Optically Transparent Antennas: A Review of the State-of-the-Art, Innovative Solutions and Future Trends
Abstract
:1. Introduction
Ref. | Freq (GHz) | Substrate Material | Sub Thickness | Patch Material | Gain (dBi) | Bandwidth | Efficiency (%) | Transparency | Transmittance |
---|---|---|---|---|---|---|---|---|---|
[5] | 5–18 | PDMS | - | Fabric tissue (F) | 3.2–4.2 | 0.1–25 GHz | 66–90 | - | - |
[6] | 23–30 | Polyester fabric (F) | 0.35 mm | Copper foil | 4.2 | 24–28 GHz | - | - | - |
[7] | 10 | Alumina | 100 | Polyaniline /copper | 1.8, 4.69 | 9.6–9.9 GHz | 56, 98 | - | - |
[8] | 0.9 | PET (F) | 0.5 mm | Copper /CP (F) | 3 | 0.8–0.95 GHz | - | - | - |
[9] | 2.4 | Glass | - | AZO/AgNWs | - | 2–3.5 GHz | - | - | 80.28 |
[10] | 45 | Quartz | 5 mm | AZO (F) | - | 43–46.5 GHz | - | 86 | 83 |
[11] | 2.4 | Silicon | - | AZO | 4.9 | - | −7.3 dBi | - | - |
[12] | 2.53 | Glass | 2 mm | AgHT-4 | 9.8 | 2.49–2.58 GHz | - | - | 75 |
[13] | 28 | Glass | 2.54 mm | ITO, FTO, AgHT-4, AgHT-8 | 4.8, 4.2, 4.4, 4.2 | 26–36 GHz | 81, 73, 75, 73 | - | - |
[14] | 3.5 | Glass | 2.3 mm | AgHT-4 | 3.96 | 3.49–3.55 GHz | 50 | - | 92 |
[15] | 5.25 | Polyimide | - | IZTO/Ag /IZTO | 4.1–5.2 | 4.7–5.7 GHz | 61–82 | - | - |
[16] | 9.85 | Quartz glass | 1.5 mm | ITO | 4.27 | - | 56 | - | - |
[17] | 5.8 | Glass | 1 mm | ITO | 6 | 5.7-6 GHz | - | - | - |
[18] | 0.1–1 THz | Polyimide | 0.013 mm | Polymer | - | - | - | - | 80 |
[19] | 3, 5, 8, 13 | Borosilicate glass | 7 nm | Cu, ITO | −4, −2, 0.5, 2 | 3.1–10.6 GHz | 27, 25, 20, 18 | 88 | - |
[20] | 24.8 | Pyrex glass | 0.4 | ITO | 11.5 | 17–30 GHz | 92.30 | - | - |
[21] | 2.45 | Soda–lime glass | 2 mm | MM | 2–3 GHz | - | 75 | ||
[22] | 2 | Corning glass | 1.1 mm | AgGL | 5.2 | 19.7% | 60 | 51–70 | - |
[23] | 1–8.5 | Perspex | 2 mm | AgHT-4 | −2.5 to −33 | 1–10 GHz | - | - | - |
[24] | 2, 6 | Corning glass | 1.1 mm | AgGL | 2–6 | 2.5–5.3 GHz | - | 80 | |
[25] | 750 | Polyimide | 20 | ITO, TIO with MWCNT | 4.5–5.8 | 723–780 GHz | 47–61 | - | - |
[26] | 23.92–43.8 | Plexiglass | 1.48 mm | - | 2.8 | 23.92–43.8 GHz | 90 | - | - |
[27] | 2.4 | Silica glass | 1.4 | GZO | - | - | - | - | - |
[28] | 2.5, 5 | Pyrex glass | 4 mm | FTO | 0.43, 3.63 | - | 72 | - | 74–84 |
[29] | 2.45, 5.8 | PET | 0.175 mm | AgHT-8 | −3.25, −4.53 | 1.6–2.95, 5.4–6.4 | 80 | ||
[30] | 4.9 | Soda–lime glass | - | FTO | 5.16 | 0.8 GHz | - | - | 60 |
[31] | 2.4 | PET | 0.05 mm | ITO | −1.36 | 2.2–3 GHz | 20–52 | 96 |
Ref | Freq (GHz) | Substrate Material | Sub Thickness | Patch Material (Mesh) | Gain (dBi) | Bandwidth | Efficiency (%) | Transparency | Transmittance |
---|---|---|---|---|---|---|---|---|---|
[32] | 0.84 | Glass | 0.006 mm | Ag/Ti | - | - | 85 | 81 | - |
[33] | 2.4–2.5 | Acrylic | 1.2 mm | Metal mesh | 4.14 | 2.48–2.52 GHz | 56 | 82 | - |
[34] | 18 | Quartz | - | ITO/metal mesh | - | - | 38, 41 | - | 73–95, 66–94 |
[35] | 2.46–2.94 | Fused silica | - | Tortuous MM | −3.4 | 2.82–3.0 GHz | 81 | - | 30–45 |
[36] | 3.45 | PDMS | 2–4 mm | EGaIn (liquid metal) | 3.3–3.5 GHz | 60 | - | - | |
[37] | 2.4–2.48, 5.15–5.8 | Glass | 1.09 mm | MMMC | 0.74, 2.30 | - | 43, 46 | - | 75 |
[38] | 2.43–2.48 | Borosilicate glass | 4, 3.5, 3, 2.5 mm | Meshed patch | 4.4 | 2.39–2.58 GHz | - | 74 | - |
[39] | 2.3–3 | PET/PMMA | 4–5 mm | Metal mesh | 6 | 2.4–2.9 GHz | 90 | 70 | - |
[40] | 2.33–2.53, 4.7–5.6 | PDMS | 3 mm | Mesh | 2.2, 3.1 | 170–200 MHz, 700–900 MHz | 37, 44 | - | 50–70 |
