Structural Damage Detection Based on One-Dimensional Convolutional Neural Network
Abstract
:1. Introduction
2. Formulation of Analytical Model
2.1. Numerical Simulation
2.2. Dataset Generation
2.3. Convolutional Neural Networks
- (1)
- Convolutional layer
- (2)
- Activation function
- (3)
- Pooling layer
- (4)
- Fully connected layer
- (5)
- Loss function
3. Single Damage Location Detection
3.1. Single Damage Dataset
3.2. Detection Result
4. Multiple Damage Location Detection
4.1. Multiple Damage Dataset
4.2. Detection Result
5. Damage Degree Detection
5.1. Damage Degree Dataset
5.2. Detection Result
6. Visualization of Convolutional Neural Networks
6.1. Visualization of Convolutional Kernel
6.2. Visualization of the Outputs of Hidden Layers
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chan, T.H.; Yu, L.; Tam, H.Y.; Ni, Y.Q.; Liu, S.Y.; Chung, W.H.; Cheng, L.K. Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation. Eng. Struct. 2006, 28, 648–659. [Google Scholar] [CrossRef]
- Jang, S.; Jo, H.; Cho, S.; Mechitov, K.; Rice, J.A.; Sim, S.-H.; Jung, H.-J.; Yun, C.-B.; Spencer, B.F., Jr.; Agha, G. Structural health monitoring of a cable-stayed bridge using smart sensor technology: Deployment and evaluation. Smart Struct. Syst. 2010, 6, 439–459. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-Y.; Lee, S.-R.; Kim, J.-T. Vibration-based structural health monitoring of harbor caisson structure. In Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA, USA, 6–10 March 2011; Volume 798154. [Google Scholar] [CrossRef]
- Yi, T.-H.; Li, H.-N.; Gu, M. A new method for optimal selection of sensor location on a high-rise building using simplified finite element model. Struct. Eng. Mech. 2011, 37, 671–684. [Google Scholar] [CrossRef]
- Yi, T.-H.; Li, H.-N.; Gu, M. Recent research and applications of GPS-based monitoring technology for high-rise structures. Struct. Control. Health Monit. 2012, 20, 649–670. [Google Scholar] [CrossRef]
- Park, J.-W.; Lee, J.-J.; Jung, H.-J.; Myung, H. Vision-based displacement measurement method for high-rise building structures using partitioning approach. NDT E Int. 2010, 43, 642–647. [Google Scholar] [CrossRef]
- Kammer, D.C. Sensor placement for on-orbit modal identification and correlation of large space structures. J. Guid. Control Dyn. 1991, 14, 251–259. [Google Scholar] [CrossRef]
- Ou, J.P.; Li, H. Structural Health Monitoring in mainland China: Review and Future Trends. Struct. Health Monit. 2010, 9, 219–231. [Google Scholar] [CrossRef]
- Salawu, O. Detection of structural damage through changes in frequency: A review. Eng. Struct. 1997, 19, 718–723. [Google Scholar] [CrossRef]
- Kim, J.-T.; Stubbs, N. Improved damage identification method based on modal information. J. Sound Vib. 2002, 252, 223–238. [Google Scholar] [CrossRef]
- Farrar, C.R.; Doebling, S.W. An overview of modal-based damage identification methods. In Proceedings of the DAMAS Conference, Sheffield, UK, 30 June–2 July 1997. [Google Scholar]
- Kim, J.-T.; Ryu, Y.-S.; Cho, H.-M.; Stubbs, N. Damage identification in beam-type structures: Frequency-based method vs mode-shape-based method. Eng. Struct. 2003, 25, 57–67. [Google Scholar] [CrossRef]
- Doebling, S.W. Minimum-rank optimal update of elemental stiffness parameters for structural damage identification. AIAA J. 1996, 34, 2615–2621. [Google Scholar] [CrossRef]
- Gao, Y.; Spencer, B.F.; Bernal, D. Experimental Verification of the Flexibility-Based Damage Locating Vector Method. J. Eng. Mech. 2007, 133, 1043–1049. [Google Scholar] [CrossRef]
- Stockwell, R. A basis for efficient representation of the S-transform. Digit. Signal Process. 2007, 17, 371–393. [Google Scholar] [CrossRef]
- Falkowski, M.J.; Smith, A.; Hudak, A.T.; Gessler, P.E.; Vierling, L.A.; Crookston, N.L. Automated estimation of individual conifer tree height and crown diameter via two-dimensional spatial wavelet analysis of lidar data. Can. J. Remote Sens. 2006, 32, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.; Chu, F. Application of the wavelet transform in machine condition monitoring and fault diagnostics: A review with bibliography. Mech. Syst. Signal Process. 2004, 18, 199–221. [Google Scholar] [CrossRef]
