Causality Analysis with Different Probabilistic Distributions Using Transfer Entropy
Abstract
:1. Introduction
2. Mathematical Modeling
2.1. Transfer Entropy
2.2. Review of Probability Density Functions
2.2.1. Gaussian Normal Distribution
2.2.2. Robust Statistics—Huber Logistic Estimator
2.2.3. The -Stable Distribution
- is called the stability index or characteristic exponent,
- is the skewness parameter,
- is the distribution’s location (mean), and
- is the distribution’s scale factor.
- When , it represents independent realizations; in particular, when , , , and then the exact equation for normal distribution is obtained.
- When and , this represents the Cauchy distribution, which is discussed in detail in the following paragraph, and when
- and , this represents the L’evy distribution, which is not included in our analysis.
2.3. Cauchy Probabilistic Density Function
2.3.1. Laplace Double Exponential Distribution
2.3.2. The t-Location Scale Distribution
3. Description of the Simulation System
4. Analysis of Simulation Results
4.1. Causality for the Dataset with Gaussian Noise
4.2. Causality for the Dataset with Gaussian Noise and Cauchy Disturbance
5. Conclusions and Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CoE | Causes of Effects |
EoC | Effects of Causes |
ESD | Extreme Studentized Deviate |
IQR | Interquartile Range |
Probability Density Function | |
TE | Transfer Entropy |
References
- Rubin, D.B. Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educ. Psychol. 1974, 66, 688–701. [Google Scholar] [CrossRef] [Green Version]
- Reichenbach, H. The Direction of Time; University of Los Angeles Press: Berkeley, CA, USA, 1956. [Google Scholar]
- Dehejia, R.H.; Wahba, S. Causal effects in nonexperimental studies: Reevaluating the evaluation of training programs. J. Amer. Statist. Assoc. 1999, 94, 1053–1062. [Google Scholar] [CrossRef]
- Mani, S.; Cooper, G. Causal discovery from medical textual data. In Proceedings of the AMIA Symposium, Los Angeles, CA, USA, 4–8 November 2000; Volume 542. [Google Scholar]
- Imbens, G.W. Nonparametric estimation of average treatment effects under exogeneity: A review. Rev. Econ. Stat. 2004, 86, 4–29. [Google Scholar] [CrossRef] [Green Version]
- Hernan, M.A.; Robins, J.M. Causal Inference; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Ebert-Uphoff, I.; Deng, Y. Causal discovery for climate research using graphical models. JCLI 2012, 25, 5648–5665. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zaiane, O.R.; Osornio-Vargas, A. Discovering statistically significant co-location rules in datasets with extended spatial objects. In Proceedings of the 16th International Conference, DaWaK 2014, Munich, Germany, 2–4 September 2014; pp. 124–135. [Google Scholar]
- Amin, M.T. An integrated methodology for fault detection, root cause diagnosis, and propagation pathway analysis in chemical process systems. Clean. Eng. Technol. 2021, 4, 100187. [Google Scholar] [CrossRef]
- Liu, J.; Lim, K.W.; Ho, W.K.; Tan, K.C.; Srinivasan, R.; Tay, A. The intelligent alarm management system. IEEE Softw. 2003, 20, 66–71. [Google Scholar]
- Zheng, Y.; Fang, H.; Wang, H.O. Takagi-Sugeno fuzzy model-based fault detection for networked control systems with Markov delays. IEEE Trans. Syst. Man Cybern. B 2006, 36, 924–929. [Google Scholar]
- Yin, S.; Ding, S.; Haghani, A.; Hao, H.; Zhang, P. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process. J. Process Control. 2012, 22, 1567–1581. [Google Scholar] [CrossRef]
- Zhong, M.; Ding, S.X.; Ding, E.L. Optimal fault detection for linear discrete time-varying systems. Automatica 2010, 46, 1395–1400. [Google Scholar]