[41] | 2.4–2.5 | Acrylic | 1 mm | Micromesh | 4.75, −4.23, and 2.63 | 2.4–2.6 GHz | 66.32, 7.76, and 42.69 | 80 | - |
[42] | 60 | Thick fused silica 7980 Corning | 0.2 mm | Al-MM | 3.20 | 53.55 GHz | - | 78 | - |
[43] | 2.4, 2.55 | Quartz | 2.25 mm | Silver epoxy mesh | 4.94, 7.23 | 2.4–2.6 GHz | - | 90 | - |
[44] | 28 | Glass | 0.7 mm | Ag-alloy (diamond-shaped) | 9.16 | 27.5–29.5 GHz | 52 | 41 | - |
[45] | 2–2.5 | Plexiglass | 2.03 mm | Meshed copper | 7.32 | - | 78 | 70–95 | - |
[46] | 27–35 | Acrylic | 2 mm | Cu microgrids | - | 27–35 GHz | - | - | - |
[47] | 0.5–20 | PET | 0.1 mm | Metal mesh | 10.4 | 0.78–20 GHz | - | - | 72 |
[48] | 22–40 | COPs | 0.1 mm | Thin MM | 1.12 | 24–29 GHz, 35.5–37.5 GHz | 34–43 | 92–98 | |
[49] | 6.63, 7.291, 7.29, 7.22 | FR-4 | 1.62 mm | MWCNT | 8.8 | 4.5–8.5 GHz | 86 | - | - |
Gain and Bandwidth for Various Antenna Applications
2. Optically Transparent Antennas
2.1. Transparent Antennas Using Thin Films
2.2. Transparent Antennas Using Mesh Grid
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
OTA | Optical transparent antenna |
CP | Conductive polymer |
AgNWs | Silver nanowire |
AZO | Aluminum zinc oxide |
Cu | Copper |
MMMC | Micro metal mesh conductive |
MM | Micro metal mesh |
MWCNTs | Multiwall carbon nanotubes |
AgGL | Silver grid layer |
TIO | Titanium-doped tin oxide |
GZO | Zinc oxide heavily doped with gallium |
FTO | Fluorine-doped tin oxide |
IZTO | Indium zinc tin oxide |
EGaIn | Eutectic gallium |
Ag/Ti | Silver/titanium |
PMMA | Polymethyl methacrylate |
COPS | Cyclic olefin polymers |
PDMS | Poly dimethly siloxine |
FSS | Frequency selective surface |
FBW | Fractional bandwidth |
References
- Pandey, A. Practical Microstrip and Printed Antenna Design; Artech House: London, UK, 2019. [Google Scholar]
- Kosuga, S.; Nagata, S.; Kuromatsu, S.; Suga, R.; Watanabe, T.; Hashimoto, O.; Koh, S. Optically transparent antenna based on carrier-doped three-layer stacked graphene. AIP Adv. 2021, 11, 035136. [Google Scholar] [CrossRef]
- Gangwar, A.K. A Comprehensive Study on Transparent Antennas for Wireless Applications. In Innovations in Cyber Physical Systems; Springer: Berlin/Heidelberg, Germany, 2021; pp. 475–483. [Google Scholar]
- Hong, W. Solving the 5G Mobile Antenna Puzzle: Assessing Future Directions for the 5G Mobile Antenna Paradigm Shift. IEEE Microw. Mag. 2017, 18, 86–102. [Google Scholar] [CrossRef]
- Elmobarak Elobaid, H.A.; Abdul Rahim, S.K.; Himdi, M.; Castel, X.; Abedian Kasgari, M. A Transparent and Flexible Polymer-Fabric Tissue UWB Antenna for Future Wireless Networks. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1333–1336. [Google Scholar] [CrossRef]
- Li, E.; Li, X.J.; Seet, B.C.; Lin, X. Ink-printed flexible wideband dipole array antenna for 5G applications. Phys. Commun. 2020, 43, 101193. [Google Scholar] [CrossRef]
- Rmili, H.; Miane, J.; Olinga, T.; Zangar, H. Design of microstrip-fed proximity-coupled conducting-polymer patch antenna. In Proceedings of the 11th International Symposium on Antenna Technology and Applied Electromagnetics [ANTEM 2005], Saint-Malo, France, 15–17 June 2005; pp. 1–4. [Google Scholar] [CrossRef]
- Kirsch, N.J.; Vacirca, N.A.; Plowman, E.E.; Kurzweg, T.P.; Fontecchio, A.K.; Dandekar, K.R. Optically transparent conductive polymer RFID meandering dipole antenna. In Proceedings of the 2009 IEEE International Conference on RFID, Orlando, FL, USA, 27–28 April 2009; pp. 278–282. [Google Scholar] [CrossRef]
