7 September 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Ahmad, S.K.; Sabry, R.Z.; Gomes, C. Improving the Grounding System by Adding Bentonite to Reduce the Potential Distribution. In Proceedings of the 2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Kuala Lumpur, Malaysia, 12–13 June 2021; pp. 1–5. [Google Scholar] [CrossRef]
Measured Resistivity (Ω·m) | ||||||||
---|---|---|---|---|---|---|---|---|
5.48 | 11.53 | 13.02 | 13.17 | 13.45 | 13.61 | 13.95 | 14.05 | 14.16 |
14.87 | 14.88 | 14.99 | 15.63 | 15.94 | 16.24 | 16.34 | 16.41 | 16.91 |
17.06 | 17.12 | 17.18 | 19.49 | 19.86 | 23.80 | 24.10 | 27.10 | 29.40 |
49.54 | 103.16 | 104.34 | 106.41 | 110.68 | 120.28 | 144.05 | 202.12 | 247.57 |
Soil | Resistivity (Ω·m) | Model | Variation |
---|---|---|---|
S1 | 23.30 ≈ 24 | Uniform soil | 25% |
S2 | 34.96 ≈ 35 | Sunde’s graphical method | 45% |
S3 | 151.73 ≈ 152 | Sunde’s graphical method | 40% |
S4 | 158.08 ≈ 159 | Sunde’s graphical method | 45% |
S5 | 174.12 ≈ 175 | Sunde’s graphical method | 38% |
S6 | 189.37 ≈ 190 | Sunde’s graphical method | 31% |
S7 | 194.37 ≈ 195 | Sunde’s graphical method | 41% |
S8 | 301.55 ≈ 302 | Sunde’s graphical method | 49% |
Configuration Code | Calculated Grounding Resistance (Ω) | Measured Grounding Resistance | |
---|---|---|---|
Fall-of-Potential Method (Ω) | Clamp-on Method (Ω) | ||
1R | 12.31 | 12.40 | 13.27 |
2RP | 6.24 | 6.84 | 8.01 |
3RP | 4.13 | 5.06 | 6.48 |
3RT | 3.67 | 4.80 | 6.07 |
1LRMR P | — | 7.06 | 7.81 |
2LRMRP P | — | 5.03 | 5.56 |
3LRMRP P | — | 3.82 | 4.47 |
3LRMRT P | — | 3.80 | 4.44 |
Configuration Code | Calculated Grounding Resistance (Ω) | Measured Grounding Resistance | |
---|---|---|---|
Fall-of-Potential Method (Ω) | Clamp-on Method (Ω) | ||
1R | 17.96 | 24.03 | 19.59 |
2RP | 9.10 | 9.13 | 9.70 |
3RP | 6.03 | 5.81 | 6.60 |
3RT | 5.35 | 5.50 | 6.63 |
1LRMR D | — | 15.46 | 15.78 |
2LRMRP D | — | 7.85 | 8.54 |
3LRMRP D | — | 5.72 | 6.22 |
3LRMRT D | — | 5.42 | 6.22 |
Configuration Code | Calculated Grounding Resistance (Ω) | Measured Grounding Resistance | |
---|---|---|---|
Fall-of-Potential Method (Ω) | Clamp-on Method (Ω) | ||
1R | 77.98 | 72.60 | 66.10 |
2RP | 39.51 | 36.42 | 35.80 |
3RP | 26.18 | 26.00 | 26.20 |
3RT | 23.25 | 22.50 | 22.10 |
1LRMR P | — | 33.85 | 33.60 |
2LRMRP P | — | 21.47 | 21.30 |
3LRMRP P | — | 15.56 | 16.44 |
3LRMRT P | — | 14.97 | 15.64 |
Configuration Code | Calculated Grounding Resistance (Ω) | Measured Grounding Resistance | |
---|---|---|---|
Fall-of-Potential Method (Ω) | Clamp-on Method (Ω) | ||
