Prediction of Carlson Trophic State Index of Small Inland Water from UAV-Based Multispectral Image Modeling
Abstract
:1. Introduction
2. The Experimental Site
3. Methods
3.1. In Situ Data Collection
3.2. UAV Multispectral Surveys
- : the reflectance of a pixel (x,y) from the spectral image;
- : DN value of a pixel (x,y) from the spectral image;
- : DN value of the CRP from the spectral image.
3.3. Multispectral Regression Modeling for Water Quality
- (1)
- Single-band linear regression: y = a × N + b, where a and b are the regression coefficients, totally five models.
- (2)
- Band-ratio regression: y = a × (N1/N2) + b, where a and b are the regression coefficients, totally 20 models.
- (3)
- Single-band logarithmic regression: Ln(y) = a × Ln(N) + b, where a and b are the regression coefficients, totally five models.
- (4)
- Band-ratio logarithmic regression: Ln(y) = a × Ln(N1/N2) + b, where a and b are the regression coefficients, totally 20 models.
- (5)
- Multi-band linear regression: y = a × N1 + b × N2 + c × N3 + d × N4 + e × N5, where a, b, c, d and e are the regression coefficients, totally 26 models.
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, J.; Wang, J.; Wang, T.; Zhang, T. Urbanization, economic growth, and environmental pollution: Partial differential analysis based on the spatial Durbin model. Manag. Environ. Qual. 2019, 30, 483–494. [Google Scholar] [CrossRef]
- Zhang, K.; Shen, J.; He, R.; Fan, B.; Han, H. Dynamic Analysis of the Coupling Coordination Relationship between Urbanization and Water Resource Security and Its Obstacle Factor. Int. J. Environ. Res. Public Health 2019, 16, 4765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Sun, M.; Yang, R.; Li, X.; Zhang, L.; Li, M. Decoupling water environment pressures from economic growth in the Yangtze River Economic Belt, China. Ecol. Indic. 2021, 122, 107314. [Google Scholar] [CrossRef]
- Patnaik, R. Impact of Industrialization on Environment and Sustainable Solutions—Reflections from a South Indian Region. IOP Conf. Ser. Earth Environ. Sci. 2018, 120, 012016. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, L.; Jiang, W. Coupling coordination and spatiotemporal dynamic evolution between social economy and water environmental quality—A case study from Nansi Lake catchment, China. Ecol. Indic. 2020, 119, 106870. [Google Scholar] [CrossRef]
- Liou, S.-M.; Lo, S.-L.; Wang, S.-H. A Generalized Water Quality Index for Taiwan. Environ. Monit. Assess. 2004, 96, 35–52. [Google Scholar] [CrossRef]
- Lin, C.; Chen, C.; Kao, C.; Hong, A.; Wu, C. Development of the sediment and water quality management strategies for the Salt-water River, Taiwan. Mar. Pollut. Bull. 2011, 63, 528–534. [Google Scholar] [CrossRef]
- Chow, M.F.; Shiah, F.K.; Lai, C.C.; Kuo, H.Y.; Wang, K.W.; Lin, C.H.; Chen, T.Y.; Kobayashi, Y.; Ko, C.Y. Evaluation of surface water quality using multivariate statistical techniques: A case study of Fei-Tsui Reservoir basin, Taiwan. Environ. Earth Sci. 2015, 75, 6. [Google Scholar] [CrossRef]