- Wu, C.T.; Ho, Y.R.; Huang, D.Z.; Huang, J.J. AZO/silver nanowire stacked films deposited by RF magnetron sputtering for transparent antenna. Surf. Coat. Technol. 2018, 360. [Google Scholar] [CrossRef]
- Zamudio, M.; Behzadirad, M.; Christodoulou, C.; Busani, T. Optimization of AZO films for integrating optically transparent antennas with photovoltaics. Appl. Phys. Lett. 2017, 110, 234101. [Google Scholar] [CrossRef]
- Zamudio, M.E.; Busani, T.; Tawk, Y.; Costantine, J.; Christodoulou, C. Design of AZO film for optically transparent antennas. In Proceedings of the 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, PR, USA, 26 June–1 July 2016; pp. 127–128. [Google Scholar] [CrossRef]
- Peter, T.; Rahman, T.A.; Cheung, S.W.; Nilavalan, R.; Abutarboush, H.F.; Vilches, A. A Novel Transparent UWB Antenna for Photovoltaic Solar Panel Integration and RF Energy Harvesting. IEEE Trans. Antennas Propag. 2014, 62, 1844–1853. [Google Scholar] [CrossRef]
- Mohd Ali, N.; Misran, N.; Mansor, M.F.; Jamlos, M. Transparent solar antenna of 28 GHz using transparent conductive oxides (TCO) thin film. J. Phys. Conf. Ser. 2017, 852, 012036. [Google Scholar] [CrossRef] [Green Version]
- Roo-Ons, M.J.; Shynu, S.V.; Ammann, M.J.; McCormack, S.J.; Norton, B. Transparent patch antenna on a-Si thin-film glass solar module. Electron. Lett. 2011, 47, 85–86. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Kim, Y.; Lee, C.; Jung, C.W. A flexible and transparent antenna on a polyimide substrate for laptop computers. In Proceedings of the 2015 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, Vancouver, BC, Canada, 19–25 July 2015; pp. 930–931. [Google Scholar] [CrossRef]
- Sun, G.; Muneer, B.; Zhu, Q. A study of microstrip antenna made of transparent ITO films. In Proceedings of the 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), Memphis, TN, USA, 6–11 July 2014; pp. 1867–1868. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, W.; Chen, X.; Yu, J. Design of Optically Transparent Antenna with Directional Radiation Patterns. Int. J. Antennas Propag. 2017, 2017, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Sanphuang, V.; Nahar, N. Flexible THz and FarIR Polymer-supported Filter. Microw. Opt. Technol. Lett. 2018, 60, 2801–2805. [Google Scholar] [CrossRef]
- Haraty, M.R.; Naser-Moghadasi, M.; Lotfi-Neyestanak, A.A.; Nikfarjam, A. Improving the Efficiency of Transparent Antenna Using Gold Nanolayer Deposition. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 4–7. [Google Scholar] [CrossRef]
- Paul, L.C.; Pramanik, R.K.; Ur Rashid, M.M.; Sarker, S.; Mahmud, M.Z.; Tariqul Islam, M. An ITO Based High Gain Optically Transparent Wide Band Microstrip Antenna for K Band Satellite Communication. In Proceedings of the 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), Dhaka, Bangladesh, 10–12 January 2019; pp. 638–642. [Google Scholar] [CrossRef]
- Sa’ad, B.M.; Rahim, S.K.A.; Peter, T.; Rani, M.S.B.A.; Ausordin, S.F.; Zaidel, D.N.A.; Krishnan, C. Transparent Branch-Line Coupler Using Micro-Metal Mesh Conductive Film. IEEE Microw. Wirel. Components Lett. 2014, 24, 857–859. [Google Scholar] [CrossRef]
- Hautcoeur, J.; Colombel, F.; Himdi, M.; Castel, X.; Cruz, E.M. Large and Optically Transparent Multilayer for Broadband H-Shaped Slot Antenna. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 933–936. [Google Scholar] [CrossRef]
