Liquid Crystal-Tuned Planar Optics in Terahertz Range
Abstract
:1. Introduction
2. Properties of LCs and LC-Based THz Devices
3. LC-Integrated Plasmonic Metadevices
4. Tunable Dielectric Metasurfaces Based on LCs
5. Prospect and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Akyildiz, I.F.; Jornet, J.M.; Han, C. Teranets: Ultra-broadband communication networks in the terahertz band. IEEE Wirel. Commun. 2014, 21, 130–135. [Google Scholar] [CrossRef]
- Elayan, H.; Amin, O.; Shihada, B.; Shubair, R.M.; Alouini, M.S. Terahertz band: The last piece of rf spectrum puzzle for communication systems. IEEE Open J. Commun. Soc. 2020, 1, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Stantchev, R.I.; Sun, B.; Hornett, S.M.; Hobson, P.A.; Gibson, G.M.; Padgett, M.J.; Hendry, E. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector. Sci. Adv. 2016, 2, e1600190. [Google Scholar] [CrossRef] [Green Version]
- Cooper, K.B.; Dengler, R.J.; Llombart, N.; Thomas, B.; Chattopadhyay, G.; Siegel, P.H. THz imaging radar for standoff personnel screening. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 169–182. [Google Scholar] [CrossRef]
- Ippolito, L.J. Attenuation by Atmospheric Gases. In Radiowave Propagation in Satellite Communications; Springer Netherlands: Dordrecht, The Netherlands, 1986; pp. 25–37. [Google Scholar]
- Siemion, A.; Siemion, A.; Makowski, M.; Sypek, M.; Hérault, E.; Garet, F.; Coutaz, J.-L. Off-axis metallic diffractive lens for terahertz beams. Opt. Lett. 2011, 36, 1960–1962. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Tian, Z.; Yue, W.S.; Gu, J.Q.; Zhang, S.; Han, J.G.; Zhang, W.L. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities. Adv. Mater. 2013, 25, 4567–4572. [Google Scholar] [CrossRef]
- Li, Z.W.; Li, J.S. Switchable terahertz metasurface with polarization conversion and filtering functions. Appl. Opt. 2021, 60, 2450–2454. [Google Scholar] [CrossRef]
- Nagatsuma, T.; Ducournau, G.; Renaud, C.C. Advances in terahertz communications accelerated by photonics. Nat. Photonics 2016, 10, 371–379. [Google Scholar] [CrossRef]
- Hu, D.; Wang, X.K.; Feng, S.F.; Ye, J.S.; Sun, W.F.; Kan, Q.; Klar, P.J.; Zhang, Y. Ultrathin terahertz planar elements. Adv. Opt. Mater. 2013, 1, 186–191. [Google Scholar] [CrossRef] [Green Version]
- Jia, M.; Wang, Z.; Li, H.T.; Wang, X.K.; Luo, W.J.; Sun, S.L.; Zhang, Y.; He, Q.; Zhou, L. Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces. Light Sci. Appl. 2019, 8, 16. [Google Scholar] [CrossRef]
- Yu, N.F.; Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 2014, 13, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.S.; Chen, X.Q.; Liu, X.D.; Stantchev, R.I.; Pickwell-MacPherson, E. Exploiting total internal reflection geometry for terahertz devices and enhanced sample characterization. Adv. Opt. Mater. 2020, 8, 1900535. [Google Scholar] [CrossRef]
- He, J.W.; Zhang, Y. Metasurfaces in terahertz waveband. J. Phys. D Appl. Phys. 2017, 50, 464004. [Google Scholar] [CrossRef] [Green Version]
