Digital Twin Architecture Evaluation for Intelligent Fish Farm Management Using Modified Analytic Hierarchy Process
Abstract
:1. Introduction
2. Literature Reviews
3. Methodology
3.1. Architecting Digital Twins Using Literature Reviews
3.2. Digital Twin Architecture Evaluation Using Modified AHP
4. Experimental Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Føre, M.; Frank, K.; Norton, T.; Svendsen, E.; Alfredsen, J.A.; Dempster, T.; Eguiraun, H.; Watson, W.; Stahl, A.; Sunde, L.M.; et al. Precision fish farming: A new framework to improve production in aquaculture. Biosyst. Eng. 2018, 173, 176–193. [Google Scholar] [CrossRef]
- Ferko, E.; Bucaioni, A.; Beham, M. Architecting digital twins. IEEE Access 2022, 10, 50335–50350. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Wang, T.; Xu, X.; Zhang, X.; Li, D. Intelligent fish farm—The future of aquaculture. Aquac. Int. 2021, 29, 2681–2711. [Google Scholar] [CrossRef]
- O’Donncha, F.; Grant, J. Precision aquaculture. IEEE Internet Things Mag. 2019, 2, 26–30. [Google Scholar] [CrossRef] [Green Version]
- Jacoby, M.; Usländer, T. Digital twin and Internet of Things—Current standards landscape. Appl. Sci. 2020, 10, 6519. [Google Scholar] [CrossRef]
- Nath, S.V. Digital twins for industrial applications: Definition, business values, design aspects, standards and use Cases. In Industrial Internet Consortium White Paper; Industrial Internet Consortium: Milford, MA, USA, 2020. [Google Scholar]
- Jones, D.; Snider, C.; Nassehi, A.; Yon, J.; Hicks, B. Characterising the digital twin: A systematic literature review. CIRP J. Manuf. Sci. Technol. 2020, 29, 36–52. [Google Scholar] [CrossRef]
- Lan, H.-Y.; Cheng, S.-C.; Ubina, N.A.; Nan, F.-H.; Huang, C.-T. Digital Transformation of Intelligent Fish Farms Using Digital Twins. In Proceedings of the IEEE International Conference on Social Science and Intelligence Management, Taichung, Taiwan, 24–26 November 2022. [Google Scholar]
- Kant, R.; Anand, A.; Patel, D.P.; Singh, M.D. Knowledge management implementation: Analytic hierarchy process methodology. In Proceedings of the IEEE IEEM, Singapore, 6–9 December 2011. [Google Scholar]
- Boyes, H.; Watson, T. Digital twins: An analysis framework and open issues. Comput. Ind. 2022, 143, 103763. [Google Scholar] [CrossRef]
- Grieves, M. Digital twin: Manufacturing excellence through virtual factory replication. White Pap. 2014, 1, 1–7. [Google Scholar]
- Miled, Z.; French, M.O. Towards a reasoning framework for digital clones using the digital thread. In Proceedings of the 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, USA, 9–13 January 2017. [Google Scholar]
- Hu, L.; Nguyen, N.T.; Tao, W.; Leu, M.C.; Liu, X.F.; Shahriar, M.R.; Sunny, S.N. Modeling of cloud-based digital twins for smart manufacturing with MT connect. Procedia Manuf. 2018, 26, 1193–1203. [Google Scholar] [CrossRef]
- Damjanovic-Behrendt, V.A. Digital twin-based privacy enhancement mechanism for the automotive industry. In Proceedings of the 2018 International Conference on Intelligent Systems (IS), Funchal-Madeira, Portugal, 25–27 September 2018. [Google Scholar]
- Talkhestani, B.A.; Jazdi, N.; Schloegl, W.; Weyrich, M. Consistency check to synchronize the Digital Twin of manufacturing automation based on anchor points. Procedia CIRP 2018, 72, 159–164. [Google Scholar] [CrossRef]
- Rüßmann, M.; Lorenz, M.; Gerbert, P.; Waldner, M.; Justus, J.; Engel, P.; Harnisch, M. Industry 4.0: The future of productivity and growth in manufacturing industries. Boston Consulting Group. Available online: https://www.bcg.com/publications/2015/engineered_products_project_business_industry_4_future_productivity_growth_manufacturing_industries (accessed on 28 November 2022).