- Katsounaros, A.; Hao, Y.; Collings, N.; Crossland, W.A. Optically transparent antenna for Ultra Wide-Band applications. In Proceedings of the 2009 3rd European Conference on Antennas and Propagation, Berlin, Germany, 23–27 March 2009; pp. 1918–1921. [Google Scholar]
- Hautcoeur, J.; Colombel, F.; Castel, X.; Himdi, M.; Cruz, E. Radiofrequency Performances of Transparent Ultra-Wideband Antennas. Prog. Electromagn. Res. C 2011, 22, 259–271. [Google Scholar] [CrossRef] [Green Version]
- Sreekantan Thampy, A.; Kumar, D. Performance analysis and comparison of MWCNT loaded ITO and TIO based optically transparent patch antennas for terahertz communications. Phys. E Low-Dimens. Syst. Nanostructures 2015, 78, 123–129. [Google Scholar] [CrossRef]
- Desai, A.; Upadhyaya, T.; Patel, R. Compact wideband transparent antenna for 5G communication systems. Microw. Opt. Technol. Lett. 2019, 61, 781–786. [Google Scholar] [CrossRef]
- Green, R.; Toporkov, M.; Ullah, M.B.; Avrutin, V.; Ozgur, U.; Morkoç, H.; Topsakal, E. An alternative material for transparent antennas for commercial and medical applications. Microw. Opt. Technol. Lett. 2017, 59, 773–777. [Google Scholar] [CrossRef]
- Sheikh, S.; Shokooh-Saremi, M.; Bagheri-Mohagheghi, M. Transparent microstrip patch antenna based on fluorine-doped tin oxide deposited by spray pyrolysis technique. IET Microwaves Antennas Propag. 2015, 9, 1221–1229. [Google Scholar] [CrossRef]
- Malek, M.A.; Hakimi, S.; Abdul Rahim, S.K.; Evizal, A.K. Dual-Band CPW-Fed Transparent Antenna for Active RFID Tags. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 919–922. [Google Scholar] [CrossRef]
- Mohammed, G.N.A.; Sowjanya, D.; Savarimuthu, K.; R, G. Design and Experimental Evaluation of a Proximity Coupled Transparent Patch Antenna for WLAN. IETE J. Res. 2019, 68, 77–84. [Google Scholar] [CrossRef]
- Hong, W.; Lim, S.; Ko, S.; Kim, Y.G. Optically Invisible Antenna Integrated Within an OLED Touch Display Panel for IoT Applications. IEEE Trans. Antennas Propag. 2017, 65, 3750–3755. [Google Scholar] [CrossRef]
- Hautcoeur, J.; Colombel, F.; Castel, X.; Himdi, M.; Cruz, E.M. Optically transparent monopole antenna with high radiation efficiency manufactured with silver grid layer (AgGL). Electron. Lett. 2009, 45, 1014–1016. [Google Scholar] [CrossRef]
- Kang, S.H.; Jung, C.W. Transparent Patch Antenna Using Metal Mesh. IEEE Trans. Antennas Propag. 2018, 66, 2095–2100. [Google Scholar] [CrossRef]
- Yan-Jun, S.; Hao, C.; Song-hang, W.; Yan-Bing, L.; Li, W. Study on Electromagnetic Shielding of Infrared /Visible Optical Window. Mod. Appl. Sci. 2015, 9, 231. [Google Scholar] [CrossRef]
- Jang, T.; Zhang, C.; Youn, H.; Zhou, J.; Guo, L.J. Semitransparent and Flexible Mechanically Reconfigurable Electrically Small Antennas Based on Tortuous Metallic Micromesh. IEEE Trans. Antennas Propag. 2017, 65, 150–158. [Google Scholar] [CrossRef]
- Hayes, G.J.; So, J.; Qusba, A.; Dickey, M.D.; Lazzi, G. Flexible Liquid Metal Alloy (EGaIn) Microstrip Patch Antenna. IEEE Trans. Antennas Propag. 2012, 60, 2151–2156. [Google Scholar] [CrossRef]
- Li, Q.L.; Cheung, S.W.; Wu, D.; Yuk, T.I. Optically Transparent Dual-Band MIMO Antenna Using Micro-Metal Mesh Conductive Film for WLAN System. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 920–923. [Google Scholar] [CrossRef]
- Sheikh, S. Circularly Polarized Meshed Patch Antenna. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 352–355. [Google Scholar] [CrossRef]
