Modelling Driver’s Behaviour While Avoiding Obstacles
Abstract
:1. Introduction
- Models for traffic flow simulation, used, e.g., to analyse the fluidity of traffic on motorways and road networks, including the assessment of the probability of pile-ups, etc.;
- Models for software used in accident reconstruction, to reproduce the behaviour of drivers in emergencies.
- W1, W2, W3—braking model coefficients;
- BRT—braking reaction time (s);
- TTC—time to collision (s);
- ylat—rate of penetration of an obstacle into the vehicle motion area (m);
- yv—lateral position of the centre of the vehicle mass (m);
- b—deceleration (m/s2).
- W4, W5—steering model coefficients;
- SRT—steering reaction time (s);
- δ—steering wheel angle (rad).
2. Description of the Assumption of the Driver Model
- UT(q)—potential field to the target point;
- UO(q)—potential field from the obstacle;
- UBj(q)—potential field from the left and right edge of the roadway.
- L(q)—distance to the target points;
- kT—scaling coefficient of the potential.
- kO—scaling coefficient for the potential repelling from obstacles;
- pO(q)—a distance of the obstacle from point q;
- n—exponent n = 2…4.
- kBL—scaling coefficient for the repelling potential from the left edge of the road;
- kBR—scaling coefficient for the repelling potential from the right edge of the road;
- pBL(q)—a lateral distance of point q from the left edge of the road;
- pBR(q)—a lateral distance of point q from the right edge of the road.
- L′—the distance between the vehicle safety zone and the target point;
- p′O—the distance between the vehicle and obstacle safety zones;
- p′BR, p′BL—the distance between the road edges and the vehicle safety zone.
- deceleration—braking submodel;
- avoiding the obstacle—steering submodel.
2.1. The Braking Submodel
- b(t)—vehicle deceleration;
- U′x—potential towards x-axis;
- U′y—potential towards y-axis;
- w1—model coefficient related with potential towards x-axis;
- w2—model coefficients related to potential towards the y-axis, in particular the change of the lateral position between the safety zones of the obstacle and the vehicle;
- w3—model coefficient, related to the rate of change in potential value towards the y-axis, in particular the rate of approach of the safety zones of the obstacle and the vehicle.
2.2. The Steering Submodel
- δ(t)—vehicle steering wheel angle;
- U′x—potential towards x-axis;
- U′y—potential towards y-axis;
- w4—model coefficient related to the potential towards the y-axis;
- w5—model coefficient related to the rate of change in the lateral position of the obstacle–change of potential towards the y-axis.
3. Simulation Results
- The beginning of the x, y coordinate system is situated on the border of the road and sidewalk;
- The vehicle in its initial position moves in the middle of the right lane—initial position of the vehicle: xv = 0 m, yv = 1.5 m;
- Vehicle dimensions: length—4.1 m, width—1.8 m;
- The initial longitudinal speed of the vehicle is assumed to be VLg = 40 km/h, with the vehicle running parallel to the edge of the roadway, so the lateral speed is assumed to be VLt = 0 km/h;
- The obstacle (pedestrian) speed is assumed as follows: longitudinal VLg = 0 km/h, lateral VLt = 0…3 km/h;
- The obstacle (pedestrian) at the initial moment is in the middle of the sidewalk, at a specified distance from the vehicle xo = 30 m. The width of the sidewalk is 1 m; hence, the initial position yo = −0.5 m;
- The width of the roadway is 6 m, and the width of the lane is 3 m.
