Calculation and Characterization of Air Void in Mortar of the Hot Mix Asphalt (HMA) Based on CT Scanning and Image Analysis Methods
Abstract
:Featured Application
Abstract
1. Introduction
2. Objective
3. Materials Preparation
3.1. Commonly Used Mixture Designs
3.2. Mortar Design
4. CT Scan and Image Processing
4.1. CT Scan Test
4.2. Image Processing
5. Void Analysis and Mortar Void Percent
5.1. 2D Void Analysis
5.2. 3D Void Analysis
6. Mortar Air Void Content Calculation Equation
7. Equation Calculation Results and Analysis
7.1. Mortar Air Void Content Results
7.2. Results of the Sensitivity Analysis
8. Conclusions
- Three commonly used asphalt mixture samples were scanned using industrial CT and the air void distribution and void passing rate of the samples were calculated. A new method for calculating a mortar’s designed air void content was created and used.
- The mixture that had a small NMPS had a larger void percent, larger air void content and lower coarse aggregate percent for the mortar with a certain NMPS; for same gradation type, the mortar with the larger NMPS had a larger void percent and more air void content. The CT scanned air void content matched the tested air void content for the mixture samples.
- The asphalt aggregate ratio had a lower impact on the mortar air void content, while the mixture air void content greatly affected the mortar air void content. The mortar with a 2.36 mm NMPS had an air void content that was closest to the mixture air void content; the mortar with an NMPS less than 2.36 mm had a lower air void content than that of the corresponding mixture; the mortar with a 4.75 mm NMPS had larger one than that of the corresponding mixture.
- Both the mixture air void content and the asphalt aggregate ratio had a good linear correlation with the mortar air void of any NMPS.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, R.; Leng, Z.; Yang, J.; Lu, G.; Huang, M.; Lan, J.; Zhang, H.; Bai, Y.; Dong, Z. Innovative Application of Waste Polyethylene Terephthalate (PET) Derived Additive as an Antistripping Agent for Asphalt Mixture: Experimental Investigation and Molecular Dynamics Simulation. Fuel 2021, 300, 121015. [Google Scholar] [CrossRef]
- Khan, Z.H.; Tarefder, R.A.; Faisal, H.M. Multiscale Modeling of Asphalt Concrete and Validation through Instrumented Pavement Section. In Transportation Research Record; SAGE Publications Ltd: Thousand Oaks, CA, USA, 2021; Volume 2675, pp. 117–136. [Google Scholar]
- Ding, Q.; Sun, Z.; Shen, F.; Huang, S. The Performance Analysis of Semi-Flexible Pavement by the Volume Parameter of Matrix Asphalt Mixture. Adv. Mat. Res. 2011, 168–170, 351–356. [Google Scholar] [CrossRef]
- Kassem-Eyad, E.; Lytton, M.-R.; Chowdhury, A. Influence of Air Voids on Mechanical Properties of Asphalt Mixtures. Road Mater. Pavement Des. 2011, 12, 493–524. [Google Scholar] [CrossRef]
- Gao, Y.; Cao, R. Research on the Design of AR-AC13S Mixtures. J. Test Eval. 2012, 40, 158. [Google Scholar] [CrossRef]
- Zeiada, W.A.; Kaloush, K.E.; Underwood, B.S.; Mamlouk, M.E. Improved Method of Considering Air Void and Asphalt Content Changes on Long-Term Performance of Asphalt Concrete Pavements. Int. J. Pavement Eng. 2014, 15, 718–730. [Google Scholar] [CrossRef]
- Aliha, M.R.M.; Amirdehi, H.R.F. Fracture Toughness Prediction Using Weibull Statistical Method for Asphalt Mixtures Containing Different Air Void Contents. Fatigue Fract. Eng. Mater. Struct. 2017, 40, 55–68. [Google Scholar] [CrossRef]
- Yaylaci, M. The Investigation Crack Problem through Numerical Analysis. Struct. Eng. Mech. 2016, 57, 1143–1156. [Google Scholar] [CrossRef]
- Yaylaci, M. Simulate of Edge and an Internal Crack Problem and Estimation of Stress Intensity Factor through Finite Element Method. Adv. Nano Res. 2022, 12, 405–414. [Google Scholar]
- Ma, X.; Zhou, P.; Jiang, J.; Hu, X. High-Temperature Failure of Porous Asphalt Mixture under Wheel Loading Based on 2D Air Void Structure Analysis. Constr. Build. Mater. 2020, 252, 119051. [Google Scholar] [CrossRef]