- Cheng, Y.; Zhang, Y.; Ji, P.; Xu, W.; Zhou, Z.; Tao, F. Cyber-physical integration for moving digital factories forward towards smart manufacturing: A survey. Int. J. Adv. Manuf. Technol. 2018, 97, 1209–1221. [Google Scholar] [CrossRef]
- Ayani, M.; Ganebäck, M.; Ng, A.H. Digital twin: Applying emulation for machine reconditioning. Procedia CIRP 2018, 72, 243–248. [Google Scholar] [CrossRef]
- Macchi, M.; Roda, I.; Negri, E.; Fumagalli, L. Exploring the role of digital twin for asset lifecycle management. IFAC-Pap. Online 2018, 51, 790–795. [Google Scholar] [CrossRef]
- Bitton, R.; Gluck, T.; Stan, O.; Inokuchi, M.; Ohta, Y.; Yamada, Y.; Yagyu, T.; Elovici, Y.; Shabtai, A. Deriving a cost-effective digital twin of an ICS to facilitate security evaluation. In Proceedings of the European Symposium on Research in Computer Security, Barcelona, Spain, 3–7 September 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 533–554. [Google Scholar]
- Soderberg, R.; Warmefjord, K.; Carlson, J.S.; Lindkvist, L. Toward a digital twin for real-time geometry assurance in individualized production. CIRP Ann.—Manuf. Technol. 2017, 66, 137–140. [Google Scholar] [CrossRef]
- Qi, Q.; Tao, F.; Zuo, Y.; Zhao, D. Digital twin service towards smart manufacturing. Procedia CIRP 2018, 72, 237–242. [Google Scholar] [CrossRef]
- Botkina, D.; Hedlind, M.; Olsson, B.; Henser, J.; Lundholm, T. Digital twin of a cutting tool. Procedia CIRP 2018, 72, 215–218. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, S.; Cheng, H. An application framework of digital twin and its case study. J. Ambient. Intell. Humaniz. Comput. 2018, 10, 1–13. [Google Scholar] [CrossRef]
- Nasirahmadi, A.; Hensel, O. Toward the Next Generation of Digitalization in Agriculture Based on Digital Twin Paradigm. Sensors 2022, 22, 498. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-C.; Ubina, N.A.; Cheng, S.-C.; Lan, H.-Y.; Chen, K.-C.; Huang, C.-C. A Two-Mode Underwater Smart Sensor Object for Precision Aquaculture Based on AIoT Technology. Sensors 2022, 22, 7603. [Google Scholar] [CrossRef]
- Neethirajan, S.; Kemp, B. Digital Twins in Livestock Farming. Animals 2021, 11, 1008. [Google Scholar] [CrossRef]
- Ubina, N.A.; Cheng, S.-C.; Chang, C.-C.; Cai, S.-Y.; Lan, H.-Y.; Lu, H.-Y. Intelligent Underwater Stereo Camera Design for Fish Metric Estimation Using Reliable Object Matching. IEEE Access 2022, 10, 74605–74619. [Google Scholar] [CrossRef]
- Ubina, N.A.; Cheng, S.-C. A Review of Unmanned System Technologies with Its Application to Aquaculture Farm Monitoring and Management. Drones 2022, 6, 12. [Google Scholar] [CrossRef]
- Ubina, N.A.; Cheng, S.-C.; Chen, H.-Y.; Chang, C.-C.; Lan, H.-Y. A Visual Aquaculture System Using a Cloud-Based Autonomous Drones. Drones 2021, 5, 109. [Google Scholar] [CrossRef]
- Chang, C.-C.; Wang, Y.-P.; Cheng, S.-C. Fish Segmentation in Sonar Images by Mask R-CNN on Feature Maps of Conditional Random Fields. Sensors 2021, 21, 7625. [Google Scholar] [CrossRef] [PubMed]
- Ubina, N.A.; Cheng, S.-C.; Chang, C.-C.; Chen, H.-Y. Evaluating fish feeding intensity in aquaculture with convolutional neural networks. Aquac. Eng. 2021, 94, 102178. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, S.; Liu, J.; Gao, Q.; Dong, S.; Zhou, C. Deep learning for smart fish farming: Applications, opportunities and challenges. Rev. Aquac. 2021, 13, 66–90. [Google Scholar] [CrossRef]