- Veselago, V.G. The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Uspekhi Ussr 1968, 10, 509–514. [Google Scholar] [CrossRef]
- Pendry, J.B.; Holden, A.J.; Stewart, W.J.; Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 1996, 76, 4773–4776. [Google Scholar] [CrossRef] [Green Version]
- Anwar, R.S.; Mao, L.F.; Ning, H.S. Frequency selective surfaces: A review. Appl. Sci. 2018, 8, 1689. [Google Scholar] [CrossRef] [Green Version]
- Dickie, R.; Cahill, R.; Fusco, V.; Gamble, H.S.; Mitchell, N. THz frequency selective surface filters for earth observation remote sensing instruments. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 450–461. [Google Scholar] [CrossRef] [Green Version]
- Chiang, Y.J.; Yang, C.S.; Yang, Y.H.; Pan, C.L.; Yen, T.J. An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial. Appl. Phys. Lett. 2011, 99, 191909. [Google Scholar] [CrossRef] [Green Version]
- Grady, N.K.; Heyes, J.E.; Chowdhury, D.R.; Zeng, Y.; Reiten, M.T.; Azad, A.K.; Taylor, A.J.; Dalvit, D.A.R.; Chen, H.T. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 2013, 340, 1304–1307. [Google Scholar] [CrossRef] [Green Version]
- Jia, D.L.; Tian, Y.; Ma, W.; Gong, X.F.; Yu, J.Y.; Zhao, G.Z.; Yu, X.M. Transmissive terahertz metalens with full phase control based on a dielectric metasurface. Opt. Lett. 2017, 42, 4494–4497. [Google Scholar] [CrossRef]
- Meinzer, N.; Barnes, W.L.; Hooper, I.R. Plasmonic meta-atoms and metasurfaces. Nat. Photonics 2014, 8, 889–898. [Google Scholar] [CrossRef] [Green Version]
- Jahani, S.; Jacob, Z. All-dielectric metamaterials. Nat. Nanotechnol. 2016, 11, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Chebykin, A.V.; Orlov, A.A.; Simovski, C.R.; Kivshar, Y.S.; Belov, P.A. Nonlocal effective parameters of multilayered metal-dielectric metamaterials. Phys. Rev. B 2012, 86, 115420. [Google Scholar] [CrossRef] [Green Version]
- Cui, T.; Bai, B.F.; Sun, H.B. Tunable metasurfaces based on active materials. Adv. Funct. Mater. 2019, 29, 1806692. [Google Scholar] [CrossRef]
- Xu, J.; Yang, R.S.; Fan, Y.C.; Fu, Q.H.; Zhang, F.L. A review of tunable electromagnetic metamaterials with anisotropic liquid crystals. Front. Phys. 2021, 9, 633104. [Google Scholar] [CrossRef]
- Maune, H.; Jost, M.; Reese, R.; Polat, E.; Nickel, M.; Jakoby, R. Microwave liquid crystal technology. Crystals 2018, 8, 355. [Google Scholar] [CrossRef] [Green Version]
- Tsai, T.R.; Chen, C.Y.; Pan, C.L.; Pan, R.P.; Zhang, X.C. Terahertz time-domain spectroscopy studies of the optical constants of the nematic liquid crystal 5CB. Appl. Opt. 2003, 42, 2372–2376. [Google Scholar] [CrossRef]
- Yang, C.S.; Lin, C.J.; Pan, R.P.; Que, C.T.; Yamamoto, K.; Tani, M.; Pan, C.L. The complex refractive indices of the liquid crystal mixture E7 in the terahertz frequency range. J. Opt. Soc. Am. B-Opt. Phys. 2010, 27, 1866–1873. [Google Scholar] [CrossRef] [Green Version]
- Chodorow, U.; Parka, J.; Garbat, K.; Palka, N.; Czuprynski, K. Spectral investigation of nematic liquid crystals with high optical anisotropy at THz frequency range. Phase Transit 2012, 85, 337–344. [Google Scholar] [CrossRef]
