Numerical Study of a Miniaturized, 1–3 Piezoelectric Composite Focused Ultrasound Transducer
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. 1–3 Piezoelectric Composite Design
2.2. Finite Element Analysis for Transducer Design
2.3. Design of Arrayed FUS Transducer
3. Results
3.1. Simulation Results for Acoustic Pressure
3.2. Simulation Results for Electric Impedance
3.3. Simulation of Confocal, Linear Array, Transducer
3.4. Simulation of Confocal Transducer
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ter Haar, G. HIFU Tissue Ablation: Concept and Devices. In Therapeutic Ultrasound; Escoffre, J.M., Bouakaz, A., Eds.; Springer: Plan-les-Ouates, Switzerland, 2016; Volume 880, pp. 3–20. [Google Scholar]
- Mason, T.J. Therapeutic ultrasound an overview. Ultrason. Sonochem. 2011, 18, 847–852. [Google Scholar] [CrossRef] [PubMed]
- Ter Haar, G.; Coussios, C. High intensity focused ultrasound: Physical principles and devices. Int. J. Hyperth. 2007, 23, 89–104. [Google Scholar] [CrossRef] [PubMed]
- Izadifar, Z.; Izadifar, Z.; Chapman, D.; Babyn, P. An introduction to high intensity focused ultrasound: Systematic review on principles, devices, and clinical applications. J. Clin. Med. 2020, 9, 460. [Google Scholar] [CrossRef] [Green Version]
- Al-Bataineh, O.; Jenne, J.; Huber, P. Clinical and future applications of high intensity focused ultrasound in cancer. Cancer Treat. Rev. 2012, 38, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Macoskey, J.J.; Ives, K.; Owens, G.E.; Gurm, H.S.; Shi, J.; Pizzuto, M.; Cain, C.A.; Xu, Z. Non-invasive thrombolysis using microtripsy in a porcine deep vein thrombosis model. Ultrasound Med. Biol. 2017, 43, 1378–1390. [Google Scholar] [CrossRef] [PubMed]
- Klingler, H.C.; Susani, M.; Seip, R.; Mauermann, J.; Sanghvi, N.; Marberger, M.J. A novel approach to energy ablative therapy of small renal tumours: Laparoscopic high-intensity focused ultrasound. Eur. Urol. 2008, 53, 810–818. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Xu, G.L.; Gu, M.F.; Luo, G.Y.; Rong, Z.; Wu, P.H.; Xia, J.C. Complications of high intensity focused ultrasound in patients with recurrent and metastatic abdominal tumors. World. J. Gastroenterol. 2007, 13, 2747. [Google Scholar] [CrossRef] [Green Version]
- Merckel, L.G.; Knuttel, F.M.; Deckers, R.; van Dalen, T.; Schubert, G.; Peters, N.H.; Weits, T.; van Diest, P.J.; Mali, W.P.; Vaessen, P.H.; et al. First clinical experience with a dedicated MRI-guided high-intensity focused ultrasound system for breast cancer ablation. Eur. Radiol. 2016, 26, 4037–4046. [Google Scholar] [CrossRef] [Green Version]
- Azhari, H. Feasibility study of ultrasonic computed tomography–guided high-intensity focused ultrasound. Ultrasound. Med. Biol. 2012, 38, 619–625. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.; Wu, H.; Zhang, B.; Dayton, P.A.; Jiang, X. A multi-pillar piezoelectric stack transducer for nanodroplet mediated intravascular sonothrombolysis. Ultrasonics 2021, 116, 106520. [Google Scholar] [CrossRef]
- Lafon, C.; Melodelima, D.; Salomir, R.; Chapelon, J.Y. Interstitial devices for minimally invasive thermal ablation by high-intensity ultrasound. Int. J. Hyperth. 2007, 23, 153–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Wu, H.; Goel, L.; Kim, H.; Peng, C.; Kim, J.; Dayton, P.A.; Gao, Y.; Jiang, X. Magneto-sonothrombolysis with combination of magnetic microbubbles and nanodroplets. Ultrasonics 2021, 116, 106487. [Google Scholar] [CrossRef]
- Kim, H.; Wu, H.; Cho, N.; Zhong, P.; Mahmood, K.; Lyerly, H.K.; Jiang, X. Miniaturized intracavitary forward-looking ultrasound transducer for tissue ablation. IEEE Trans. Biomed. Eng. 2019, 67, 2084–2093. [Google Scholar] [CrossRef]