- Iqbal, U.; Li, D.; Akhter, M. Intelligent Diagnosis of Fish Behavior Using Deep Learning Method. Fishes 2022, 7, 201. [Google Scholar] [CrossRef]
- Lu, H.-Y.; Cheng, C.-Y.; Cheng, S.-C.; Cheng, Y.-H.; Lo, W.-C.; Jiang, W.-L.; Nan, F.-H.; Chang, S.-H.; Ubina, N.A. A Low-Cost AI Buoy System for Monitoring Water Quality at Offshore Aquaculture Cages. Sensors 2022, 22, 4078. [Google Scholar] [CrossRef]
- Verdouw, C.; Tekinerdogan, B.; Beulens, A.; Wolfert, S. Digital twins in smart farming. Agric. Syst. 2021, 189, 103046. [Google Scholar] [CrossRef]
- An, W.; Wu, D.; Ci, S.; Luo, H.; Adamchuk, V.; Xu, Z. Agriculture Cyber-Physical Systems. In Cyber-Physical Systems; Academic Press: Cambridge, MA, USA, 2017; pp. 399–417. [Google Scholar] [CrossRef]
- Chergui, N.; Kechadi, M.T.; McDonnell, M. The Impact of Data Analytics in Digital Agriculture: A Review. In Proceedings of the 2020 International Multi-Conference on: Organization of Knowledge and Advanced Technologies (OCTA), Tunis, Tunisia, 6–8 February 2020; pp. 1–13. [Google Scholar]
- Top 10 Strategic Technology Trends for 2019: Digital Twin. Available online: https://www.gartner.com/en/documents/3904569/top-10-strategic-technology-trends-for-2019-digital-twin (accessed on 28 November 2022).
- Saaty, T.L. The Analytical Hierarchy Process, Planning, Priority; Resource Allocation; RWS Publications: Pittsburgh, PA, USA, 1980. [Google Scholar]
- Boyes, H.; Hallaq, B.; Cunningham, J.; Watson, T. The industrial Internet of things (IIoT): An analysis framework. Comput. Ind. 2018, 101, 1–12. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Siddique, N.; Paheding, S.; Elkin, C.P.; Devabhaktuni, V. U-Net and Its Variants for Medical Image Segmentation: A Review of Theory and Applications. IEEE Access 2021, 9, 82031–82057. [Google Scholar] [CrossRef]
- Rahman, M.; Asadujjaman, M. Implementation of Artificial Neural Network on Regression Analysis. In Proceedings of the 2021 5th Annual Systems Modelling Conference (SMC), Canberra, Australia, 14–15 September 2021. [Google Scholar]
- Sarma, A.; Goyal, P.; Kumari, S.; Wani, A.; Challa, J.S.; Islam, S.; Goyal, N. μDBSCAN: An Exact Scalable DBSCAN Algorithm for Big Data Exploiting Spatial Locality. In Proceedings of the 2019 IEEE International Conference on Cluster Computing (CLUSTER), Albuquerque, NM, USA, 23–26 September 2019. [Google Scholar]
- Chahid, A.; N’Doye, I.; Majoris, J.E.; Berumen, M.L.; Laleg-Kirati, T.-M. Fish growth trajectory tracking using Q-learning in precision aquaculture. Aquaculture 2022, 550, 737838. [Google Scholar] [CrossRef]
- Agossou, E.; Toshiro, T. IoT & AI Based System for Fish Farming: Case study of Benin. In Proceedings of the Conference on Information Technology for Social Good, Rome, Italy, 9–11 September 2021. [Google Scholar]
- Chiu, M.-C.; Yan, W.-M.; Bhat, S.A.; Huang, N.-F. Development of smart aquaculture farm management system using IoT and AI-based surrogate models. J. Agric. Food Res. 2022, 9, 100357. [Google Scholar] [CrossRef]