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kesting, A.; Treiber, M.; Helbing, D. Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 2010, 368, 4585–4605. [Google Scholar] [CrossRef] [Green Version]
- Ting, P.H.; Hwang, J.R.; Doong, J.L.; Jeng, M.C. Driver fatigue and highway driving: A simulator study. Physiol. Behav. 2008, 94, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Salvucci, D.D. Modeling driver behavior in a cognitive architecture. Hum. Factors 2006, 48, 362–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharp, R.S.; Casanova, D.; Symonds, P.A. Mathematical Model for Driver Steering Control, with Design, Tuning and Performance Results. Veh. Syst. Dyn. 2000, 33, 289–326. [Google Scholar] [CrossRef]
- Ungoren, A.Y.; Peng, H. An adaptive lateral preview driver model. Veh. Syst. Dyn. 2005, 43, 245–259. [Google Scholar] [CrossRef]
- Di Milia, L.; Kecklund, G. The distribution of sleepiness, sleep and work hours during a long distance morning trip: A comparison between night- and non-night workers. Accid. Anal. Prev. 2013, 53, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Vaičiūnas, G.; Steišūnas, S.; Bureika, G. Specification of estimation of a passenger car ride smoothness under various exploitation conditions. Eksploat. I Niezawodn. Maint. Reliab. 2021, 23, 719–725. [Google Scholar] [CrossRef]
- Marshall, S.C.; Molnar, F.; Man-Son-Hing, M.; Blair, R.; Brosseau, L.; Finestone, H.M.; Lucie Lamothe, C.; Korner-Bitensky, N.; Wilson, K.G. Predictors of Driving Ability Following Stroke: A Systematic Review. Top. Stroke Rehabil. 2007, 14, 98–114. [Google Scholar] [CrossRef]
- Jamson, S.L.; Hibberd, D.L.; Jamson, A.H. Drivers’ ability to learn eco-driving skills; effects on fuel efficient and safe driving behaviour. Transp. Res. Part C Emerg. Technol. 2015, 58, 657–668. [Google Scholar] [CrossRef]
- Kilpeläinen, M.; Summala, H. Effects of weather and weather forecasts on driver behaviour. Transp. Res. Part F Traffic Psychol. Behav. 2007, 10, 288–299. [Google Scholar] [CrossRef]
- Dingus, T.A.; Guo, F.; Lee, S.; Antin, J.F.; Perez, M.; Buchanan-King, M.; Hankey, J. Driver crash risk factors and prevalence evaluation using naturalistic driving data. Proc. Natl. Acad. Sci. USA 2006, 113, 2636–2641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padilla, J.L.; Doncel, P.; Gugliotta, A.; Castro, C. Which drivers are at risk? Factors that determine the profile of the reoffender driver. Accid. Anal. Prev. 2018, 119, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Horberry, T.; Anderson, J.; Regan, M.A.; Triggs, T.J.; Brown, J. Driver distraction: The effects of concurrent in-vehicle tasks, road environment complexity and age on driving performance. Accid. Anal. Prev. 2006, 38, 185–191. [Google Scholar] [CrossRef]
- Wang, J.; Lu, M.; Li, K. Characterization of longitudinal driving behavior by measurable parameters. Transp. Res. Rec. 2010, 2185, 15–23. [Google Scholar] [CrossRef]
- Johnson, D.A.; Trivedi, M.M. Driving style recognition using a smartphone as a sensor platform. In Proceedings of the 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), Washington, DC, USA, 5–7 October 2011; pp. 1609–1615. [Google Scholar] [CrossRef] [Green Version]
- Jurecki, R.; Stańczyk, T. Analysis of Vehicle Moving Parameters in Various Road Conditions. Commun.-Sci. Lett. Univ. Zilina 2021, 23, F58–F70. [Google Scholar] [CrossRef]
- Krotac, T.; Simlova, M. The Analysis of the Acceleration of the Vehicle for Assessing the Condition of the Driver. In Proceedings of the Intelligent Vehicles Symposium, Alcalá de Henares, Spain, 3–7 June 2012; pp. 571–576. [Google Scholar] [CrossRef]
- Miyajima, C.; Ukai, H.; Naito, A.; Amata, H.; Kitaoka, N.; Takeda, K. Driver Risk Evaluation based on Acceleration, Deceleration, and Steering Behavior. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Prague, Czech Republic, 22–27 May 2011; pp. 1829–1832. [Google Scholar] [CrossRef]
- Reymond, G.; Kemeny, A.; Droulez, J.; Berthoz, A. Role of lateral acceleration in curve driving: Driver model and experiments on a real vehicle and a driving simulator. Hum. Factors 2001, 43, 483–495. [Google Scholar] [CrossRef]