- Sun, Z.; Chang, C.-C. Structural Damage Assessment Based on Wavelet Packet Transform. Eng. Struct. 2002, 128, 1354–1361. [Google Scholar] [CrossRef]
- Oh, C.K.; Sohn, H. Damage diagnosis under environmental and operational variations using unsupervised support vector machine. J. Sound Vib. 2009, 325, 224–239. [Google Scholar] [CrossRef]
- Widodo, A.; Kim, E.Y.; Son, J.-D.; Yang, B.-S.; Tan, A.C.; Gu, D.-S.; Choi, B.-K.; Mathew, J. Fault diagnosis of low speed bearing based on relevance vector machine and support vector machine. Expert Syst. Appl. 2009, 36, 7252–7261. [Google Scholar] [CrossRef]
- Tabrizi, A.; Garibaldi, L.; Fasana, A.; Marchesiello, S. Early damage detection of roller bearings using wavelet packet decomposition, ensemble empirical mode decomposition and support vector machine. Meccanica 2015, 50, 865–874. [Google Scholar] [CrossRef]
- Schölkopf, B.; Smola, A.J.; Williamson, R.C.; Bartlett, P.L. New Support Vector Algorithms. Neural Comput. 2000, 12, 1207–1245. [Google Scholar] [CrossRef]
- Zave, P. An experiment in feature engineering. In Programming Methodology; Springer: New York, NY, USA, 2003; pp. 353–377. [Google Scholar] [CrossRef]
- Xu, Y.; Hong, K.; Tsujii, J.; Chang, E.I. Feature engineering combined with machine learning and rule-based methods for structured information extraction from narrative clinical discharge summaries. J. Am. Med. Inform. Assoc. 2012, 19, 824–832. [Google Scholar] [CrossRef] [Green Version]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Internal Representations by Error Propagation; No. ICS-8506. California Univ San Diego La Jolla Inst for Cognitive Science; MIT Press: Cambridge, MA, USA, 1985. [Google Scholar]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yuen, K. Crack detection using fusion features-based broad learning system and image processing. Comput. Civ. Infrastruct. Eng. 2021, 36, 1568–1584. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuen, K.-V.; Mousavi, M.; Gandomi, A.H. Timber damage identification using dynamic broad network and ultrasonic signals. Eng. Struct. 2022, 263, 114418. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuen, K.-V. Bolt damage identification based on orientation-aware center point estimation network. Struct. Health Monit. 2021, 21, 438–450. [Google Scholar] [CrossRef]
- Cha, Y.-J.; Choi, W.; Büyüköztürk, O. Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks. Comput. Civ. Infrastruct. Eng. 2017, 32, 361–378. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuen, K.-V. Review of artificial intelligence-based bridge damage detection. Adv. Mech. Eng. 2022, 14, 16878132221122770. [Google Scholar] [CrossRef]
- Kocatepe, A.; Ulak, M.B.; Kakareko, G.; Ozguven, E.E.; Jung, S.; Arghandeh, R. Measuring the accessibility of critical facilities in the presence of hurricane-related roadway closures and an approach for predicting future roadway disruptions. Nat. Hazards 2018, 95, 615–635. [Google Scholar] [CrossRef]
- Kakareko, G.; Jung, S.; Ozguven, E.E. Estimation of tree failure consequences due to high winds using convolutional neural networks. Int. J. Remote Sens. 2020, 41, 9039–9063. [Google Scholar] [CrossRef]
- Amit, S.N.K.B.; Shiraishi, S.; Inoshita, T.; Aoki, Y. Analysis of satellite images for disaster detection. In Proceedings of the 2016 IEEE International geoscience and remote sensing symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 5189–5192. [Google Scholar]
- Zhao, K.; Kang, J.; Jung, J.; Sohn, G. Building extraction from satellite images using mask R-CNN with building boundary regularization. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018; Volume 2018, pp. 242–246. [Google Scholar]
- Cha, Y.-J.; Choi, W.; Suh, G.; Mahmoudkhani, S.; Büyüköztürk, O. Autonomous Structural Visual Inspection Using Region-Based Deep Learning for Detecting Multiple Damage Types. Comput. Civ. Infrastruct. Eng. 2017, 33, 731–747. [Google Scholar] [CrossRef]