- Chen, C.-H.; Wu, Y.-C.; Zhang, J.-X.; Chen, Y.-H. IoT-Based Fish Farm Water Quality Monitoring System. Sensors 2022, 22, 6700. [Google Scholar] [CrossRef]
- Zhao, S.; Song, Z.; Liu, J.; Wang, H.; Zhu, J.; Li, D.; Zhao, R. Application of machine learning in intelligent fish aquaculture: A review. Aquaculture 2021, 540, 736724. [Google Scholar] [CrossRef]
- Sun, M.; Yang, X.; Xie, Y. Deep Learning in Aquaculture: A Review. J. Comput. 2020, 31, 294–319. [Google Scholar] [CrossRef]
Layer 1: Physical Object | I | ||
---|---|---|---|
Data collection (D) | D1. water quality | 0.8 | 0.8 |
D2. optical RGB camera | 0.8 | 0.8 | |
D3. sonar camera | 0.8 | 0.6 | |
D4. acoustic sensor | 0.6 | 0.8 | |
D5. climate open data | 0.5 | 0.8 | |
Machinery (M) | M1. fish feeding machine | 0.8 | 0.2 |
M2. net cleaner | 0.6 | 0.2 | |
M3. sorting machine | 0.5 | 0.2 | |
M4. heater/colder | 0.8 | 0.5 | |
M5. oxygen pump | 0.8 | 0.5 | |
M6. drone | 0.5 | 0.2 | |
M7. underwater drone | 0.4 | 0.2 | |
Environment (E) | E1. indoor fish pond | 0.8 | 0.8 |
E2. outdoor fish pond | 0.8 | 0.7 | |
E3. offshore cage | 0.8 | 0.3 |
Layers 2 and 3: End-System Digital Twin | Network Communications | |||
---|---|---|---|---|
Data networking (N) | N1. water quality | LoRa, NB-IoT | 0.8 | 0.8 |
N2. optical RGB camera | 4G/5G/WiFi | 0.8 | 0.7 | |
N3. sonar camera | 4G/5G/WiFi | 0.8 | 0.7 | |
N4. acoustic sensor | 4G/5G/WiFi | 0.8 | 0.7 | |
N5. climate open data | 4G/5G/WiFi | 0.8 | 0.8 | |
Action Execution (A) | A1. fish feeding | LoRa, NB-IoT | 0.8 | 0.8 |
A2. food usage | LoRa, NB-IoT | 0.8 | 0.8 | |
A3. net cleaning | LoRa, NB-IoT | 0.8 | 0.8 | |
A4. fish sorting | LoRa, NB-IoT | 0.8 | 0.8 | |
A5. heater | LoRa, NB-IoT | 0.8 | 0.8 | |
A6. air pumper | LoRa, NB-IoT | 0.8 | 0.8 |
Layer 4: Basic Service Digital Twin | Deep Learning Model | |||
---|---|---|---|---|
Environmental conditions prediction (C) | C1. water quality prediction | LSTM [42] | 0.8 | 0.8 |
C2. climate prediction | LSTM [42] | 0.8 | 0.8 | |
C3. net hole detection | YoLoV4 [43] | 0.8 | 0.8 | |
C4. aquatic plants detection | YoLoV4 [43] | 0.8 | 0.8 | |
Fish metrics estimation (F) | F1. fish length/height/weight estimation | Mask-RCNN [44], U-Net [45] | 0.8 | 0.8 |
F2. fish classification | YoLoV4 [42] | 0.8 | 0.8 | |
F3. fish count estimation | ANN regression [46] | 0.8 | 0.8 | |
F4. fish density estimation | U-Net [45] | 0.8 | 0.8 | |
Fish behavior recognition (B) | B1. fish feeding intensity | Activity recognition CNN [32], | 0.8 | 0.8 |
B2. fish vitality recognition | Optical flow detection CNN [32] | 0.8 | 0.8 | |
B3. fish diseases detection | DBSCAN [47] | 0.8 | 0.8 |
Layer 5: Data Application Digital Twin | Component Functions | ||
---|---|---|---|
Water quality prediction (WQP) | D1, D5, N1, N5, E1, E2 | 0.8 | 0.6 |
Underwater video surveillance (UVS) | D2, D3, D5, N2, N3, N5, F1, F2, F3, F4, B1, B2, B3 | 0.8 | 0.6 |
Water surface monitoring (WSM) | D2, D3, N2, N3 | 0.8 | 0.6 |
Fish food prediction (FFP) | WQM, UVS, A2 | 0.8 | 0.8 |
Smart fish feeding (SFF) | FFP, WSM, UVS, M1, B1, A1, A2 | 0.8 | 0.5 |
Fish growth model (FGM) | WQM, UVS, A2 | 0.8 | 0.8 |
Weight conversion ratio (WCR) | UVS, A2 | 0.8 | 0.6 |
Fish food tracking (FFT) | FFP, A2 | 0.8 | 0.6 |
Water quality alarming (WQA) | E1, E2 | 0.8 | 0.6 |
Fish disease detection (FDD) | WQM, UVS | 0.8 | 0.6 |