- Putri, M.S.A.; Lou, C.-H.; Syai’In, M.; Ou, S.-H.; Wang, Y.-C. Long-Term River Water Quality Trends and Pollution Source Apportionment in Taiwan. Water 2018, 10, 1394. [Google Scholar] [CrossRef] [Green Version]
- López-García, M.J.; Caselles, V. Use of Thematic Mapper data to assess water quality in Albufera lagoon of Valencia (Spain). In Proceedings of the 13th Annual Conference of the Remote Sensing Society, Nottingham, UK, 7–11 September 1987; pp. 510–519. [Google Scholar]
- Dona, C.; Sanchez, J.M.; Caselles, V.; Dominguez, J.A.; Camacho, A. Empirical relationships for monitoring water quality of lakes and reservoirs through multispectral images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1632–1641. [Google Scholar] [CrossRef]
- Dekker, A.; Malthus, T.; Seyhan, E. Quantitative modeling of inland water quality for high-resolution MSS systems. IEEE Trans. Geosci. Remote. Sens. 1991, 29, 89–95. [Google Scholar] [CrossRef]
- Cillero Castro, C.; Domínguez Gómez, J.A.; Delgado Martín, J.; Hinojo Sánchez, B.A.; Cereijo Arango, J.L.; Cheda Tuya, F.A.; Díaz-Varela, R. An UAV and Satellite Multispectral Data Approach to Monitor Water Quality in Small Reservoirs. Remote Sens. 2020, 12, 1514. [Google Scholar] [CrossRef]
- Pu, H.; Liu, D.; Qu, J.-H.; Sun, D.-W. Applications of Imaging Spectrometry in Inland Water Quality Monitoring—A Review of Recent Developments. Water Air Soil Pollut. 2017, 228, 131. [Google Scholar] [CrossRef]
- Kwon, Y.S.; Jang, E.; Im, J.; Baek, S.H.; Park, Y.; Cho, K.H. Developing data-driven models for quantifying Cochlodinium polykrikoides using the Geostationary Ocean Color Imager (GOCI). Int. J. Remote Sens. 2017, 39, 68–83. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Z. Daily water quality evaluation of reservoir and cyanobacteria pollution index calculation. Water Supply 2020, 21, 836–847. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Yuan, D.; Song, X. Empirical Estimation of Total Nitrogen and Total Phosphorus Concentration of Urban Water Bodies in China Using High Resolution IKONOS Multispectral Imagery. Water 2015, 7, 6551–6573. [Google Scholar] [CrossRef] [Green Version]
- El Din, E.S.; Zhang, Y. Estimation of both optical and nonoptical surface water quality parameters using Landsat 8 OLI imagery and statistical techniques. J. Appl. Remote Sens. 2017, 11, 046008. [Google Scholar] [CrossRef]
- Du, C.; Wang, Q.; Li, Y.; Lyu, H.; Zhu, L.; Zheng, Z.; Wen, S.; Liu, G.; Guo, Y. Estimation of total phosphorus concentration using a water classification method in inland water. Int. J. Appl. Earth Obs. Geoinf. 2018, 71, 29–42. [Google Scholar] [CrossRef]
- McEliece, R.; Hinz, S.; Guarini, J.-M.; Coston-Guarini, J. Evaluation of Nearshore and Offshore Water Quality Assessment Using UAV Multispectral Imagery. Remote Sens. 2020, 12, 2258. [Google Scholar] [CrossRef]
- Erena, M.; Domínguez, J.A.; Aguado-Giménez, F.; Soria, J.; García-Galiano, S. Monitoring Coastal Lagoon Water Quality through Remote Sensing: The Mar Menor as a Case Study. Water 2019, 11, 1468. [Google Scholar] [CrossRef]
- Wang, F.; Hu, H.; Luo, Y.; Lei, X.; Wu, D.; Jiang, J. Monitoring of Urban Black-Odor Water Using UAV Multispectral Data Based on Extreme Gradient Boosting. Water 2022, 14, 3354. [Google Scholar] [CrossRef]