- Ding, C.; Liu, L.; Luk, K. An Optically Transparent Dual-Polarized Stacked Patch Antenna with Metal-Mesh Films. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1981–1985. [Google Scholar] [CrossRef]
- Sayem, A.S.M.; Simorangkir, R.B.V.B.; Esselle, K.P.; Hashmi, R.M. Development of Robust Transparent Conformal Antennas Based on Conductive Mesh-Polymer Composite for Unobtrusive Wearable Applications. IEEE Trans. Antennas Propag. 2019, 67, 7216–7224. [Google Scholar] [CrossRef]
- Hong, S.; Kim, Y.; Won Jung, C. Transparent Microstrip Patch Antennas with Multilayer and Metal-Mesh Films. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 772–775. [Google Scholar] [CrossRef]
- Hautcoeur, J.; Talbi, L.; Hettak, K. Feasibility Study of Optically Transparent CPW-Fed Monopole Antenna at 60-GHz ISM Bands. IEEE Trans. Antennas Propag. 2013, 61, 1651–1657. [Google Scholar] [CrossRef]
- Liu, X.; Jackson, D.R.; Chen, J.; Liu, J.; Fink, P.W.; Lin, G.Y.; Neveu, N. Transparent and Nontransparent Microstrip Antennas on a CubeSat: Novel low-profile antennas for CubeSats improve mission reliability. IEEE Antennas Propag. Mag. 2017, 59, 59–68. [Google Scholar] [CrossRef]
- Park, J.; Lee, S.Y.; Kim, J.; Park, D.; Choi, W.; Hong, W. An Optically Invisible Antenna-on-Display Concept for Millimeter-Wave 5G Cellular Devices. IEEE Trans. Antennas Propag. 2019, 67, 2942–2952. [Google Scholar] [CrossRef]
- Yasin, T.; Baktur, R.; Turpin, T.; Arellano, J. Analysis and Design of Highly Transparent Meshed Patch Antenna Backed by a Solid Ground Plane. Prog. Electromagn. Res. M 2017, 56, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Mantash, M.; Kesavan, A.; Denidni, T.A. Highly Transparent Frequency Selective Surface Based on Electrotextiles for On-Chip Applications. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2351–2354. [Google Scholar] [CrossRef]
- Wu, B.; Sun, X.Y.; Zu, H.R.; Zhang, H.H.; Su, T. Transparent Ultra-wideband Halved Coplanar Vivaldi Antenna with Metal Mesh Film. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 2532–2536. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Kim, K.; Yoon, S.R.; Byun, G. Optically Invisible Artificial Magnetic Conductor Subarrays for Triband Display-Integrated Antennas. IEEE Trans. Microw. Theory Tech. 2022, 70, 3975–3986. [Google Scholar] [CrossRef]
- Hasan, R.R.; Saleque, A.M.; Anwar, A.B.; Rahman, M.A.; Tsang, Y.H. Multiwalled Carbon Nanotube-Based On-Body Patch Antenna for Detecting COVID-19-Affected Lungs. ACS Omega 2022, 7, 28265–28274. [Google Scholar] [CrossRef]
- Lombardi, J.P.; Malay, R.E.; Schaffner, J.H.; Song, H.J.; Huang, M.H.; Pollard, S.C.; Poliks, M.D.; Talty, T. Copper transparent antennas on flexible glass by subtractive and semi-additive fabrication for automotive applications. In Proceedings of the 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 29 May–1 June 2018; pp. 2107–2115. [Google Scholar]
- Alieldin, A.; Huang, Y.; Stanley, M.; Xu, Q. 5G camouflage antenna for pico-cell base stations. IET Microwaves Antennas Propag. 2020, 14, 1696–1699. [Google Scholar] [CrossRef]
- White, C.; Khaleel, H.R. CHAPTER 3 Flexible Optically Transparent Antennas. WIT Trans. State Art Sci. Eng. 2014, 82, 59–70. [Google Scholar]
- Rajiv. What Are Radio Frequency Bands and Its Uses? Available online: https://www.rfpage.com/what-are-radio-frequency-bands-and-its-uses/ (accessed on 10 November 2022).