- Ding, S.; Zhang, P.; Yin, S.; Ding, E. An integrated design framework of fault tolerant wireless networked control systems for industrial automatic control applications. IEEE Trans. Ind. Inform. 2013, 9, 462–471. [Google Scholar] [CrossRef]
- Gokas, F. Distributed Control of Systems over Communication Networks. Ph.D. Thesis, University of Pennsylvania, Philadelphia, PA, USA, 2000. [Google Scholar]
- Wiener, N. The Theory of Prediction; Modern Mathematics for Engineers; Beckenbach, E.F., Ed.; McGraw-Hill: New York, NY, USA, 1956; Volume 8, pp. 3269–3274. [Google Scholar]
- Duan, P.; Yang, F.; Chen, T.; Shah, S.L. Detection of direct causality based on process data. In Proceedings of the 2012 American Control Conference (ACC), Montreal, QC, Canada, 27–29 June 2012; pp. 3522–3527. [Google Scholar] [CrossRef]
- Duan, P. Information Theory-Based Approaches for Causality Analysis with Industrial Applications. Ph.D. Thesis, University of Alberta, Edmonton, AB, Canada, 2014. [Google Scholar]
- Lee, J.; Nemati, S.; Silva, I.; Edwards, B.A.; Butler, J.P.; Malhotra, A. Transfer entropy estimation and directional coupling change detection in biomedical time series. BioMed. Eng. Online 2012, 11, 1315–1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating mutual information. Phys. Rev. E 2004, 69, 066138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bossomaier, T.; Barnett, L.; Harré, M.; Lizier, J. An Introduction to Transfer Entropy; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Lizier, J.T. JIDT: An Information-Theoretic Toolkit for Studying the Dynamics of Complex Systems. Front. Robot. AI 2014, 1, 11. [Google Scholar] [CrossRef] [Green Version]
- Wollstadt, P.; Lizier, J.; Vicente, R.; Finn, C.; Martínez Zarzuela, M.; Mediano, P.; Novelli, L.; Wibral, M. IDTxl: The Information Dynamics Toolkit xl: A Python package for the efficient analysis of multivariate information dynamics in networks. J. Open Source Softw. 2019, 4, 1081. [Google Scholar] [CrossRef]
- Falkowski, M.J. Causality analysis incorporating outliers information. In Outliers in Control Engineering. Fractional Calculus Perspective; De Gruyter: Berlin, Germany; Boston, MA, USA, 2022; pp. 133–148. [Google Scholar] [CrossRef]
- Falkowski, M.J.; Domański, P.D.; Pawłuszewicz, E. Causality in Control Systems Based on Data-Driven Oscillation Identification. Appl. Sci. 2022, 12, 3784. [Google Scholar] [CrossRef]
- Jafari-Mamaghani, M.; Tyrcha, J. Transfer Entropy Expressions for a Class of Non-Gaussian Distributions. Entropy 2014, 16, 1743. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, T. Measuring information transfer. Phys. Rev. Lett. 2000, 85, 461–464. [Google Scholar]
- Yang, F.; Xiao, D. Progress in Root Cause and Fault Propagation Analysis of Large-Scale Industrial Processes. J. Control. Sci. Eng. 2012, 2012, 478373. [Google Scholar]
- Vincente, R.; Wibral, M.; Lindner, M.; Pipa, G. Transfer entropy—A model-free measure of effective connectivity for the neurosciences. J. Comput. Neurosci. 2011, 30, 45–67. [Google Scholar] [CrossRef] [Green Version]
- Kayser, A.S.; Sun, F.; Desposito, M. A comparison of Granger causality and coherency in fMRI-based analysis of the motor system. Hum. Brain Mapp. 2009, 30, 3475–3494. [Google Scholar] [CrossRef] [Green Version]
- Domański, P.D. Study on Statistical Outlier Detection and Labelling. Int. J. Autom. Comput. 2020, 17, 788–811. [Google Scholar] [CrossRef]
- Croux, C.; Dehon, C. Robust Estimation of Location and Scale; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Domański, P.D. Non-Gaussian Statistical Measures of Control Performance. Control Cybern. 2017, 46, 259–290. [Google Scholar]