- Chodorow, U.; Parka, J.; Chojnowska, O. Liquid crystal materials in THz technologies. Photonics Lett. Pol. 2012, 4, 112–114. [Google Scholar] [CrossRef]
- Wang, L.; Lin, X.W.; Liang, X.; Wu, J.B.; Hu, W.; Zheng, Z.G.; Jin, B.B.; Qin, Y.Q.; Lu, Y.Q. Large birefringence liquid crystal material in terahertz range. Opt. Mater. Express 2012, 2, 1314–1319. [Google Scholar] [CrossRef]
- Mavrona, E.; Chodorow, U.; Barnes, M.E.; Parka, J.; Palka, N.; Saitzek, S.; Blach, J.F.; Apostolopoulos, V.; Kaczmarek, M. Refractive indices and birefringence of hybrid liquid crystal—Nanoparticles composite materials in the terahertz region. AIP Adv. 2015, 5, 077143. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Parrott, E.P.J.; Fan, F.; Lim, M.; Han, H.; Chigrinov, V.G.; Pickwell-MacPherson, E. Evaluating liquid crystal properties for use in terahertz devices. Opt. Express 2012, 20, 11899–11905. [Google Scholar] [CrossRef]
- Chen, C.Y.; Pan, C.L.; Hsieh, C.F.; Lin, Y.F.; Pan, R.P. Liquid-crystal-based terahertz tunable Lyot filter. Appl. Phys. Lett. 2006, 88, 101107. [Google Scholar] [CrossRef]
- Ho, I.C.; Pan, C.L.; Hsieh, C.F.; Pan, R.P. Liquid-crystal-based terahertz tunable Solc filter. Opt. Lett. 2008, 33, 1401–1403. [Google Scholar] [CrossRef]
- Wilk, R.; Vieweg, N.; Kopschinski, O.; Koch, M. Liquid crystal based electrically switchable Bragg structure for THz waves. Opt. Express 2009, 17, 7377–7382. [Google Scholar] [CrossRef]
- Vieweg, N.; Born, N.; Al-Naib, I.; Koch, M. Electrically tunable terahertz Notch filters. J. Infrared Millim. Terahertz Waves 2012, 33, 327–332. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, P.; Chen, P.; Chang, S.J.; Yuan, J.H. Liquid-crystal-filled photonic crystal for terahertz switch and filter. J. Opt. Soc. Am. B-Opt. Phys. 2009, 26, 101–106. [Google Scholar] [CrossRef]
- Wu, H.Y.; Hsieh, C.F.; Tang, T.T.; Pan, R.P.; Pan, C.L. Electrically tunable room-temperature 2 pi liquid crystal terahertz phase shifter. IEEE Photonics Technol. Lett. 2006, 18, 1488–1490. [Google Scholar] [CrossRef]
- Yang, J.; Xia, T.Y.; Jing, S.C.; Deng, G.S.; Lu, H.B.; Fang, Y.; Yin, Z.P. Electrically tunable reflective terahertz phase shifter based on liquid crystal. J. Infrared Millim. Terahertz Waves 2018, 39, 439–446. [Google Scholar] [CrossRef]
- Altmann, K.; Reuter, M.; Garbat, K.; Koch, M.; Dabrowski, R.; Dierking, I. Polymer stabilized liquid crystal phase shifter for terahertz waves. Opt. Express 2013, 21, 12395–12400. [Google Scholar] [CrossRef] [PubMed]
- Ito, R.; Honma, M.; Nose, T. Electrically tunable hydrogen-bonded liquid crystal phase control device. Appl. Sci.-Basel 2018, 8, 2478. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Lin, X.W.; Hu, W.; Shao, G.H.; Chen, P.; Liang, L.J.; Jin, B.B.; Wu, P.H.; Qian, H.; Lu, Y.N.; et al. Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes. Light Sci. Appl. 2015, 4, e253. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Ge, S.J.; Hu, W.; Nakajima, M.; Lu, Y.Q. Tunable reflective liquid crystal terahertz waveplates. Opt. Mater. Express 2017, 7, 2023–2029. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.P.; Chen, S.; Fan, F.; Cheng, J.R.; Xu, S.T.; Wang, X.H.; Chang, S.J. Tunable terahertz wave-plate based on dualfrequency liquid crystal controlled by alternating electric field. Opt. Express 2018, 26, 663–673. [Google Scholar] [CrossRef] [PubMed]