- Tang, X.; Jiao, Y.; Li, H.; Zong, W.; Yao, Z.; Shan, F.; Li, Y.; Yue, W.; Gao, S. Ultra-wideband patch antenna for sub-6 GHz 5G communications. In Proceedings of the 2019 International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), Qingdao, China, 18–20 September 2019; pp. 1–3. [Google Scholar]
- Park, J.; Seong, H.; Whang, Y.N.; Hong, W. Energy-efficient 5G phased arrays incorporating vertically polarized endfire planar folded slot antenna for mmWave mobile terminals. IEEE Trans. Antennas Propag. 2019, 68, 230–241. [Google Scholar] [CrossRef]
- Al-Gburi, A.J.A.; Zakaria, Z.; Ibrahim, I.M.; Halim, E.B.A. Microstrip Patch Antenna Arrays Design for 5G Wireless Backhaul Application at 3.5 GHz. In Recent Advances in Electrical and Electronic Engineering and Computer Science; Springer: Berlin/Heidelberg, Germany, 2022; pp. 77–88. [Google Scholar]
- Alwareth, H.; Ibrahim, I.M.; Zakaria, Z.; Al-Gburi, A.J.A.; Ahmed, S.; Nasser, Z.A. A wideband high-gain microstrip array antenna integrated with frequency-selective surface for Sub-6 GHz 5G applications. Micromachines 2022, 13, 1215. [Google Scholar] [CrossRef]
- Umar, S.M.; Khan, W.-U.-R.; Ullah, S.; Ahmad, F. Gain enhancement technique in Vivaldi antenna for 5G communication. In Proceedings of the 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 30–31 January 2019; pp. 1–4. [Google Scholar]
- Ikram, M.; Nguyen-Trong, N.; Abbosh, A. Multiband MIMO microwave and millimeter antenna system employing dual-function tapered slot structure. IEEE Trans. Antennas Propag. 2019, 67, 5705–5710. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, S.; Pedersen, G.F. Dual-band structure reused antenna based on quasi-elliptic bandpass frequency selective surface for 5G application. IEEE Trans. Antennas Propag. 2020, 68, 7612–7617. [Google Scholar] [CrossRef]
- Zhihong, T.; Zhang, Y.; Luxey, C.; Bisognin, A.; Titz, D.; Ferrero, F. A ceramic antenna for tri-band radio devices. IEEE Trans. Antennas Propag. 2013, 61, 5776–5780. [Google Scholar] [CrossRef]
- Hussain, N.; Kim, N. Integrated Microwave and mm-Wave MIMO Antenna Module with 360° Pattern Diversity For 5G Internet-of-Things. IEEE Internet Things J. 2022, 9, 24777–24789. [Google Scholar] [CrossRef]
- Liu, S.; Theoharis, P.I.; Raad, R.; Tubbal, F.; Theoharis, A.; Iranmanesh, S.; Abulgasem, S.; Khan, M.U.A.; Matekovits, L. A Survey on CubeSat Missions and Their Antenna Designs. Electronics 2022, 11, 2021. [Google Scholar] [CrossRef]
- Basir, A.; Yoo, H. Efficient wireless power transfer system with a miniaturized quad-band implantable antenna for deep-body multitasking implants. IEEE Trans. Microw. Theory Tech. 2020, 68, 1943–1953. [Google Scholar] [CrossRef]
- Yousaf, M.; Mabrouk, I.B.; Faisal, F.; Zada, M.; Bashir, Z.; Akram, A.; Nedil, M.; Yoo, H. Compacted conformal implantable antenna with multitasking capabilities for ingestible capsule endoscope. IEEE Access 2020, 8, 157617–157627. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, C.; Jiang, Z.H.; Zhang, Y.; Liu, X.; Guo, H.; Yang, X. Near-field wireless power transfer to deep-tissue implants for biomedical applications. IEEE Trans. Antennas Propag. 2019, 68, 1098–1106. [Google Scholar] [CrossRef]
- Syed Feroze Hussain, S.; Thiripurasundari, D. A Review on Optically Transparent Antenna Fabricated with Conductive Nano-Material Oxides. J. Electron. Mater. 2022, 51, 6707–6734. [Google Scholar] [CrossRef]