- Cui, M.; Sun, Y.; Huang, C.; Li, M. Water Turbidity Retrieval Based on UAV Hyperspectral Remote Sensing. Water 2022, 14, 128. [Google Scholar] [CrossRef]
- Xiao, Y.; Guo, Y.; Yin, G.; Zhang, X.; Shi, Y.; Hao, F.; Fu, Y. UAV Multispectral Image-Based Urban River Water Quality Monitoring Using Stacked Ensemble Machine Learning Algorithms—A Case Study of the Zhanghe River, China. Remote Sens. 2022, 14, 3272. [Google Scholar] [CrossRef]
- Masoud, A.A. On the Retrieval of the Water Quality Parameters from Sentinel-3/2 and Landsat-8 OLI in the Nile Delta’s Coastal and Inland Waters. Water 2022, 14, 593. [Google Scholar] [CrossRef]
- Lee, C.-H.; Liu, L.-W.; Wang, Y.-M.; Leu, J.-M.; Chen, C.-L. Drone-Based Bathymetry Modeling for Mountainous Shallow Rivers in Taiwan Using Machine Learning. Remote Sens. 2022, 14, 3343. [Google Scholar] [CrossRef]
- Kezoudi, M.; Keleshis, C.; Antoniou, P.; Biskos, G.; Bronz, M.; Constantinides, C.; Desservettaz, M.; Gao, R.-S.; Girdwood, J.; Harnetiaux, J.; et al. The Unmanned Systems Research Laboratory (USRL): A New Facility for UAV-Based Atmospheric Observations. Atmosphere 2021, 12, 1042. [Google Scholar] [CrossRef]
- Änäkkälä, M.; Lajunen, A.; Hakojärvi, M.; Alakukku, L. Evaluation of the Influence of Field Conditions on Aerial Multispectral Images and Vegetation Indices. Remote Sens. 2022, 14, 4792. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.; Ju, C.; Son, H.I. Unmanned Aerial Vehicles in Agriculture: A Review of Perspective of Platform, Control, and Applications. IEEE Access 2019, 7, 105100–105115. [Google Scholar] [CrossRef]
- Mazzia, V.; Comba, L.; Khaliq, A.; Chiaberge, M.; Gay, P. UAV and Machine Learning Based Refinement of a Satellite-Driven Vegetation Index for Precision Agriculture. Sensors 2020, 20, 2530. [Google Scholar] [CrossRef]
- Cao, Y.; Li, G.L.; Luo, Y.K.; Pan, Q.; Zhang, S.Y. Monitoring of sugar beet growth indicators using wide-dynamic-range veg-etation index (WDRVI) derived from UAV multispectral images. Comput. Electron. Agric. 2020, 171, 105331. [Google Scholar] [CrossRef]
- Zheng, C.; Abd-Elrahman, A.; Whitaker, V.; Dalid, C. Prediction of Strawberry Dry Biomass from UAV Multispectral Imagery Using Multiple Machine Learning Methods. Remote Sens. 2022, 14, 4511. [Google Scholar] [CrossRef]
- Ahmad, A.; Gilani, H.; Ahmad, S. Forest Aboveground Biomass Estimation and Mapping through High-Resolution Optical Satellite Imagery—A Literature Review. Forests 2021, 12, 914. [Google Scholar] [CrossRef]
- Johansen, K.; Morton, M.J.L.; Malbeteau, Y.; Aragon, B.; Al-Mashharawi, S.; Ziliani, M.; Angel, Y.; Fiene, G.; Negrao, S.; Mousa, M.A.A.; et al. Predicting Biomass and Yield at Harvest of Salt-Stressed Tomato Plants Using Uav Imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W13, 407–411. [Google Scholar] [CrossRef] [Green Version]
- Environmental Protection Agency, Executive Yuan, Taiwan, ROC, Water Quality Category. Available online: https://www.epa.gov.tw/niea/32A85B63C9EC18C0 (accessed on 12 December 2022).