- Cha, Y.-J.; Wang, Z. Unsupervised novelty detection–based structural damage localization using a density peaks-based fast clustering algorithm. Struct. Health Monit. 2017, 17, 313–324. [Google Scholar] [CrossRef]
- Wang, Z.; Cha, Y.-J. Unsupervised deep learning approach using a deep auto-encoder with a one-class support vector machine to detect damage. Struct. Health Monit. 2020, 20, 406–425. [Google Scholar] [CrossRef]
- Cha, Y.-J.; Chen, J.; Büyüköztürk, O. Output-only computer vision based damage detection using phase-based optical flow and unscented Kalman filters. Eng. Struct. 2017, 132, 300–313. [Google Scholar] [CrossRef]
Component | H × B × t1 × t2 (mm) | Materials |
---|---|---|
Columns (No. 1~4) | 500 × 400 × 12 × 16 | Q235 |
Columns (No. 5~12) | 350 × 350 × 12 × 16 | |
Beams (1~12) | 350 × 350 × 12 × 16 |
Layer | Input Shape | Output Shape | Kernel Number | Kernel Size | Activation |
---|---|---|---|---|---|
Convolution 1-D | (50, 12) | (46, 32) | 32 | 5 × 12 | ReLU |
Max Pooling 1-D | (46, 32) | (23, 32) | None | 2 × 32 | None |
Convolution 1-D | (23, 32) | (19, 64) | 64 | 5 × 32 | ReLU |
Max Pooling 1-D | (19, 64) | (9, 64) | None | 2 | None |
Dropout | (9, 64) | (9, 64) | None | None | None |
Flatten | (9, 64) | (576) | None | None | None |
Dense | (576) | (512) | None | None | ReLU |
Dense | (512) | (4) | None | None | Softmax |
Count | Predicted Damage Location | ||||||
---|---|---|---|---|---|---|---|
c0 | c1 | c6 | c11 | Total | Accuracy | ||
Actual damage location | c0 | 88 | 0 | 0 | 0 | 88 | 100% |
c1 | 4 | 107 | 1 | 0 | 112 | 95.5% | |
c6 | 7 | 0 | 95 | 1 | 103 | 92.2% | |
c11 | 0 | 0 | 1 | 92 | 93 | 98.9% | |
Total | 99 | 107 | 97 | 93 | 396 | Overall: 96.7% |
Count | Predicted Damage Location | |||||||
---|---|---|---|---|---|---|---|---|
c0 | c1c6 | c1c11 | c6c11 | c1c6c11 | Total | Accuracy | ||
Actual damage location | c0 | 79 | 0 | 0 | 0 | 0 | 79 | 100% |
c1c6 | 0 | 106 | 1 | 0 | 0 | 107 | 99.1% | |
c1c11 | 0 | 3 | 92 | 2 | 0 | 97 | 94.8% | |
c6c11 | 0 | 0 | 0 | 114 | 0 | 114 | 100% | |
c1c6c11 | 0 | 3 | 0 | 4 | 91 | 98 | 92.9% | |
Total | 79 | 112 | 93 | 120 | 91 | 495 | Overall: 97.36% |
Count | Predicted Damage Degree | |||||||
---|---|---|---|---|---|---|---|---|
0 | 10% | 20% | 30% | 40% | Total | Accuracy | ||
Actual damage degree | 0 | 104 | 0 | 0 | 0 | 0 | 104 | 100% |
10% | 1 | 101 | 3 | 0 | 0 | 105 | 96.2% | |
20% | 0 | 7 | 91 | 3 | 0 | 101 | 90.1% | |
30% | 0 | 0 | 12 | 70 | 1 | 83 | 84.3% | |
40% | 0 | 0 | 0 | 7 | 95 | 102 | 93.1% | |
Total | 105 | 108 | 106 | 80 | 96 | 495 | Overall: 92.74% |
Count | Actual Label | Predicted Probability | |||
---|---|---|---|---|---|
c0 | c1 | c6 | c11 | ||
1 | c0 | 0.999811351 | 0.000161445 | 0.000027148 | 0.000000002 |
2 | c0 | 0.998547852 | 0.001296385 | 0.000152911 | 0.000002789 |
3 | c11 | 0.000000000 | 0.000113217 | 0.000004276 | 0.999882460 |
4 | c6 | 0.000062114 | 0.000006914 | 0.999927998 | 0.000003033 |
5 | c1 | 0.000000033 | 0.997018099 | 0.000000534 | 0.002981388 |
6 | c11 | 0.000000000 | 0.000013744 | 0.000000236 | 0.999986053 |
7 | c6 | 0.000017072 | 0.000000700 | 0.999981999 | 0.000000228 |
8 | c6 | 0.000013143 | 0.000000302 | 0.999986529 | 0.000000028 |
9 | c6 | 0.000028204 | 0.000005069 | 0.999965072 | 0.000001662 |
10 | c1 | 0.000272773 | 0.999088407 | 0.000012289 | 0.000626528 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Z.; Xu, C.; Wen, D. Structural Damage Detection Based on One-Dimensional Convolutional Neural Network. Appl. Sci. 2023, 13, 140. https://doi.org/10.3390/app13010140
Xue Z, Xu C, Wen D. Structural Damage Detection Based on One-Dimensional Convolutional Neural Network. Applied Sciences. 2023; 13(1):140. https://doi.org/10.3390/app13010140
Chicago/Turabian StyleXue, Zhigang, Chenxu Xu, and Dongdong Wen. 2023. "Structural Damage Detection Based on One-Dimensional Convolutional Neural Network" Applied Sciences 13, no. 1: 140. https://doi.org/10.3390/app13010140
APA StyleXue, Z., Xu, C., & Wen, D. (2023). Structural Damage Detection Based on One-Dimensional Convolutional Neural Network. Applied Sciences, 13(1), 140. https://doi.org/10.3390/app13010140