Fish feeding policy evaluation (FFP) | FGM, Q-learning [48], FFP | 0.8 | 0.6 |
Fish pond scheduling (FPS) | UVS | 0.8 | 0.8 |
Fish in-stock evaluation (FIE) | UVS | 0.8 | 0.8 |
Fish harvest scheduling (FHS) | UVS, SFF | 0.8 | 0.8 |
Level 1 Criteria | Importance (I) | Easiness (E) | Relative Importance | Local Weighting | Global Weighting | |
---|---|---|---|---|---|---|
I | E | |||||
Environment | 0.8 | 0.6 | 0.12887679 | 0.10411144 | 0.116494114 | 0.116494114 |
Sensors | 0.74 | 0.74 | 0.11921103 | 0.12966155 | 0.124436288 | 0.124436288 |
Data networking | 0.8 | 0.77 | 0.12887679 | 0.13033199 | 0.129604392 | 0.129604392 |
Real-time monitoring | 0.8 | 0.8 | 0.12887679 | 0.13881525 | 0.13384602 | 0.13384602 |
Basic services | 0.8 | 0.8 | 0.12887679 | 0.13881525 | 0.13384602 | 0.13384602 |
Production planning | 0.8 | 0.8 | 0.12887679 | 0.13881525 | 0.13384602 | 0.13384602 |
Aquaculture machinery | 0.67 | 0.43 | 0.11035358 | 0.08063402 | 0.095493802 | 0.095493802 |
Value added services | 0.8 | 0.8 | 0.12605144 | 0.13881525 | 0.132433345 | 0.132433345 |
Level 1 Criterion | Level 2 Criterion | Local Weighting | Global Weighting |
---|---|---|---|
Environment | Indoor fish pond | 0.38888889 | 0.04530327 |
Outdoor fish pond | 0.36111111 | 0.04206732 | |
Offshore cage | 0.25 | 0.02912353 |
Level 1 Criterion | Level 2 Criterion | Local Weighting | Global Weighting |
---|---|---|---|
Sensors | Water quality | 0.21337127 | 0.02655113 |
Underwater RGB camera | 0.21337127 | 0.02655113 | |
Sonar camera | 0.18705548 | 0.02327649 | |
Water surface RGB camera | 0.21337127 | 0.21337127 | |
Climate open data | 0.17283073 | 0.17283073 |
Level 1 Criterion | Level 2 Criterion | Local Weighting | Global Weighting |
---|---|---|---|
Data networking | Water quality + LoRa | 0.34291493 | 0.04444328 |
Video + 4G/5G/WiFi | 0.31417014 | 0.04071783 | |
Climate data + 4G/5G/WiFi | 0.34291493 | 0.04444328 |
Level 1 Criterion | Level 2 Criterion | Local Weighting | Global Weighting |
---|---|---|---|
Real-time monitoring | Water quality | 0.33333333 | 0.04461534 |
Climate data | 0.33333333 | 0.04461534 | |
Underwater video | 0.33333333 | 0.04461534 |
Level 1 Criterion | Level 2 Criterion | Local Weighting | Global Weighting |
---|---|---|---|
Basic services | Fish length/height/ weight estimation | 0.125 | 0.016730753 |
Fish classification | 0.125 | 0.016730753 | |
Fish count estimation | 0.125 | 0.016730753 | |
Fish density estimation | 0.125 | 0.016730753 | |
Fish vitality recognition | 0.125 | 0.016730753 | |
Fish disease detection | 0.125 | 0.016730753 | |
Fish feeding intensity evaluation | 0.125 | 0.016730753 | |
Fish food prediction | 0.125 | 0.016730753 |
Level 1 Criterion | Level 2 Criterion | Local Weighting | Global Weighting |
---|---|---|---|
Production planning | Fish feeding policy evaluation | 0.225 | 0.03011535 |
Smart fish feeding | 0.25833333 | 0.03457689 | |
Fish pond scheduling | 0.25833333 | 0.03457689 | |
Fish harvest scheduling | 0.25833333 | 0.03457689 |
Level 1 Criterion | Level 2 Criterion | Local Weighting | Global Weighting |
---|---|---|---|
Aquaculture machinery | Fish feeding machine | 0.39230769 | 0.03746295 |
Net cleaner | 0.34230769 | 0.03268826 | |