- Scherger, B.; Reuter, M.; Scheller, M.; Altmann, K.; Vieweg, N.; Dabrowski, R.; Deibel, J.A.; Koch, M. Discrete terahertz beam steering with an electrically controlled liquid crystal device. J. Infrared Millim. Terahertz Waves 2012, 33, 1117–1122. [Google Scholar] [CrossRef]
- Lin, C.J.; Li, Y.T.; Hsieh, C.F.; Pan, R.P.; Pan, C.L. Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating. Opt. Express 2008, 16, 2995–3001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki, T.; Okuyama, H.; Sakamoto, M.; Noda, K.; Okamoto, H.; Kawatsuki, N.; Ono, H. Twisted nematic liquid crystal cells with rubbed poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) films for active polarization control of terahertz waves. J. Appl. Phys. 2017, 121, 143106. [Google Scholar] [CrossRef]
- Nakanishi, A.; Hayashi, S.; Satozono, H.; Fujita, K. Polarization imaging of liquid crystal polymer using terahertz difference-frequency generation source. Appl. Sci.-Basel 2021, 11, 10260. [Google Scholar] [CrossRef]
- Wu, H.; Hu, W.; Hu, H.C.; Lin, X.W.; Zhu, G.; Choi, J.W.; Chigrinov, V.; Lu, Y.Q. Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system. Opt. Express 2012, 20, 16684–16689. [Google Scholar] [CrossRef]
- Ge, S.J.; Chen, P.; Shen, Z.X.; Sun, W.F.; Wang, X.K.; Hu, W.; Zhang, Y.; Lu, Y.Q. Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal. Opt. Express 2017, 25, 12349–12356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Z.X.; Zhou, S.H.; Ge, S.J.; Duan, W.; Ma, L.L.; Lu, Y.Q.; Hu, W. Liquid crystal tunable terahertz lens with spin-selected focusing property. Opt. Express 2019, 27, 8800–8807. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.X.; Tang, M.J.; Chen, P.; Zhou, S.H.; Ge, S.J.; Duan, W.; Wei, T.; Liang, X.; Hu, W.; Lu, Y.Q. Planar terahertz photonics mediated by liquid crystal polymers. Adv. Opt. Mater. 2020, 8, 1902124. [Google Scholar] [CrossRef]
- Chen, X.Q.; Li, K.D.; Zhang, R.; Gupta, S.K.; Srivastava, A.K.; Pickwell-MacPherson, E. Highly efficient ultra-broadband terahertz modulation using bidirectional switching of liquid crystals. Adv. Opt. Mater. 2019, 7, 1901321. [Google Scholar] [CrossRef]
- Smith, D.R.; Pendry, J.B.; Wiltshire, M.C.K. Metamaterials and negative refractive index. Science 2004, 305, 788–792. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.L.; Li, C.; Fan, Y.C.; Yang, R.S.; Shen, N.H.; Fu, Q.H.; Zhang, W.H.; Zhao, Q.; Zhou, J.; Koschny, T.; et al. Phase-modulated scattering manipulation for exterior cloaking in metal–dielectric hybrid metamaterials. Adv. Mater. 2019, 31, 1903206. [Google Scholar] [CrossRef]
- Li, Y.; Lin, J.; Guo, H.J.; Sun, W.J.; Xiao, S.Y.; Zhou, L. A tunable metasurface with switchable functionalities: From perfect transparency to perfect absorption. Adv. Opt. Mater. 2020, 8, 1901548. [Google Scholar] [CrossRef]