1R | 81.57 | 93.80 | 93.40 |
2RP | 41.33 | 37.98 | 32.90 |
3RP | 27.38 | 25.04 | 25.70 |
3RT | 24.32 | 21.93 | 22.50 |
1LRMR D | — | 62.60 | 44.70 |
2LRMRP D | — | 24.18 | 18.86 |
3LRMRP D | — | 17.92 | 17.39 |
3LRMRT D | — | 16.50 | 17.82 |
Configuration Code | Calculated Grounding Resistance (Ω) | Measured Grounding Resistance | |
---|---|---|---|
Fall-of-Potential Method (Ω) | Clamp-on Method (Ω) | ||
6RR | 13.89 | 12.80 | 13.51 |
6LRMRR P | — | 7.58 | 10.40 |
Configuration Code | Calculated Grounding Resistance (Ω) | Measured Grounding Resistance | |
---|---|---|---|
Fall-of-Potential Method (Ω) | Clamp-on Method (Ω) | ||
6RR | 15.08 | 14.93 | 12.90 |
6LRMRR D | — | 14.33 | 12.30 |
Configuration Code | Calculated Grounding Resistance (Ω) | Measured Grounding Resistance | |
---|---|---|---|
Fall-of-Potential Method (Ω) | Clamp-on Method (Ω) | ||
1R | 100.04 | 96.80 | 95.50 |
2RP | 50.69 | 48.80 | 50.60 |
3RP | 33.58 | 31.70 | 34.10 |
3RT | 29.82 | 27.36 | 31.50 |
1LRMR P | — | 53.20 | 43.20 |
2LRMRP P | — | 26.58 | 28.20 |
3LRMRP P | — | 21.89 | 20.30 |
3LRMRT P | — | 21.01 | 18.90 |
Configuration Code | Calculated Grounding Resistance (Ω) | Measured Grounding Resistance | |
---|---|---|---|
Fall-of-Potential Method (Ω) | Clamp-on Method (Ω) | ||
1R | 154.94 | 160.9 | RE > 149.90 |
2RP | 78.50 | 76.30 | 70.90 |
3RP | 52.01 | 44.00 | 43.80 |
3RT | 46.19 | 42.80 | 42.20 |
1LRMR D | — | 31.26 | 33.34 |
2LRMRP D | — | 15.73 | 15.46 |
3LRMRP D | — | 12.23 | 12.50 |
3LRMRT D | — | 12.18 | 12.14 |
S | ρ (Ω·m) | LRM | 1LRMR | 2LRMRP | 3LRMRP | 3LRMRT | 6LRMRR | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ΔGR (Ω) | ΔGR (%) | ΔGR (Ω) | ΔGR (%) | ΔGR (Ω) | ΔGR (%) | ΔGR (Ω) | ΔGR (%) | ΔGR (Ω) | ΔGR (%) | |||
1 | 24 | P | 5.34 | 43% | 1.81 | 26% | 1.24 | 25% | 1.00 | 21% | — | — |
2 | 35 | D | 8.57 | 36% | 1.28 | 14% | 0.09 | 2% | 0.08 | 1% | — | — |
3 | 152 | P | 38.75 | 53% | 14.95 | 41% | 10.44 | 40% | 7.53 | 33% | — | — |
4 | 159 | D | 31.20 | 33% | 13.80 | 36% | 7.12 | 28% | 5.43 | 25% | — | — |
5 | 175 | P | — | — | — | — | — | — | — | — | 5.22 | 41% |
6 | 190 | D | — | — | — | — | — | — | — | — | 0.60 | 4% |
7 | 195 | P | 43.60 | 45% | 22.22 | 46% | 9.81 | 31% | 6.35 | 23% | — | — |
8 | 302 | D | 129.64 | 81% | 60.57 | 79% | 31.77 | 72% | 30.62 | 72% | — | — |
ρ (Ω·m) | 1LRMR | 2LRMRP | 3LRMRP | 3LRMRT | 4LRMRS | 6LRMRR |
---|---|---|---|---|---|---|
Δ GR (%) | Δ GR (%) | Δ GR (%) | Δ GR (%) | Δ GR (%) | Δ GR (%) | |
1–10 | 30% | 21% | 16% | 13% | 12% | 11% |
11–20 | 37% | 28% | 25% | 21% | 19% | 18% |