- Potti, D.; Tusharika, Y.; Alsath, M.G.N.; Kirubaveni, S.; Kanagasabai, M.; Sankararajan, R.; Narendhiran, S.; Bhargav, P.B. A novel optically transparent UWB antenna for automotive MIMO communications. IEEE Trans. Antennas Propag. 2021, 69, 3821–3828. [Google Scholar] [CrossRef]
- Jayathilake, D.; Peiris, T.N. Overview on transparent conducting oxides and state of the art of low-cost doped ZnO systems. SF J. Mater. Chem Eng. 2018, 1, 1004. [Google Scholar]
- Gomez Diaz, J.; Perruisseau-Carrier, J. Microwave to THz properties of graphene and potential antenna applications. In Proceedings of the 2012 International Symposium on Antennas and Propagation, ISAP 2012, Nagoya, Japan, 29 October–2 November 2012; pp. 239–242. [Google Scholar]
- Vacirca, N.; Mcdonough, J.; Jost, K.; Gogotsi, Y.; Kurzweg, T. Onion-like carbon and carbon nanotube film antennas. APL Org. Electron. Photonics 2013, 6. [Google Scholar] [CrossRef]
- Lee, S.; Choo, M.; Jung, S.; Hong, W. Optically Transparent Nano-Patterned Antennas: A Review and Future Directions. Appl. Sci. 2018, 8, 901. [Google Scholar] [CrossRef] [Green Version]
- Anand, S.; Sriram Kumar, D.; Wu, R.J.; Chavali, M. Graphene nanoribbon based terahertz antenna on polyimide substrate. Optik 2014, 125, 5546–5549. [Google Scholar] [CrossRef]
- Green, R.B.; Guzman, M.; Izyumskaya, N.; Ullah, B.; Hia, S.; Pitchford, J.; Timsina, R.; Avrutin, V.; Ozgur, U.; Morkoc, H.; et al. Optically Transparent Antennas and Filters: A Smart City Concept to Alleviate Infrastructure and Network Capacity Challenges. IEEE Antennas Propag. Mag. 2019, 61, 37–47. [Google Scholar] [CrossRef]
- Colombel, F.; Castel, X.; Himdi, M.; Legeay, G.; Vigneron, S.; Cruz, E.M. Ultrathin metal layer, ITO film and ITO/Cu/ITO multilayer towards transparent antenna. IET Sci. Meas. Technol. 2009, 3, 229–234. [Google Scholar] [CrossRef]
- IEEE. 2005 IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials. In Proceedings of the IWAT 2005. IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials, Singapore, 7–9 March 2005. [Google Scholar] [CrossRef]
- Simons, R.N.; Lee, R.Q. Feasibility study of optically transparent microstrip patch antenna. In Proceedings of the IEEE Antennas and Propagation Society International Symposium 1997. Digest, Montreal, QC, Canada, 13–18 July 1997; Volume 4, pp. 2100–2103. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Jung, S.; Youn, Y.; Park, J.; Kwon, W.; Hong, W. Optically Transparent 1-D EBG Antenna Using Sub-Skin Depth Thin-Film Alloy in the Ka-Band. In Proceedings of the 2019 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 31 March–5 April 2019; pp. 1–3. [Google Scholar]
- Kocia, C.; Hum, S.V. Design of an Optically Transparent Reflectarray for Solar Applications Using Indium Tin Oxide. IEEE Trans. Antennas Propag. 2016, 64, 2884–2893. [Google Scholar] [CrossRef]
- Choi, K.H.; Nam, H.J.; Jeong, J.A.; Cho, S.W.; Kim, H.K.; Kang, J.W.; Kim, D.G.; Cho, W.J. Highly flexible and transparent InZnSnOx/Ag/InZnSnOx multilayer electrode for flexible organic light emitting diodes. Appl. Phys. Lett. 2008, 92, 223302. [Google Scholar] [CrossRef]
- Hashiba, J.; Kawajiri, T.; Shibuya, R.; Ishikuro, H. Shield effects of metal plate and mesh in wireless power delivery system. In Proceedings of the 2015 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Sendai, Japan, 26–28 August 2015; pp. 235–237. [Google Scholar] [CrossRef]