- Drevinskas, R.; Beresna, M.; Zhang, J.; Kazanskii, A.G.; Kazansky, P.G. Ultrafast laser-induced metasurfaces for geometric phase manipulation. Adv. Opt. Mater. 2017, 5, 1600575. [Google Scholar] [CrossRef] [Green Version]
- Miao, Z.Q.; Wu, Q.; Li, X.; He, Q.; Ding, K.; An, Z.H.; Zhang, Y.B.; Zhou, L. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces. Phys. Rev. X 2015, 5, 041027. [Google Scholar] [CrossRef] [Green Version]
- Chu, C.H.; Tseng, M.L.; Chen, J.; Wu, P.C.; Chen, Y.H.; Wang, H.C.; Chen, T.Y.; Hsieh, W.T.; Wu, H.J.; Sun, G.; et al. Active dielectric metasurface based on phase-change medium. Laser Photonics Rev. 2016, 10, 986–994. [Google Scholar] [CrossRef]
- Wang, X.; Kwon, D.H.; Werner, D.H.; Khoo, I.C.; Kildishev, A.V.; Shalaev, V.M. Tunable optical negative-index metamaterials employing anisotropic liquid crystals. Appl. Phys. Lett. 2007, 91, 143122. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.F.; Ma, Z.F.; Sun, W.; Ding, F.J.; He, Q.; Zhou, L.; Ma, Y.G. Ultra-broadband terahertz metamaterial absorber. Appl. Phys. Lett. 2014, 105, 021102. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.M.; Huang, R.; Xu, J.; Xu, X.D. Broadband terahertz near-perfect absorbers. ACS Appl. Mater. Interfaces 2020, 12, 33352–33360. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.L.; Li, S.N.; Xu, Y.F.; Yin, W.; Zhang, L.Y.; Chen, X.F. Three-dimensional printed ultrabroadband terahertz metamaterial absorbers. Phys. Rev. Appl. 2021, 16, 014066. [Google Scholar] [CrossRef]
- Kim, Y.S.; Lin, S.Y.; Wu, H.Y.; Pan, R.P. A tunable terahertz filter and its switching properties in terahertz region based on a defect mode of a metallic photonic crystal. J. Appl. Phys. 2011, 109, 123111. [Google Scholar] [CrossRef] [Green Version]
- Shrekenhamer, D.; Chen, W.C.; Padilla, W.J. Liquid crystal tunable metamaterial absorber. Phys. Rev. Lett. 2013, 110, 177403. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.X.; Li, L.; Liu, J.L.; Yan, F.; Tian, F.J.; Tian, H.; Zhang, J.Z.; Sun, W.M. Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal. Opt. Express 2017, 25, 32280–32289. [Google Scholar] [CrossRef]
- Wang, L.; Ge, S.J.; Hu, W.; Nakajima, M.; Lu, Y.Q. Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber. Opt. Express 2017, 25, 23873–23879. [Google Scholar] [CrossRef]
- Yang, J.; Wang, P.; Shi, T.; Gao, S.; Lu, H.B.; Yin, Z.P.; Lai, W.E.; Deng, G.S. Electrically tunable liquid crystal terahertz device based on double-layer plasmonic metamaterial. Opt. Express 2019, 27, 27039–27045. [Google Scholar] [CrossRef]
- Shen, Z.X.; Zhou, S.H.; Ge, S.J.; Duan, W.; Chen, P.; Wang, L.; Hu, W.; Lu, Y.Q. Liquid-crystal-integrated metadevice: Towards active multifunctional terahertz wave manipulations. Opt. Lett. 2018, 43, 4695–4698. [Google Scholar] [CrossRef]