- Hu, J.; Liu, P.; Wang, D.; Oeser, M.; Tan, Y. Investigation on Fatigue Damage of Asphalt Mixture with Different Air-Voids Using Microstructural Analysis. Constr. Build. Mater. 2016, 125, 936–945. [Google Scholar] [CrossRef]
- Guo, R.; Nian, T.; Zhou, F. Analysis of Factors That Influence Anti-Rutting Performance of Asphalt Pavement. Constr. Build. Mater. 2020, 254, 119237. [Google Scholar] [CrossRef]
- Omairey, E.L.; Zhang, Y.; Soenen, H.; Carbonneau, X. Parametric Analysis and Field Validations of Oxidative Ageing in Asphalt Pavements Using Multiphysics Modelling Approaches. Int. J. Pavement Eng. 2022, 20, 1–24. [Google Scholar] [CrossRef]
- Jiang, J.; Leng, Z.; Yang, B.; Lu, G.; Tan, Z.; Han, M.; Dong, Z. Penetration Mechanism of the Emulsion-Based Rejuvenator in Damaged Porous Asphalt Mixture: Microstructure Characterization and 3D Reconstruction. Mater. Des. 2022, 221, 111014. [Google Scholar] [CrossRef]
- Wu, S.; Zhao, Z.; Xiao, Y.; Yi, M.; Chen, Z.; Li, M. Evaluation of Mechanical Properties and Aging Index of 10-Year Field Aged Asphalt Materials. Constr. Build. Mater. 2017, 155, 1158–1167. [Google Scholar] [CrossRef]
- Khodadadi, M.; Khodaii, A.; Absi, J.; Tehrani, F.F.; Hajikarimi, P. Numerical and Analytical Length Scale Investigation on Viscoelastic Behavior of Bituminous Composites: Focusing on Mortar Scale. Constr. Build. Mater. 2022, 350, 128775. [Google Scholar] [CrossRef]
- Ding, J.; Jiang, J.; Han, Y.; Ni, F.; Ma, X.; Li, Q. Rheology, Chemical Composition, and Microstructure of the Asphalt Binder in Fine Aggregate Matrix after Different Long-Term Laboratory Aging Procedures. J. Mater. Civ. Eng. 2022, 34, 04022014. [Google Scholar] [CrossRef]
- Zhao, Z.; Jiang, J.; Ni, F.; Ma, X. 3D-Reconstruction and Characterization of the Pore Microstructure within the Asphalt FAM Using the X-Ray Micro-Computed Tomography. Constr. Build. Mater. 2021, 272, 121764. [Google Scholar] [CrossRef]
- Underwood, B.S.; Kim, Y.R. Effect of Volumetric Factors on the Mechanical Behavior of Asphalt Fine Aggregate Matrix and the Relationship to Asphalt Mixture Properties. Constr Build. Mater. 2013, 49, 672–681. [Google Scholar] [CrossRef]
- Underwood, B.S.; Kim, Y.R. Microstructural Investigation of Asphalt Concrete for Performing Multiscale Experimental Studies. Int. J. Pavement Eng. 2013, 14, 498–516. [Google Scholar] [CrossRef]
- Gardete, D.; Picado-Santos, L.; Capitão, S.; Luzia, R. Asphalt Mix Design: Discussion on the Bulk Specific Gravity Procedure Influence on the Results Obtained from Empirical, Volumetric, and Performance-Based Methods. Constr. Build. Mater. 2022, 342, 127870. [Google Scholar] [CrossRef]
- Du, Z.; Yuan, J.; Zhou, Q.; Hettiarachchi, C.; Xiao, F. Laboratory Application of Imaging Technology on Pavement Material Analysis in Multiple Scales: A Review. Constr. Build. Mater. 2021, 304, 124619. [Google Scholar] [CrossRef]
- Braz, D.; Lopes, R.T.; da Motta, L.M.G. Computed Tomography: An Evaluation of the Effect of Adding Polymer SBS to Asphaltic Mixtures Used in Paving. Appl. Radiat. Isot. 2000, 53, 725–729. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, Y.; Wang, S.; Liu, Q.; Yu, B.; Wang, Q. Use of X-Ray Computed Tomography to Evaluate the Gradual Behaviour of Air Voids in Asphalt Mixtures during Permanent Deformation. Int. J. Pavement Eng. 2022, 21, 1–19. [Google Scholar] [CrossRef]
- Hu, J.; Qian, Z.; Wang, D.; Oeser, M. Influence of Aggregate Particles on Mastic and Air-Voids in Asphalt Concrete. Constr. Build. Mater. 2015, 93, 1–9. [Google Scholar] [CrossRef]
- Brahmajaree, N.; Kanitpong, K.; Sawangsuriya, A. Investigation on Internal Structural Properties of Asphalt Mixtures Subjected to Loading Using Image Analysis. Int. J. Pavement Eng. 2020, 23, 107–120. [Google Scholar] [CrossRef]
- Xue, J.; Jiang, Y.; Zheng, Y.; Xiong, S. Optimization Design and Verification of SMA-13 Mixture Gradation Using Mortar Theory. Constr. Build. Mater. 2022, 335, 127478. [Google Scholar] [CrossRef]
- Ministry of Transport of the People’s Republic of China. Technical Specification for Construction of Highway Asphalt Pavement JTG F40-2004; China Communications Press: Beijing, China, 2001; pp. 12–14.