Fish sorting machine | 0.26538462 | 0.02534259 |
Level 1 Criterion | Level 2 Criterion | Local Weighting | Global Weighting |
---|---|---|---|
Value added services | Fish growth model | 0.16666667 | 0.02207222 |
Fish in-stock evaluation | 0.16666667 | 0.02207222 | |
Weight conversion ratio | 0.16666667 | 0.02207222 | |
Net hole detection | 0.16666667 | 0.02207222 | |
Aquatic plants detection | 0.16666667 | 0.02207222 | |
Water quality alarming | 0.16666667 | 0.02207222 |
Digital Twin Object | Error Percentage Results |
---|---|
Fish vitality evaluation | 5% |
Fish count estimation | 3.44% |
Fish weight estimation | 8.7% |
Body length estimation | 5.1% |
Body height estimation | 8.9% |
Fish disease detection | 15% |
Water quality inspection | 1% |
Net hole detection | 2% |
Net hole prediction | 17.3% |
Fish net cleaner | Less than 20% |
Sorting machine | Less than 10% |
Feeding amount prediction | 8.3% |
Fish size grading | 10% |
Source | AIoT Requirements Analysis Parameters | ||||||
---|---|---|---|---|---|---|---|
(a) | (b) | (c) | (d) | (e) | (f) | (g) | |
Agossou and Toshiro [49] | Water quality inspection | LoRa | Issues detection and alerting | Fish diseases detection | Web-based dashboard | 198 | 16 |
Chiu et al. [50] | Water Quality inspection | Wifi | Issues detection and alerting | Fish growth status | Web-based dashboard | 16 | 34 |
Chen et al. [51] | Water quality inspection | LoRa | Issues detection and alerting | x | Web-based dashboard | 673 | 26 |
Wang et al. [3] | Multi-mode sensors suggestion | LoRA/4G/5G | Live data monitoring | Production planning | Data visualization | 1 | 77 |
Zhao et al. [52] | Underwater camera | x | Computer vision-based fish behavior analysis | x | x | 5 | 183 |
Sun et al. [53] | Water quality sensors, RGB Camera | x | Deep l earning-based fish behavior analysis | x | x | 40 | 117 |
O’Donncha and Grant [4] | Multi-mode sensor data | x | Fish behavior analysis | Production planning | Visualization, dashboard | 28 | 14 |
Føre et al. [1] | Sonar, acoustic data, optical camera, ROV | x | Machine Learning-based models | Models for farm operation | Visualization, dashboard | 267 | 71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, H.-Y.; Ubina, N.A.; Cheng, S.-C.; Lin, S.-S.; Huang, C.-T. Digital Twin Architecture Evaluation for Intelligent Fish Farm Management Using Modified Analytic Hierarchy Process. Appl. Sci. 2023, 13, 141. https://doi.org/10.3390/app13010141
Lan H-Y, Ubina NA, Cheng S-C, Lin S-S, Huang C-T. Digital Twin Architecture Evaluation for Intelligent Fish Farm Management Using Modified Analytic Hierarchy Process. Applied Sciences. 2023; 13(1):141. https://doi.org/10.3390/app13010141
Chicago/Turabian StyleLan, Hsun-Yu, Naomi A. Ubina, Shyi-Chyi Cheng, Shih-Syun Lin, and Cheng-Ting Huang. 2023. "Digital Twin Architecture Evaluation for Intelligent Fish Farm Management Using Modified Analytic Hierarchy Process" Applied Sciences 13, no. 1: 141. https://doi.org/10.3390/app13010141
APA StyleLan, H. -Y., Ubina, N. A., Cheng, S. -C., Lin, S. -S., & Huang, C. -T. (2023). Digital Twin Architecture Evaluation for Intelligent Fish Farm Management Using Modified Analytic Hierarchy Process. Applied Sciences, 13(1), 141. https://doi.org/10.3390/app13010141