- Carlson, R.E. A trophic state index for lakes. Limnol. Oceanogr. 1977, 22, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Kratzer, C.R.; Brezonik, P.L. A Carlson-Type Trophic State Index for Nitrogen in Florida Lakes. J. Am. Water Resour. Assoc. 1981, 17, 713–715. [Google Scholar] [CrossRef]
Sampling Point | Coordinate Position | Sampling Date/Time | Chlorophyll a (μg/L) | Total Phosphorus (μg/L) | Transparency (m) | Dissolved Oxygen (mg/L) |
---|---|---|---|---|---|---|
S1 | 24°08′38″ N 120°41′02″ E | 5/15 AM 10:00 | 69.8 | 94 | 0.47 | 16.7 |
S2 | 24°08′39″ N 120°41′03″ E | 5/15 AM 10:00 | 67.3 | 65 | 0.50 | 21.1 |
S3 | 24°08′38″ N 120°41′05″ E | 5/15 AM 10:00 | 51.4 | 65 | 0.57 | 21.7 |
S4 | 24°08′35″ N 120°41′04″ E | 5/15 AM 10:00 | 58.5 | 78 | 0.60 | 21.0 |
S5 | 24°08′34″ N 120°41′04″ E | 5/15 AM 10:00 | 61.9 | 65 | 0.61 | 20.6 |
S6 | 24°08′35″ N 120°41′01″ E | 5/15 AM 10:00 | 55.4 | 65 | 0.58 | 18.8 |
S1′ | 24°08′38″ N 120°41′02″ E | 6/14 AM 11:00 | 116 | 94 | 0.40 | 9.0 |
S2′ | 24°08′39″ N 120°41′03″ E | 6/14 AM 11:00 | 103 | 97 | 0.47 | 9.6 |
S3′ | 24°08′38″ N 120°41′05″ E | 6/14 AM 11:00 | 91.8 | 126 | 0.41 | 9.2 |
S4′ | 24°08′35″ N 120°41′04″ E | 6/14 AM 11:00 | 88.1 | 113 | 0.36 | 8.8 |
S5′ | 24°08′34″ N 120°41′04″ E | 6/14 AM 11:00 | 73.2 | 104 | 0.42 | 9.2 |
S6′ | 24°08′35″ N 120°41′01″ E | 6/14 AM 11:00 | 107 | 96 | 0.45 | 9.7 |
S1″ | 24°08′38″ N 120°41′02″ E | 6/19 AM 10:30 | 56 | 65 | 0.60 | 19.4 |
S2″ | 24°08′39″ N 120°41′03″ E | 6/19 AM 10:30 | 50.1 | 58 | 0.56 | 19.2 |
S3″ | 24°08′38″ N 120°41′05″ E | 6/19 AM 10:30 | 64.7 | 65 | 0.71 | 17.0 |
S4″ | 24°08′35″ N 120°41′04″ E | 6/19 AM 10:30 | 70.2 | 53 | 0.68 | 16.2 |
S5″ | 24°08′34″ N 120°41′04″ E | 6/19 AM 10:30 | 49.7 | 58 | 0.55 | 17.2 |
S6″ | 24°08′35″ N 120°41′01″ E | 6/19 AM 10:30 | 53.5 | 63 | 0.48 | 16.0 |
Water Quality Parameter, (y) | Coefficient of Determination (R2) | Optimal Multispectral Regression Model |
---|---|---|
Chlorophyll a | 0.8154 | |
Total phosphorus | 0.8086 | |
Transparency | 0.9406 | ( |
Dissolved oxygen | 0.7339 |
Validation Point | CTSI Calculated by the Regression Model | CTSI Calculated from the SGS Data | CTSI Error (%) |
---|---|---|---|
1 | 74.17 | 73.37 | 1.1 |
2 | 71.92 | 72.35 | 0.6 |
3 | 72.09 | 72.11 | 0.02 |
4 | 67.34 | 67.26 | 0.1 |
5 | 67.17 | 66.68 | 0.7 |
6 | 65.46 | 66.42 | 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-Y.; Tsai, M.-S.; Tsai, J.T.H.; Lu, C.-C. Prediction of Carlson Trophic State Index of Small Inland Water from UAV-Based Multispectral Image Modeling. Appl. Sci. 2023, 13, 451. https://doi.org/10.3390/app13010451
Lin C-Y, Tsai M-S, Tsai JTH, Lu C-C. Prediction of Carlson Trophic State Index of Small Inland Water from UAV-Based Multispectral Image Modeling. Applied Sciences. 2023; 13(1):451. https://doi.org/10.3390/app13010451
Chicago/Turabian StyleLin, Cheng-Yun, Ming-Shiun Tsai, Jeff T. H. Tsai, and Chih-Cheng Lu. 2023. "Prediction of Carlson Trophic State Index of Small Inland Water from UAV-Based Multispectral Image Modeling" Applied Sciences 13, no. 1: 451. https://doi.org/10.3390/app13010451
APA StyleLin, C. -Y., Tsai, M. -S., Tsai, J. T. H., & Lu, C. -C. (2023). Prediction of Carlson Trophic State Index of Small Inland Water from UAV-Based Multispectral Image Modeling. Applied Sciences, 13(1), 451. https://doi.org/10.3390/app13010451