- Shen, Z.X.; Zhou, S.H.; Ge, S.J.; Hu, W.; Lu, Y.Q. Liquid crystal enabled dynamic cloaking of terahertz Fano resonators. Appl. Phys. Lett. 2019, 114, 041106. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.M.; Shadrivov, I.V.; Powell, D.A.; Raihan, M.R.; Hattori, H.T.; Decker, M.; Mironov, E.; Neshev, D.N. Temperature control of terahertz metamaterials with liquid crystals. IEEE Trans. Terahertz Sci. Technol. 2013, 3, 827–831. [Google Scholar] [CrossRef]
- Shih, Y.H.; Lin, X.Y.; Silalahi, H.M.; Lee, C.R.; Huang, C.Y. Optically tunable terahertz metasurfaces using liquid crystal cells coated with photoalignment layers. Crystals 2021, 11, 1100. [Google Scholar] [CrossRef]
- Xu, S.T.; Fan, F.; Ji, Y.Y.; Cheng, J.R.; Chang, S.J. Terahertz resonance switch induced by the polarization conversion of liquid crystal in compound metasurface. Opt. Lett. 2019, 44, 2450–2453. [Google Scholar] [CrossRef]
- Shih, Y.H.; Silalahi, H.M.; Tsai, T.I.; Chen, Y.C.; Su, J.Y.; Lee, C.R.; Huang, C.Y. Optically tunable and thermally erasable terahertz intensity modulators using dye-doped liquid crystal cells with metasurfaces. Crystals 2021, 11, 1580. [Google Scholar] [CrossRef]
- Yu, H.G.; Wang, H.C.; Shen, Z.X.; Tao, S.N.; Ge, S.J.; Hu, W. Photo-reconfigurable and electrically switchable spatial terahertz wave modulator. Chin. Opt. Lett. 2023, 21, 010002. [Google Scholar] [CrossRef]
- Chen, C.C.; Chiang, W.F.; Tsai, M.C.; Jiang, S.A.; Chang, T.H.; Wang, S.H.; Huang, C.Y. Continuously tunable and fast-response terahertz metamaterials using in-plane-switching dual-frequency liquid crystal cells. Opt. Lett. 2015, 40, 2021–2024. [Google Scholar] [CrossRef]
- Yin, Z.P.; Wan, C.F.; Deng, G.S.; Zheng, A.D.; Wang, P.; Yang, Y.; Gao, S.; Yang, J.; Cai, F.; Li, Z.L.; et al. Fast-Tunable terahertz metamaterial absorber based on polymer network liquid crystal. Appl. Sci. 2018, 8, 2454. [Google Scholar] [CrossRef] [Green Version]
- Buchnev, O.; Wallauer, J.; Walther, M.; Kaczmarek, M.; Zheludev, N.I.; Fedotov, V.A. Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial. Appl. Phys. Lett. 2013, 103, 141904. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, T.; Nishie, Y.; Kambayashi, M.; Sakamoto, M.; Noda, K.; Okamoto, H.; Kawatsuki, N.; Ono, H. Active terahertz polarization converter using a liquid crystal-embedded metal mesh. IEEE Photonics J. 2019, 11, 5901007. [Google Scholar] [CrossRef]
- Xu, S.T.; Fan, F.; Cao, H.Z.; Wang, Y.H.; Chang, S.J. Liquid crystal integrated metamaterial for multi-band terahertz linear polarization conversion. Chin. Opt. Lett. 2021, 19, 093701. [Google Scholar] [CrossRef]
- Ji, Y.Y.; Fan, F.; Zhang, Z.Y.; Tan, Z.Y.; Zhang, X.; Yuan, Y.W.; Cheng, J.R.; Chang, S.J. Active terahertz spin state and optical chirality in liquid crystal chiral metasurface. Phys. Rev. Mater. 2021, 5, 085201. [Google Scholar] [CrossRef]
- Li, X.S.; Feng, N.X.; Xu, Y.M.; Cheng, L.L.; Liu, Q.H. Design of a liquid-crystal-tunable terahertz demultiplexer based on a metal-insulator-metal waveguide. Appl. Sci. 2019, 9, 0644. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Xu, Y.; Li, H.L.; Liu, Y.S.; Zhang, F.; Cheng, H.Y.; Tao, S.A.; Wang, H.C.; Hu, W.; Lu, Y.Q.; et al. Flexible control of broadband polarization in a spintronic terahertz emitter integrated with liquid crystal and metasurface. ACS Appl. Mater. Interfaces 2022, 14, 32646–32656. [Google Scholar] [CrossRef]