- Kennedy, T.F.; Fink, P.W.; Chu, A.W.; Champagne, N.J.; Lin, G.Y.; Khayat, M.A. Body-Worn E-Textile Antennas: The Good, the Low-Mass, and the Conformal. IEEE Trans. Antennas Propag. 2009, 57, 910–918. [Google Scholar] [CrossRef]
- Del Barrio, S.C.; Pedersen, G.F. Antenna design exploiting duplex isolation for 4G application on handsets. Electron. Lett. 2013, 49, 1197–1198. [Google Scholar] [CrossRef] [Green Version]
- Kubwimana, J.L.; Kirsch, N.J.; Ziegler, C.; Kontopidis, G.; Tuner, B. Dual-polarized 5.75 GHz optically transparent antenna arrays. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1512–1516. [Google Scholar] [CrossRef]
- Tai, T.; Wu, H.; Lin, K.; Hung, C.; Wang, Y. New Transparent Bandpass Filter Using Aluminum Thin-Film Micromesh Structure. IEEE Access 2019, 7, 130215–130220. [Google Scholar] [CrossRef]
- Sharifi, H.; Song, H.J.; Yajima, M.; Kona, K.; Bekaryan, A.; Geary, K.; Bilik, I. Semi-Transparent and Conformal Antenna Technology for Millimeter-wave Intelligent Sensing. In Proceedings of the 2018 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Munich, Germany, 16–18 April 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Hautcoeur, J.; Talbi, L.; Hettak, K.; Nedil, M. 60 GHz optically transparent microstrip antenna made of meshed AuGL material. IET Microwaves Antennas Propag. 2014, 8, 1091–1096. [Google Scholar] [CrossRef]
- Martin, A.; Lafond, O.; Himdi, M.; Castel, X. Improvement of 60 GHz Transparent Patch Antenna Array Performance Through Specific Double-Sided Micrometric Mesh Metal Technology. IEEE Access 2019, 7, 2256–2262. [Google Scholar] [CrossRef]
- Sun, J.; Luk, K. A Wideband and Optically Transparent Water Patch Antenna with Broadside Radiation Pattern. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 341–345. [Google Scholar] [CrossRef]
- Duy Tung, P.; Jung, C.W. Optically Transparent Wideband Dipole and Patch External Antennas Using Metal Mesh for UHD TV Applications. IEEE Trans. Antennas Propag. 2020, 68, 1907–1917. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chishti, A.R.; Aziz, A.; Qureshi, M.A.; Abbasi, M.N.; Algarni, A.M.; Zerguine, A.; Hussain, N.; Hussain, R. Optically Transparent Antennas: A Review of the State-of-the-Art, Innovative Solutions and Future Trends. Appl. Sci. 2023, 13, 210. https://doi.org/10.3390/app13010210
Chishti AR, Aziz A, Qureshi MA, Abbasi MN, Algarni AM, Zerguine A, Hussain N, Hussain R. Optically Transparent Antennas: A Review of the State-of-the-Art, Innovative Solutions and Future Trends. Applied Sciences. 2023; 13(1):210. https://doi.org/10.3390/app13010210
Chicago/Turabian StyleChishti, Abdul Rehman, Abdul Aziz, Muhammad Ali Qureshi, Muhammad Nawaz Abbasi, Abdullah M. Algarni, Azzedine Zerguine, Niamat Hussain, and Rifaqat Hussain. 2023. "Optically Transparent Antennas: A Review of the State-of-the-Art, Innovative Solutions and Future Trends" Applied Sciences 13, no. 1: 210. https://doi.org/10.3390/app13010210
APA StyleChishti, A. R., Aziz, A., Qureshi, M. A., Abbasi, M. N., Algarni, A. M., Zerguine, A., Hussain, N., & Hussain, R. (2023). Optically Transparent Antennas: A Review of the State-of-the-Art, Innovative Solutions and Future Trends. Applied Sciences, 13(1), 210. https://doi.org/10.3390/app13010210