- Prochowski, L.; Pusty, T.; Gidlewski, M.; Jemioł, L. Experimental studies of the car-trailer system when passing by a suddenly appearing obstacle in the aspect of active safety of autonomous vehicles. IOP Conf. Ser. Mater. Sci. Eng. 2018, 421, 032024. [Google Scholar] [CrossRef]
- Mccall, J.C.; Trivedi, M.M. Driver Behavior and Situation Aware Brake Assistance for Intelligent Vehicles. Proc. IEEE 2007, 95, 374–387. [Google Scholar] [CrossRef]
- Wach, W. Structural reliability of road accidents reconstruction. Forensic. Sci. Int. 2013, 228, 83–93. [Google Scholar] [CrossRef]
- Wach, W.; Unarski, J. Passenger car-semitrailer underride crash at night-a case report. Probl. Forensic Sci. 2018, 114, 175–196. [Google Scholar]
- Af Wåhlberg, A.E. The relation of acceleration force to traffic accident frequency: A pilot study. Transp. Res. Part F Traffic Psychol. Behav. 2000, 3, 29–38. [Google Scholar] [CrossRef]
- Zeng, H.T.; Zhang, H.; Wu, H.J.; Yu, Z. Driver Maneuvers Reconstruction Based on Vehicle Traveling Data Recorder. Appl. Mech. Mater. 2011, 130–134, 295–299. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, S.; Dong, Y. A Novel Model-Based Driving Behavior Recognition System Using Motion Sensors. Sensors 2016, 16, 1746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tokutake, H.; Sugimoto, Y.; Shirakata, T. Real-time identification method of driver model with steering manipulation. Veh. Syst. Dyn. 2013, 51, 109–121. [Google Scholar] [CrossRef]
- Damiani, S.; Deregibus, E.; Andreone, L. Driver-vehicle interfaces and interaction: Where are they going? Eur. Transp. Res. Rev. 2009, 1, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Wicher, J. Zagadnienia Bezpieczeństwa Samochodu; Oficyna Wydawnicza Politechniki Warszawskiej: Warszawa, Poland, 1997. (In Polish) [Google Scholar]
- Menhour, L.; Lechner, D.; Charara, A. Two degrees of freedom PID multi-controllers to design a mathematical driver model: Experimental validation and robustness tests. Veh. Syst. Dyn. 2011, 49, 595–624. [Google Scholar] [CrossRef]
- Pauwelussen, J. Dependencies of driver steering control parameters. Veh. Syst. Dyn. Int. J. Veh. Mech. Mobil. 2012, 50, 939–959. [Google Scholar] [CrossRef]
- Reddy, R.N.; Ellis, J.R. Contribution to the simulation of driver vehicle road system. SAE Trans. 1981, 90, 1886–1910. [Google Scholar]
- Reński, A. Modelowanie Działania Kierowcy w Układzie Kierowca—Pojazd—Otoczenie. Ph.D. Thesis, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, Poland, 2000. (In Polish). [Google Scholar]
- Keen, S.D.; Cole, D.J. Steering control using model predictive control and multiple internal models. In Proceedings of the 8th International Symposium on Advanced Vehicle Control, AVEC’06, Taipei, Taiwan, 20–24 August 2006; AVEC AVEC060095. pp. 599–604. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.464.8563&rep=rep1&type=pdf (accessed on 10 January 2021).
- Cole, D.J.; Pick, A.J.; Odhams, A.M.C. Predictive and Linear Quadratic Methods for Modelling driver Steering Control. Veh. Syst. Dyn. 2006, 44, 259–284. [Google Scholar] [CrossRef]
- Preusse, C. A driver model for online control of virtual cars. In Proceedings of the 2001 IEEE International Conference on Control Applications (CCA’01) (Cat. No.01CH37204), Mexico City, Mexico, 7 September 2001; pp. 1174–1178. [Google Scholar] [CrossRef]
- Schorn, M. Quer-und Längsregelung eines Personenkraftwagens für ein Fahrerassistenzsystem zur Unfallvermeidung. VDI Fortschr. Reihe. VDI Reihe Dusseld. 2007, 12, 651. (In German) [Google Scholar]
- Stählin, U. Eingriffsentscheidung fuer ein Fahrerassistenzsystem zu Unfallvermeidung; VDI Verlag GmbH: Düsseldorf, Germany, 2008; p. XI+140S. (In German) [Google Scholar]
- Stańczyk, T.L. Działania Kierowcy w Sytuacjach Krytycznych. Badania Eksperymentalne i Modelowe (Driver’s Actions in Critical Situations. Experimental and Model Research). Ph.D. Thesis, Kielce University of Technology, Kielce, Poland, 2013. (In Polish). [Google Scholar]
- Donges, E. A two-level model of driver steering behavior. Hum. Factors 1978, 20, 691–707. [Google Scholar] [CrossRef]
- Zomotor, A. Fahrwerktechnik: Fahrverhalten, Vogel Fachbuch; Kraftfahrzeugtechnik: Wurzburg, Germany, 1991. [Google Scholar]