- Alonso-delPino, M.; Jung-Kubiak, C.; Reck, T.; Llombart, N.; Chattopadhyay, G. Beam scanning of silicon lens antennas using integrated piezomotors at submillimeter wavelengths. IEEE Trans. Terahertz Sci. Technol. 2019, 9, 47–54. [Google Scholar] [CrossRef]
- Yang, Y.; Gurbuz, O.D.; Rebeiz, G.M. An eight-element 370–410-GHz phased-array transmitter in 45-nm CMOS SOI with peak EIRP of 8–8.5 dBm. IEEE Trans. Microw. Theory Tech. 2016, 64, 4241–4249. [Google Scholar] [CrossRef]
- Cui, T.J.; Qi, M.Q.; Wan, X.; Zhao, J.; Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 2014, 3, e218. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.B.; Shen, Z.; Ge, S.J.; Chen, B.W.; Shen, Z.X.; Wang, T.F.; Zhang, C.H.; Hu, W.; Fan, K.B.; Padilla, W.; et al. Liquid crystal programmable metasurface for terahertz beam steering. Appl. Phys. Lett. 2020, 116, 131104. [Google Scholar] [CrossRef]
- Buchnev, O.; Podoliak, N.; Kaltenecker, K.; Walther, M.; Fedotov, V.A. Metasurface-based optical liquid crystal cell as an ultrathin spatial phase modulator for thz applications. ACS Photonics 2020, 7, 3199–3206. [Google Scholar] [CrossRef]
- Liu, C.X.; Yang, F.; Fu, X.J.; Wu, J.W.; Zhang, L.; Yang, J.; Cui, T.J. Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals. Adv. Opt. Mater. 2021, 9, 2100932. [Google Scholar] [CrossRef]
- Liu, S.; Xu, F.; Zhan, J.L.; Qiang, J.X.; Xie, Q.; Yang, L.; Deng, S.S.; Zhang, Y.M. Terahertz liquid crystal programmable metasurface based on resonance switching. Opt. Lett. 2022, 47, 1891–1894. [Google Scholar] [CrossRef] [PubMed]
- Savo, S.; Shrekenhamer, D.; Padilla, W.J. Liquid crystal metamaterial absorber spatial light modulator for thz applications. Adv. Opt. Mater. 2014, 2, 275–279. [Google Scholar] [CrossRef]
- Tao, S.; Shen, Z.; Yu, H.; Wang, H.; Ge, S.; Hu, W. Transflective spatial terahertz wave modulator. Opt. Lett. 2022, 47, 1650–1653. [Google Scholar] [CrossRef] [PubMed]
- Li, W.L.; Hu, X.M.; Wu, J.B.; Fan, K.B.; Chen, B.W.; Zhang, C.H.; Hu, W.; Cao, X.; Jin, B.B.; Lu, Y.Q.; et al. Dual-color terahertz spatial light modulator for single-pixel imaging. Light Sci. Appl. 2022, 11, 191. [Google Scholar] [CrossRef]
- Chen, H.T.; Taylor, A.J.; Yu, N.F. A review of metasurfaces: Physics and applications. Rep. Prog. Phys. 2016, 79, 076401. [Google Scholar] [CrossRef] [Green Version]
- Richtmyer, R.D. Dielectric Resonators. J. Appl. Phys. 1939, 10, 391–398. [Google Scholar] [CrossRef]
- Geffrin, J.M.; Garcia-Camara, B.; Gomez-Medina, R.; Albella, P.; Froufe-Perez, L.S.; Eyraud, C.; Litman, A.; Vaillon, R.; Gonzalez, F.; Nieto-Vesperinas, M.; et al. Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere. Nat. Commun. 2012, 3, 1171. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.H.; Pu, M.B.; Zhang, F.; Xu, M.F.; Li, X.; Ma, X.L.; Luo, X.G. Classical and generalized geometric phase in electromagnetic metasurfaces. Photonics Insights 2022, 1, R03. [Google Scholar] [CrossRef]