21–30 | 40% | 28% | 25% | 21% | 19% | 18% |
31–40 | 40% | 28% | 25% | 21% | 19% | 18% |
41–50 | 40% | 28% | 25% | 21% | 19% | 18% |
51–60 | 40% | 28% | 25% | 23% | 22% | 25% |
61–70 | 40% | 28% | 25% | 23% | 22% | 25% |
71–80 | 40% | 28% | 25% | 23% | 22% | 25% |
81–90 | 40% | 28% | 25% | 23% | 22% | 25% |
91–100 | 40% | 28% | 25% | 28% | 27% | 25% |
101–110 | 40% | 40% | 38% | 28% | 27% | 25% |
111–120 | 50% | 40% | 38% | 33% | 29% | 27% |
121–130 | 50% | 40% | 38% | 33% | 29% | 27% |
131–140 | 50% | 40% | 38% | 33% | 29% | 27% |
141–150 | 50% | 40% | 38% | 33% | 29% | 27% |
151–160 | 50% | 40% | 38% | 33% | 29% | 27% |
161–170 | 50% | 40% | 38% | 33% | 29% | 27% |
171–180 | 50% | 46% | 38% | 36% | 33% | 30% |
181–190 | 50% | 46% | 38% | 36% | 33% | 30% |
191–200 | 50% | 46% | 38% | 36% | 33% | 30% |
201–210 | 50% | 46% | 40% | 38% | 36% | 30% |
211–220 | 55% | 50% | 40% | 38% | 36% | 30% |
221–230 | 55% | 50% | 45% | 40% | 36% | 30% |
231–240 | 60% | 55% | 50% | 45% | 40% | 33% |
241–250 | 60% | 55% | 50% | 45% | 40% | 33% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinchi-Sinchi, F.; Coronel-Naranjo, C.; Barragán-Escandón, A.; Quizhpi-Palomeque, F. Soil Treatment to Reduce Grounding Resistance by Applying Low-Resistivity Material (LRM) Implemented in Different Grounding Systems Configurations and in Soils with Different Resistivities. Appl. Sci. 2022, 12, 4788. https://doi.org/10.3390/app12094788
Sinchi-Sinchi F, Coronel-Naranjo C, Barragán-Escandón A, Quizhpi-Palomeque F. Soil Treatment to Reduce Grounding Resistance by Applying Low-Resistivity Material (LRM) Implemented in Different Grounding Systems Configurations and in Soils with Different Resistivities. Applied Sciences. 2022; 12(9):4788. https://doi.org/10.3390/app12094788
Chicago/Turabian StyleSinchi-Sinchi, Freddy, Cristian Coronel-Naranjo, Antonio Barragán-Escandón, and Flavio Quizhpi-Palomeque. 2022. "Soil Treatment to Reduce Grounding Resistance by Applying Low-Resistivity Material (LRM) Implemented in Different Grounding Systems Configurations and in Soils with Different Resistivities" Applied Sciences 12, no. 9: 4788. https://doi.org/10.3390/app12094788
APA StyleSinchi-Sinchi, F., Coronel-Naranjo, C., Barragán-Escandón, A., & Quizhpi-Palomeque, F. (2022). Soil Treatment to Reduce Grounding Resistance by Applying Low-Resistivity Material (LRM) Implemented in Different Grounding Systems Configurations and in Soils with Different Resistivities. Applied Sciences, 12(9), 4788. https://doi.org/10.3390/app12094788