- Canney, M.S.; Chavrier, F.; Tsysar, S.; Chapelon, J.Y.; Lafon, C.; Carpentier, A. A multi-element interstitial ultrasound applicator for the thermal therapy of brain tumors. J. Acoust. Soc. Am. 2013, 134, 1647–1655. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Wu, H.; Chen, M.; Dai, X.; Zhou, R.; Jiang, X. Intravascular sono-ablation for in-stent restenosis relief: Transducer development and the in-vitro demonstration. IEEE Trans. Biomed. Eng. 2023; submitted. [Google Scholar]
- Vazquez Carazo, A. Piezoelectric transformers: An historical review. Actuators 2016, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Refahati, N.; Jearsiripongkul, T.; Thongchom, C.; Saffari, P.R.; Saffari, P.R.; Keawsawasvong, S. Sound transmission loss of double-walled sandwich cross-ply layered magneto-electro-elastic plates under thermal environment. Sci. Rep. 2022, 12, 16621. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Yuan, F.G. Adaptive signal decomposition and dispersion removal based on the matching pursuit algorithm using dispersion-based dictionary for enhancing damage imaging. Ultrasonics 2020, 103, 106087. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, Y.; Karaki, T.; Lee, H.Y.; Wan, H.; Kim, H.P.; Jiang, X. A Review of Lead Perovskite Piezoelectric Single Crystals and Their Medical Transducers Application. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 3048–3056. [Google Scholar] [CrossRef]
- Zhang, S.; Li, F.; Yu, F.; Jiang, X.; Lee, H.Y.; Luo, J.; Shrout, T.R. Recent developments in piezoelectric crystals. J. Korean Ceram. Soc. 2018, 55, 419–439. [Google Scholar] [CrossRef] [Green Version]
- Lerch, R. Simulation of piezoelectric devices by two-and three-dimensional finite elements. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1990, 37, 233–247. [Google Scholar] [CrossRef]
- Smith, W.A.; Auld, B.A. Modeling 1–3 composite piezoelectrics: Thickness-mode oscillations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1991, 38, 40–47. [Google Scholar] [CrossRef]
- Sun, R.; Wang, L.; Zhang, Y.; Zhong, C. Characterization of 1–3 piezoelectric composite with a 3-tier polymer structure. Materials 2020, 13, 397. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Zhang, T.; Ou-Yang, J.; Yang, X.; Wu, D.; Zhu, B. PIN-PMN-PT single crystal 1–3 composite-based 20 MHz ultrasound phased array. Micromachines 2020, 11, 524. [Google Scholar] [CrossRef]
- Cheng, X.; Xu, D.; Lu, L.; Huang, S.; Jiang, M. Performance investigation of 1–3 piezoelectric ceramic–cement composite. Mater. Chem. Phys. 2010, 121, 63–69. [Google Scholar] [CrossRef]
- Kim, H.; Kim, T.; Morrow, D.; Jiang, X. Stress measurement of a pressurized vessel using ultrasonic subsurface longitudinal wave with 1–3 composite transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2019, 67, 158–166. [Google Scholar] [CrossRef]
- Kim, J.; Li, S.; Kasoji, S.; Dayton, P.A.; Jiang, X. Phantom evaluation of stacked-type dual-frequency 1–3 composite transducers: A feasibility study on intracavitary acoustic angiography. Ultrasonics 2015, 63, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Kim, J.; Jiang, X. Transit time difference flowmeter for intravenous flow rate measurement using 1–3 piezoelectric composite transducers. IEEE Sens. J. 2017, 17, 5741–5748. [Google Scholar] [CrossRef]
- Li, S.; Tian, J.; Jiang, X. A micromachined Pb (Mg1/3Nb2/3) O3-PbTiO3 single crystal composite circular array for intravascular ultrasound imaging. J. Eng. Sci. Med. Diagn. Ther. 2019, 2, 021001. [Google Scholar] [CrossRef]