- Zhou, S.H.; Shen, Z.X.; Kang, R.Y.; Ge, S.J.; Hu, W. Liquid Crystal Tunable Dielectric Metamaterial Absorber in the Terahertz Range. Appl. Sci.-Basel 2018, 8, 2211. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.Y.; Fan, F.; Zhang, X.; Cheng, J.R.; Chang, S.J. Active Terahertz Anisotropy and Dispersion Engineering Based on Dual-frequency Liquid Crystal and Dielectric Metasurface. J. Light. Technol. 2020, 38, 4030–4036. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, F.; Zhang, C.Y.; Ji, Y.Y.; Wang, X.H.; Chang, S.J. Tunable terahertz phase shifter based on dielectric artificial birefringence grating filled with polymer dispersed liquid crystal. Opt. Mater. Express 2020, 10, 282–292. [Google Scholar] [CrossRef]
- Zhou, S.H.; Shen, Z.H.; Li, X.A.; Ge, S.J.; Lu, Y.Q.; Hu, W. Liquid crystal integrated metalens with dynamic focusing property. Opt. Lett. 2020, 45, 4324–4327. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.C.; Shen, Z.X.; Wang, Y.Y.; Xu, D.G.; Hu, W. Electrically Tunable Terahertz Focusing Modulator Enabled by Liquid Crystal Integrated Dielectric Metasurface. Crystals 2021, 11, 514. [Google Scholar] [CrossRef]
- Zhao, H.J.; Fan, F.; Zhang, T.R.; Ji, Y.Y.; Chang, S.J. Dynamic terahertz anisotropy and chirality enhancement in liquid-crystal anisotropic dielectric metasurfaces. Photonics Res. 2022, 10, 1097–1106. [Google Scholar] [CrossRef]
- Shen, Z.X.; Zhou, S.H.; Li, X.A.; Ge, S.J.; Chen, P.; Hu, W.; Lu, Y.Q. Liquid crystal integrated metalens with tunable chromatic aberration. Adv. Photonics 2020, 2, 036002. [Google Scholar] [CrossRef]
- Zhao, H.J.; Fan, F.; Ji, Y.Y.; Jiang, S.L.; Tan, Z.Y.; Chang, S.J. Active terahertz beam manipulation with photonic spin conversion based on a liquid crystal Pancharatnam–Berry metadevice. Photonics Res. 2022, 10, 2658–2666. [Google Scholar] [CrossRef]
Freq (THz) | no | ne | Δn | Temp (K) | |
---|---|---|---|---|---|
5CB [28] | 0.3–1.4 | 1.59–1.83 | 1.74–2.04 | 0.13–0.21 | 298 |
E7 [29] | 0.2–2.0 | 1.557–1.581 | 1.690–1.704 | 0.130–0.148 | 299 |
1825 [30] | 1.5 | 1.574 | 1.951 | 0.377 | Room temperature |
BL037 [34] | 0.2–2.0 | 1.58–1.64 | 1.78–1.80 | 0.17–0.20 | 294 |
RDP-97304 [34] | 0.2–2.0 | 1.55–1.61 | 1.77–1.79 | 0.18–0.22 | 294 |
NJU-LDn-4 [32] | 0.4–1.6 | 1.5–1.51 | 1.80–1.82 | ~0.31 | Room temperature |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Wang, H.; Wang, Q.; Ge, S.; Hu, W. Liquid Crystal-Tuned Planar Optics in Terahertz Range. Appl. Sci. 2023, 13, 1428. https://doi.org/10.3390/app13031428
Yu H, Wang H, Wang Q, Ge S, Hu W. Liquid Crystal-Tuned Planar Optics in Terahertz Range. Applied Sciences. 2023; 13(3):1428. https://doi.org/10.3390/app13031428
Chicago/Turabian StyleYu, Hongguan, Huacai Wang, Qiguang Wang, Shijun Ge, and Wei Hu. 2023. "Liquid Crystal-Tuned Planar Optics in Terahertz Range" Applied Sciences 13, no. 3: 1428. https://doi.org/10.3390/app13031428
APA StyleYu, H., Wang, H., Wang, Q., Ge, S., & Hu, W. (2023). Liquid Crystal-Tuned Planar Optics in Terahertz Range. Applied Sciences, 13(3), 1428. https://doi.org/10.3390/app13031428