- Yoshimoto, K.I.; Iwatani, K.; Kokubo, T. Automatic driving using image information. JSAE Rev. 1997, 18, 161–163. [Google Scholar] [CrossRef]
- Yoshimoto, K.I.; Ogawa, H.; Kubota, H. Course tracking control algorithm using visual information. Veh. Syst. Dyn. 1997, 28, 385–398. [Google Scholar] [CrossRef]
- Zafeiropoulos, S.; Tsiotras, P. Design of a lane-tracking driver steering assist system and its interaction with a two-point visual driver model. In Proceedings of the 2014 American Control Conference, Portland, OR, USA, 4–6 June 2014; pp. 3911–3917. [Google Scholar] [CrossRef] [Green Version]
- Chu, D.; Deng, Z.; He, Y.; Wu, C.; Sun, C.; Lu, Z. Curve speed model for driver assistance based on driving style classification. IET Intell. Transp. Syst. 2017, 11, 501–510. [Google Scholar] [CrossRef]
- Deng, Z.; Chu, D.; Wu, C.; He, Y.; Cui, J. Curve safe speed model considering driving style based on driver behaviour questionnaire. Transp. Res. Part F Traffic Psychol. Behav. 2019, 65, 536–547. [Google Scholar] [CrossRef]
- Tan, Y.V.; Elliott, M.R.; Flannagan, C.A.C. Development of a real-time prediction model of driver behavior at intersections using kinematic time series data. Accid. Anal. Prev. 2017, 106, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Gazis, D.C.; Herman, R.; Rothery, R.W. Nonlinear Follow-The-Leader Models of Traffic Flow. Oper. Res. 1961, 9, 545–567. [Google Scholar] [CrossRef]
- Pipes, L.A. An Operational Analysis of Traffic Dynamics. J. Appl. Phys. 1953, 24, 271–281. [Google Scholar] [CrossRef]
- Fellendorf, M.; Vortisch, P. Validation of the Microscopic Traffic Flow Model VISSIM in Different Real-World Situations. 2001. Available online: http://www.ptvamerica.com/docs/2001%20TRB%20VISSIM%20Validation.pdf (accessed on 15 July 2021).
- Kitching, K.J.; Cebon, D.; Cole, D.J. An experimental investigation of preview control. Veh. Syst. Dyn. 1999, 32, 459–478. [Google Scholar] [CrossRef]
- De-Las-Heras, G.; Sánchez-Soriano, J.; Puertas, E. Advanced Driver Assistance Systems (ADAS) Based on Machine Learning Techniques for the Detection and Transcription of Variable Message Signs on Roads. Sensors 2021, 21, 5866. [Google Scholar] [CrossRef]
- Kang, J.; Hindiyeh, R.Y.; Moon, S.W.; Gerdes, J.C.; Yi, K. Design and testing of a controller for autonomous vehicle path tracking using GPS/INS sensors. IFAC Proc. Vol. 2008, 41, 2093–2098. [Google Scholar] [CrossRef] [Green Version]
- Seong, H.; Baik, S.; Lee, Y.; Lee, S.; Kim, E. Content Swapping: A New Image Synthesis for Construction Sign Detection in Autonomous Vehicles. Sensors 2022, 22, 3494. [Google Scholar] [CrossRef] [PubMed]
- Guerna, A.; Bitam, S.; Calafate, C.T. Roadside Unit Deployment in Internet of Vehicles Systems: A Survey. Sensors 2022, 22, 3190. [Google Scholar] [CrossRef]
- Kaul, A.; Altaf, I. Vehicular adhoc network-traffic safety management approach: A traffic safety management approach for smart road transportation in vehicular ad hoc networks. Int. J. Commun. Syst. 2022, 35, e5132. [Google Scholar] [CrossRef]
- Lee, K.; Peng, H. Identification and verification of a longitudinal human driving model for collision warning and avoidance systems. Int. J. Veh. Auton. Syst. 2004, 2, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.H.; Peng, H. Development and evaluation of collision warning/collision avoidance algorithms using an errable driver model. Veh. Syst. Dyn. 2010, 48, 525–535. [Google Scholar] [CrossRef]
- Moon, C.; Choi, S.B. A driver model for vehicle lateral dynamics. Int. J. Veh. Des. 2011, 56, 49–80. [Google Scholar] [CrossRef]
- Yu, D.; Lee, H.; Kim, T.; Hwang, S.-H. Vehicle Trajectory Prediction with Lane Stream Attention-Based LSTMs and Road Geometry Linearization. Sensors 2021, 21, 8152. [Google Scholar] [CrossRef]
- Khan, Z.H.; Gulliver, T.A.; Azam, K.; Khattak, K.S. Macroscopic model on driver physiological and psychological behavior at changes in traffic. J. Eng. Appl. Sci. 2019, 38, 1–9. [Google Scholar]
- Yong-Seok, K. Effects of Driver. Vehicle and Environment Characteristics on Collision Warning System Design. LITH-ITN-KTS-EX--01/17—SE. 2001. Available online: http://www.ep.liu.se/exjobb/itn/2001/kts/017/exjobb.pdf (accessed on 10 September 2022).