- Gao, L.; Ni, F.; Luo, H.; Charmot, S. Characterization of Air Voids in Cold In-Place Recycling Mixtures Using X-Ray Computed Tomography. Constr. Build. Mater. 2015, 84, 429–436. [Google Scholar] [CrossRef]
- Otsu, N. Threshold Selection method from gray-level histograms. IEEE Trans Syst. Man. Cybern. 1979, SMC–9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Zhang, X.N.; Li, Z.; Chen, Z.Q. Research on the Homogeneity of Asphalt Pavement Quality Using X-Ray Computed Tomography (CT) and Fractal Theory. Constr. Build. Mater. 2014, 68, 587–598. [Google Scholar] [CrossRef]
- Wu, W.; Li, Z.; Zhang, X.; Li, M. Evaluating RLWT Rutting Test of Asphalt Mixtures Based on Industrial Computerized Tomography. Adv. Mater. Sci. Eng. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wollny, I.; Hartung, F.; Kaliske, M.; Liu, P.; Oeser, M.; Wang, D.; Falla, G.C.; Leischner, S.; Wellner, F. Coupling of Microstructural and Macrostructural Computational Approaches for Asphalt Pavements under Rolling Tire Load. Comput.-Aided Civ. Infrastruct. Eng. 2020, 35, 1178–1193. [Google Scholar] [CrossRef]
- Du, C.; Liu, P.; Liu, Q.; Leischner, S.; Sun, Y.; Chen, J.; Oeser, M. Development of Locally Homogeneous Finite Element Model for Simulating the Mesoscale Structure of Asphalt Mixture. Comput. Struct. 2021, 248, 106517. [Google Scholar] [CrossRef]
Passing Rate % | 31 | 26.5 | 19 | 16 | 13 | 9 | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SBS PG76-22 AC-13 5% asphalt aggregate ratio 4% air void content | |||||||||||||
Gradation | 100 | 100 | 100 | 100 | 94.9 | 67.0 | 38.4 | 33.1 | 26.0 | 17.0 | 12.0 | 9.3 | 5.9 |
SBS PG76-22 AC-20 4.5% asphalt aggregate ratio 4.5% air void content | |||||||||||||
Gradation | 100 | 100 | 97.1 | 87.0 | 76.0 | 59.6 | 43.8 | 27.7 | 21.6 | 14.3 | 8.8 | 7.1 | 5.7 |
AH 70# AC-25 4.2% asphalt aggregate ratio 5% air void content | |||||||||||||
Gradation | 100 | 100 | 96.1 | 83.2 | 73.1 | 60.2 | 41.1 | 29.6 | 23.3 | 15.6 | 9.9 | 8.1 | 6.6 |
Mortar Type | Passing Rate (%) | Asphalt Aggregate Ratio (%) | ||||||
---|---|---|---|---|---|---|---|---|
Sieve Size (mm) | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 | |
AC-13 | ||||||||
0.6 Mortar | 100.0 | 70.5 | 54.6 | 34.6 | 20.16 | |||
1.18 Mortar | 100.0 | 65.3 | 46.0 | 35.7 | 22.6 | 14.85 | ||
2.36 Mortar | 100.0 | 78.6 | 51.3 | 36.2 | 28.0 | 17.8 | 12.82 | |
4.75 Mortar | 100.0 | 86.2 | 67.7 | 44.2 | 31.2 | 24.2 | 15.3 | 11.69 |
AC-20 | ||||||||
0.6 Mortar | 100.0 | 61.6 | 50.0 | 40.2 | 21.39 | |||
1.18 Mortar | 100.0 | 66.0 | 40.6 | 33.0 | 26.6 | 15.87 | ||