- Ma, J.; Guo, S.; Wu, D.; Geng, X.; Jiang, X. Design, fabrication, and characterization of a single-aperture 1.5-MHz/3-MHz dual-frequency HIFU transducer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 1519–1529. [Google Scholar] [CrossRef]
- Hossack, J.A.; Hayward, G. Finite-element analysis of 1–3 composite transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1991, 38, 618–629. [Google Scholar] [CrossRef]
- Hayward, G.; Bennett, J. Assessing the influence of pillar aspect ratio on the behavior of 1–3 connectivity composite transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1996, 43, 98–108. [Google Scholar] [CrossRef]
- Hayward, G.; Gachagan, A. An evaluation of 1–3 connectivity composite transducers for air-coupled ultrasonic applications. J. Acoust. Soc. Am. 1996, 99, 2148–2157. [Google Scholar] [CrossRef]
- Kim, J.; Roh, Y. Homogenization of PMN-PT/epoxy 1–3 piezocomposites by resonator measurements and finite element analysis. Sens. Actuator. A Phys. 2014, 206, 97–106. [Google Scholar] [CrossRef]
- Kim, T.; Cui, Z.; Chang, W.Y.; Kim, H.; Zhu, Y.; Jiang, X. Flexible 1–3 composite ultrasound transducers with silver-nanowire-based stretchable electrodes. IEEE Trans. Ind. Electron. 2019, 67, 6955–6962. [Google Scholar] [CrossRef]
- Kim, H. Design, Prototyping, and Validation of Noninvasive Sensors for Nuclear Power Plant Applications. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, May 2020. [Google Scholar]
- Fan, J.; Stoll, W.A.; Lynch, C.S. Nonlinear constitutive behavior of soft and hard PZT: Experiments and modeling. Acta Mater. 1999, 47, 4415–4425. [Google Scholar] [CrossRef]
- Owens, C.A. Ultrasound-enhanced thrombolysis: EKOS EndoWave infusion catheter system. Semin. Interv. Radiol. 2008, 25, 37–41. [Google Scholar] [CrossRef]
Material | Properties | Value | |
---|---|---|---|
PZT-4 | Density | ρ (kg/m3) | 7500 |
Stiffness under free electric field | (×109 Pa) | 139.0 | |
(×109 Pa) | 115.4 | ||
(×109 Pa) | 74.3 | ||
(×109 Pa) | 25.6 | ||
Piezoelectric coefficient | (C/m2) | −5.2 | |
(C/m2) | 15.1 | ||
Dielectric permittivity | 762 | ||
663 | |||
Epoxy | Density | ρ (kg/m3) | 1100 |
Stiffness | (×109 Pa) | 5.3 | |
(×109 Pa) | 3.1 |
Width of Piezoelectric Rods (µm) | Dimension Ratio (Width-to-Thick) | Max. Pressure (MPa) | Array Dimension of the Piezoelectric Rods |
---|---|---|---|
200 µm | 0.625 | 2.97 | 8 by 8 |
100 µm | 0.313 | 6.65 | 16 by 16 |
50 µm | 0.156 | 7.60 | 32 by 32 |
25 µm | 0.078 | 7.73 | 64 by 64 |
Specification | Unit | Value | Specification | Unit | Value |
---|---|---|---|---|---|
Num. of elements | - | 3 by 1 | Acoustic intensity | W/cm2 | 188.2 |
Aperture size | mm2 | 2 × 2 | Acoustic pressure | MPa | 23.6 |
Operation freq. | MHz | 5 MHz | Electric impedance | Ohm | 7.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Jiang, X. Numerical Study of a Miniaturized, 1–3 Piezoelectric Composite Focused Ultrasound Transducer. Appl. Sci. 2023, 13, 615. https://doi.org/10.3390/app13010615
Kim H, Jiang X. Numerical Study of a Miniaturized, 1–3 Piezoelectric Composite Focused Ultrasound Transducer. Applied Sciences. 2023; 13(1):615. https://doi.org/10.3390/app13010615
Chicago/Turabian StyleKim, Howuk, and Xiaoning Jiang. 2023. "Numerical Study of a Miniaturized, 1–3 Piezoelectric Composite Focused Ultrasound Transducer" Applied Sciences 13, no. 1: 615. https://doi.org/10.3390/app13010615
APA StyleKim, H., & Jiang, X. (2023). Numerical Study of a Miniaturized, 1–3 Piezoelectric Composite Focused Ultrasound Transducer. Applied Sciences, 13(1), 615. https://doi.org/10.3390/app13010615