- Markkula, G.; Benderius, O.; Wolff, K.; Wahde, M. A review of near-collision driver behavior models. Hum. Factors J. Hum. Factors Ergon. Soc. 2012, 54, 1117–1143. [Google Scholar] [CrossRef] [Green Version]
- Jurecki, R.; Stańczyk, T.L. Driver model for the analysis of pre-accident situations. Veh. Syst. Dyn. 2009, 47, 589–612. [Google Scholar] [CrossRef]
- Szumska, E.M.; Grabski, P.T. An analysis of the impact of the driver’s height on their visual field range. In Proceedings of the XI International Science-Technical Conference Automotive Safety, Častá, Slovakia, 18–20 April 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Jurecki, R.; Stańczyk, T.L. Driver reaction time to lateral entering pedestrian in a simulated crash traffic situation. Transp. Res. Part F Traffic Psychol. Behav. 2014, 27, 22–36. [Google Scholar] [CrossRef]
- Jurecki, R.; Stańczyk, T.L. The test methods and the reaction time of drivers. Eksploat. I Niezawodn. Maint. Reliab. 2011, 3, 84–91. [Google Scholar]
- Jurecki, R.; Stańczyk, T.L. Analyzing driver response times for pedestrian intrusions in crash-imminent situations, Automotive Safety. In Proceedings of the 2018 XI International Science-Technical Conference, IEEE Conferences, Častá, Slovakia, 22–24 April 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Stańczyk, T.L.; Jurecki, R. Driver’s reaction time in a complex road situation (braking with driving around an obstacle). Arch. Automot. Eng. 2014, 66, 69–82. [Google Scholar]
- Ge, S.S.; Cui, Y.J. Dynamic motion planning for mobile robots using potential field method. Auton. Robot. 2002, 13, 207–222. [Google Scholar] [CrossRef]
- Khatib, M.; Jaouni, H.; Chatila, R.; Laumond, J.P. Dynamic path modification for car-like nonholonomic mobile robots. In Proceedings of the IEEE International Conference on Robotics and Automation, Albuquerque, NM, USA, 25–25 April 1997. [Google Scholar] [CrossRef]
- Lefebvre, O.; Lamiraux, F.; Pradalier, C.; Fraichard, T. Obstacles avoidance for car-like robots integration and experimentation on two robots. In Proceedings of the IEEE International Conference on Robotics and Automation, Proceedings, New Orleans, LA, USA, 26 April–1 May 2004. [Google Scholar] [CrossRef] [Green Version]
- Sattel, T.; Brandt, T. From robotics to automotive: Lane- keeping and collision avoidance based on elastic bands. Veh. Syst. Dyn. 2008, 46, 597–619. [Google Scholar] [CrossRef]
- Jurecki, R.S. Badania i Modelowanie Reakcji Kierowców w Sytuacjach Zagrożenia Wypadkowego. Ph.D. Thesis, Kielce Univeristy of Technology, Kielce, Poland, 2016. (In Polish). [Google Scholar]
- Jang-Ho, C.; Dong-Sung, P.; Myo-Taeg, L.; Tae-Koo, K. A Real-Time Obstacle Avoidance Method for Autonomous Vehicles Using an Obstacle-Dependent Gaussian Potential Field. J. Adv. Transp. 2018, 2018, 5041401. [Google Scholar] [CrossRef]
- Gianibelli, A.; Carlucho, I.; De Paula, M.; Acosta, G.G. An obstacle avoidance system for mobile robotics based on the virtual force field method. In Proceedings of the IEEE Biennial Congress of Argentina (ARGENCON), San Miguel de Tucuman, Argentina, 6–8 June 2018; pp. 1–8. [Google Scholar]