2.36 Mortar | 100.0 | 78.0 | 51.5 | 31.7 | 25.7 | 20.7 | 13.57 | |
4.75 Mortar | 100.0 | 63.3 | 49.4 | 32.6 | 20.1 | 16.3 | 13.1 | 9.06 |
AC-25 | ||||||||
0.6 Mortar | 100.0 | 63.3 | 52.1 | 42.3 | 18.72 | |||
1.18 Mortar | 100.0 | 67.0 | 42.4 | 34.9 | 28.4 | 14.04 | ||
2.36 Mortar | 100.0 | 78.5 | 52.6 | 33.3 | 27.4 | 22.3 | 12.02 | |
4.75 Mortar | 100.0 | 72.1 | 56.6 | 37.9 | 24.0 | 19.8 | 16.0 | 9.12 |
Mixture Type | Void Passing Rate (%) | |||||
---|---|---|---|---|---|---|
1 mm | 2 mm | 3 mm | 4 mm | 5 mm | 6 mm | |
AC-13 | 13.2 | 38.6 | 63.4 | 81.4 | 91.8 | 96.9 |
AC-20 | 10.8 | 32.1 | 54.8 | 73.2 | 85.8 | 93.2 |
AC-25 | 10.9 | 28.5 | 46.6 | 62.4 | 74.9 | 84.0 |
Mixture Type | Air Void Content | |||
---|---|---|---|---|
Designed (%) | Tested (%) | Scanned (%) | Deviation (%) | |
AC-13 | 4 | 4.1 | 4.2 | 0.1 |
AC-20 | 4.2 | 4.2 | 4.1 | −0.1 |
AC-25 | 4.5 | 4.4 | 4.6 | 0.2 |
Mixture Type | Air Void | Mortar (without Voids) | Coarse Aggregate | |||
---|---|---|---|---|---|---|
Voxel | Volume (mm3) | Voxel | Volume (mm3) | Voxel | Volume (mm3) | |
AC-13 | 1.08 × 107 | 15,646.3 | 8.97 × 107 | 129,641.1 | 1.57 × 108 | 227,244.5 |
Percent (%) | 4.2 | 34.8 | 61 | |||
AC-20 | 1.58 × 107 | 22,842.0 | 1.27 × 108 | 183,293.0 | 2.43 × 108 | 350,986.6 |
Percent (%) | 4.1 | 32.9 | 63 | |||
AC-25 | 1.57 × 107 | 22,721.8 | 9.87 × 107 | 142,752.1 | 2.27 × 108 | 328,478.1 |
Percent (%) | 4.6 | 28.9 | 66.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shu, L.-H.; Ni, F.-J.; Jiang, J.-W.; Zhao, Z.-L.; Guo, Z.-Y. Calculation and Characterization of Air Void in Mortar of the Hot Mix Asphalt (HMA) Based on CT Scanning and Image Analysis Methods. Appl. Sci. 2023, 13, 652. https://doi.org/10.3390/app13010652
Shu L-H, Ni F-J, Jiang J-W, Zhao Z-L, Guo Z-Y. Calculation and Characterization of Air Void in Mortar of the Hot Mix Asphalt (HMA) Based on CT Scanning and Image Analysis Methods. Applied Sciences. 2023; 13(1):652. https://doi.org/10.3390/app13010652
Chicago/Turabian StyleShu, Li-Heng, Fu-Jian Ni, Ji-Wang Jiang, Zi-Li Zhao, and Zhao-Yuan Guo. 2023. "Calculation and Characterization of Air Void in Mortar of the Hot Mix Asphalt (HMA) Based on CT Scanning and Image Analysis Methods" Applied Sciences 13, no. 1: 652. https://doi.org/10.3390/app13010652
APA StyleShu, L. -H., Ni, F. -J., Jiang, J. -W., Zhao, Z. -L., & Guo, Z. -Y. (2023). Calculation and Characterization of Air Void in Mortar of the Hot Mix Asphalt (HMA) Based on CT Scanning and Image Analysis Methods. Applied Sciences, 13(1), 652. https://doi.org/10.3390/app13010652