- Domański, P.D. Non-Gaussian properties of the real industrial control error in SISO loops. In Proceedings of the 19th International Conference on System Theory, Control and Computing, Sinaia, Romania, 19–21 October 2015; pp. 877–882. [Google Scholar]
- Domanski, P. Control Performance Assessment: Theoretical Analyses and Industrial Practice; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Hawkins, D.M. Identification of Outliers; Chapman and Hall: London, UK; New York, NY, USA, 1980. [Google Scholar]
- Osborne, J.W.; Overbay, A. The power of outliers (and why researchers should ALWAYS check for them), Practical Assessment. Res. Eval. 2004, 9, 1–8. [Google Scholar]
- Taleb, N. Statistical Consequences of Fat Tails: Real World Preasymptotics, Epistemology, and Applications. arXiv 2020, arXiv:2001.10488. [Google Scholar]
- Rousseeuw, P.J.; Leroy, A.M. Robust Regression and Outlier Detection; John Wiley & Sons, Inc.: New York, NY, USA, 1987. [Google Scholar]
- Whaley, D.L. The Interquartile Range: Theory and Estimation. Master’s Thesis, East Tennessee State University, Johnson City, TN, USA, 2005. [Google Scholar]
- Rosner, B. Percentage points for a generalized esd many-outlier procedure. Technometrics 1983, 25, 165–172. [Google Scholar] [CrossRef]
- Pearson, R.K. Mining Imperfect Data: Dealing with Contamination and Incomplete Records; SIAM: Philadelphia, PA, USA, 2005. [Google Scholar]
- Falkowski, M.J.; Domański, P.D. Impact of outliers on determining relationships between variables in large-scale industrial processes using Transfer Entropy. In Proceedings of the 2020 7th International Conference on Control, Decision and Information Technologies (CoDIT), Prague, Czech Republic, 29 June–2 July 2020; Volume 1, pp. 807–812. [Google Scholar] [CrossRef]
i = 1 | i = 2 | i = 3 | i = 4 | i = 5 | |
---|---|---|---|---|---|
P | 0.2 | 2 | 0.13 | 0.27 | 0.01 |
I | 0.01 | 0.2 | 0.5 | 0.61 | 0.2 |
D | 0.02 | – | 0.08 | 0.21 | – |
N | 10 | – | 10 | 100 | – |
Cauchy | -Stable | Laplace | Huber | t Location-Scale | |
---|---|---|---|---|---|
3.3440 | 1.4925 | 2.4805 | 1.5098 | 1.5333 | |
3.6252 | 1.3049 | 2.7709 | 1.3007 | 1.4069 | |
3.3966 | 1.4344 | 2.2947 | 1.5182 | 1.5246 | |
3.5771 | 1.9684 | 2.8030 | 1.9850 | 1.9877 | |
3.1062 | 1.9417 | 2.5749 | 1.9473 | 1.8361 |
Cauchy | -Stable | Laplace | Huber | t Location-Scale | |
---|---|---|---|---|---|
5.1540 | 5.7679 | 5.5035 | 5.6962 | 5.7589 | |
5.0164 | 5.0727 | 4.9170 | 4.9768 | 4.9432 | |
3.1914 | 1.9279 | 2.9657 | 2.1143 | 2.1835 | |
3.9075 | 2.2738 | 3.6509 | 2.3228 | 2.3033 | |
3.5362 | 3.1455 | 3.8385 | 3.4425 | 3.1752 |
NA | 0.1284 | 0.0729 | 0.0725 | 0.1016 | |
0.1499 | NA | 0.0508 | 0.0387 | 0.0511 | |
0.0450 | 0.0531 | NA | 0.0322 | 0.0401 | |
0.0435 | 0.0371 | 0.0349 | NA | 0.0399 | |
0.0430 | 0.0518 | 0.0409 | 0.0433 | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falkowski, M.J.; Domański, P.D. Causality Analysis with Different Probabilistic Distributions Using Transfer Entropy. Appl. Sci. 2023, 13, 5849. https://doi.org/10.3390/app13105849
Falkowski MJ, Domański PD. Causality Analysis with Different Probabilistic Distributions Using Transfer Entropy. Applied Sciences. 2023; 13(10):5849. https://doi.org/10.3390/app13105849
Chicago/Turabian StyleFalkowski, Michał J., and Paweł D. Domański. 2023. "Causality Analysis with Different Probabilistic Distributions Using Transfer Entropy" Applied Sciences 13, no. 10: 5849. https://doi.org/10.3390/app13105849
APA StyleFalkowski, M. J., & Domański, P. D. (2023). Causality Analysis with Different Probabilistic Distributions Using Transfer Entropy. Applied Sciences, 13(10), 5849. https://doi.org/10.3390/app13105849