- De Oliveira Andrade, K.; Hernandes, A.C.; Becker, M. A Rule-Based Controller Simulation For An Autonomous Parallel Parking Of A Car-Like Robot Using Laser Sensors. In Proceedings of the COBEM 2011 21th International Congress of Mechanical Engineering, Natal, Brazil, 24–28 October 2011. [Google Scholar]
- Ramadhan, B.; Yamin, M. Penghindaran Jalur Rintangan untuk Kendaraan Pick up Autonomous Berdasarkan Artificial Potential Field Algorithm. Briliant J. Riset Konseptual 2021, 6, 195–204. [Google Scholar] [CrossRef]
- Orozco-Rosas, U.; Montiel, O.; Sepúlveda, R. Mobile robot path planning using membrane evolutionary artificial potential field. Appl. Soft Comput. 2019, 77, 236–251. [Google Scholar] [CrossRef]
- Lazarowska, A. Discrete artificial potential field approach to mobile robot path planning. IFAC-PapersOnLine 2019, 52, 277–282. [Google Scholar] [CrossRef]
- Wang, P.; Gao, S.; Li, L.; Sun, B.; Cheng, S. Obstacle avoidance path planning design for autonomous driving vehicles based on an improved artificial potential field algorithm. Energies 2019, 12, 2342. [Google Scholar] [CrossRef] [Green Version]
- Gipps, P.G. A behavioural car-following model for computer simulation. Transp. Res. Part B Methodol. 1981, 15, 105–111. [Google Scholar] [CrossRef]
- Capaldo, F.S.; Guzzo, F.; Nasti, G. Some analysis on visibility from driver seat. Transp. Res. Procedia 2020, 45, 87–94. [Google Scholar] [CrossRef]
- Jurecki, R.S. An analysis of collision avoidance manoeuvres in emergency traffic situations. Arch. Automot. Eng. 2016, 72, 73–93. [Google Scholar] [CrossRef]
- Noto, N.; Okuda, H.; Tazaki, Y.; Suzuki, T. Steering assisting system for obstacle avoidance based on personalized potential field. In Proceedings of the 2012 15th International IEEE Conference on Intelligent Transportation Systems, Anchorage, AK, USA, 16–19 September 2012; pp. 1702–1707. [Google Scholar] [CrossRef]
- Wahid, N.; Zamzuri, H.; Rahman, M.A.; Kuroda, S.; Raksincharoensak, P. Study on potential field based motion planning and control for automated vehicle collision avoidance systems. In Proceedings of the 2017 IEEE International Conference on Mechatronics (ICM), Churchill, Australia, 13–15 February 2017; pp. 208–213. [Google Scholar] [CrossRef]
- Akagi, Y.; Raksincharoensak, P. Stochastic driver speed control behavior modeling in urban intersections using risk potential-based motion planning framework. In Proceedings of the 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, Republic of Korea, 28 June–1 July 2015; pp. 368–373. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
W1 | 0.0001 |
W2 | 0.00001 |
W3 | 0.0005 |
W4 | 0.002 |
W5 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurecki, R.S.; Stańczyk, T.L. Modelling Driver’s Behaviour While Avoiding Obstacles. Appl. Sci. 2023, 13, 616. https://doi.org/10.3390/app13010616
Jurecki RS, Stańczyk TL. Modelling Driver’s Behaviour While Avoiding Obstacles. Applied Sciences. 2023; 13(1):616. https://doi.org/10.3390/app13010616
Chicago/Turabian StyleJurecki, Rafał S., and Tomasz L. Stańczyk. 2023. "Modelling Driver’s Behaviour While Avoiding Obstacles" Applied Sciences 13, no. 1: 616. https://doi.org/10.3390/app13010616
APA StyleJurecki, R. S., & Stańczyk, T. L. (2023). Modelling Driver’s Behaviour While Avoiding Obstacles. Applied Sciences, 13(1), 616. https://doi.org/10.3390/app13010616