Spatial Assessment and Prediction of Urbanization in Maseru Using Earth Observation Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remote Sensing Data Acquisition
2.3. Image Pre-Processing
2.4. Training and Test Samples
2.5. Image Classification
2.6. Accuracy Assessment
2.7. Change Detection
2.8. Future Urban Growth Simulation
2.9. Spatial Variables
3. Results
3.1. Analysis of LULC Distribution and Changes in Maseru
3.2. Quantitative Analysis of LULC Changes in Maseru
3.3. Validation of LULC Maps
3.4. Urban Growth and LULC Change Analysis
3.5. Analysis of Spatial Variables
3.6. Model Performance Validation
3.7. Urban Growth Prediction for 2050
4. Discussion
4.1. LULC Maps
4.2. Accuracy Assessment for LULC Maps
4.3. Interannual Changes in LULC Classes
4.4. Prediction of Urban Growth
5. Conclusions
- Landsat products provide satisfactory results in classifying and mapping LULC changes from 1988 to 2019. The overall accuracy ranged from 88% to 95%, with kappa values between 0.84 and 0.94.
- Remarkable LULC changes occurred in Maseru from 1988 to 2019, with the built-up area increasing from 15.3% to almost half (48%) of the city, much of which consumed pristine classes such as agricultural lands and grasslands.
- In 2050, built-up areas are projected to increase further, while the area covered by agricultural land, bare soil, water bodies and woody vegetation is expected to decrease.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patra, S.; Sahoo, S.; Mishra, P.; Mahapatra, S.C. Impacts of Urbanization on Land Use/Cover Changes and Its Probable Implications on Local Climate and Groundwater Level. J. Urban Manag. 2018, 7, 70–84. [Google Scholar] [CrossRef]
- United Nations. World Urbanization Prospects: The 2018 Revision; United Nations: New York, NY, USA, 2019. [Google Scholar]
- United Nations Policies on Spatial Distribution and Urbanization Have Broad Impacts on Sustainable Development|Population Division. Available online: https://www.un.org/development/desa/pd/content/policies-spatial-distribution-and-urbanization-have-broad-impacts-sustainable-development (accessed on 19 October 2020).
- Lerch, M. Urban and Rural Fertility Transitions in the Developing World: A Cohort Perspective. In Urban and Rural Fertility Transitions in the Developing World: A Cohort Perspective; Max Planck Institute for Demographic Research: Rostock, Germany, 2017. [Google Scholar]
- Kadhim, N.; Mourshed, M.; Bray, M. Advances in Remote Sensing Applications for Urban Sustainability. Euro-Mediterr. J. Environ. Integr. 2016, 1, 7. [Google Scholar] [CrossRef]
- Alirol, E.; Getaz, L.; Stoll, B.; Chappuis, F.; Loutan, L. Urbanisation and Infectious Diseases in a Globalised World. Lancet Infect. Dis. 2011, 11, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Nath, B.; Ni-Meister, W.; Choudhury, R. Impact of Urbanization on Land Use and Land Cover Change in Guwahati City, India and Its Implication on Declining Groundwater Level. Groundw. Sustain. Dev. 2021, 12, 100500. [Google Scholar] [CrossRef]
- Fan, P.; Ouyang, Z.; Nguyen, D.D.; Nguyen, T.T.H.; Park, H.; Chen, J. Urbanization, Economic Development, Environmental and Social Changes in Transitional Economies: Vietnam after Doimoi. Landsc. Urban Plan. 2019, 187, 145–155. [Google Scholar] [CrossRef]
- Kuddus, M.A.; Tynan, E.; McBryde, E. Urbanization: A Problem for the Rich and the Poor? Public Health Rev. 2020, 41, 1–4. [Google Scholar] [CrossRef]
- Liu, X.; Xu, Y.; Engel, B.A.; Sun, S.; Zhao, X.; Wu, P.; Wang, Y. The Impact of Urbanization and Aging on Food Security in Developing Countries: The View from Northwest China. J. Clean. Prod. 2021, 292, 126067. [Google Scholar] [CrossRef]
- Cai, Z.; Yu, C.-H.; Zhu, C. Government-Led Urbanization and Natural Gas Demand in China. Renew. Sustain. Energy Rev. 2021, 147, 111231. [Google Scholar] [CrossRef]
- Roy, B.; Kasemi, N. Monitoring Urban Growth Dynamics Using Remote Sensing and GIS Techniques of Raiganj Urban Agglomeration, India. Egypt. J. Remote Sens. Space Sci. 2021, 24, 221–230. [Google Scholar] [CrossRef]
- Thapa, R.B.; Murayama, Y. Examining Spatiotemporal Urbanization Patterns in Kathmandu Valley, Nepal: Remote Sensing and Spatial Metrics Approaches. Remote Sens. 2009, 1, 534–556. [Google Scholar] [CrossRef]
- Abudu, D.; Echima, R.A.; Andogah, G. Spatial Assessment of Urban Sprawl in Arua Municipality, Uganda. Egypt. J. Remote Sens. Space Sci. 2019, 22, 315–322. [Google Scholar] [CrossRef]
- Wang, J.; Maduako, I.N. Spatio-Temporal Urban Growth Dynamics of Lagos Metropolitan Region of Nigeria Based on Hybrid Methods for LULC Modeling and Prediction. Eur. J. Remote Sens. 2018, 51, 251–265. [Google Scholar] [CrossRef]
- Mansour, S.; Al-Belushi, M.; Al-Awadhi, T. Monitoring Land Use and Land Cover Changes in the Mountainous Cities of Oman Using GIS and CA-Markov Modelling Techniques. Land Use Policy 2020, 91, 104414. [Google Scholar] [CrossRef]
- Lefulebe, B.; Van derWalt, A.; Xulu, S. Fine-Scale Classification of Urban Land Use and Land Cover with PlanetScope Imagery and Machine Learning Strategies in the City of Cape Town, South Africa. Sustainability 2022, 14, 9139. [Google Scholar] [CrossRef]
- Sajan, B.; Mishra, V.N.; Kanga, S.; Meraj, G.; Singh, S.K.; Kumar, P. Cellular Automata-Based Artificial Neural Network Model for Assessing Past, Present, and Future Land Use/Land Cover Dynamics. Agronomy 2022, 12, 2772. [Google Scholar] [CrossRef]
- Li, X.; Yeh, A.G.-O. Neural-Network-Based Cellular Automata for Simulating Multiple Land Use Changes Using GIS. Int. J. Geogr. Inf. Sci. 2002, 16, 323–343. [Google Scholar] [CrossRef]
- World Bank. Challenges in Urban Mobility and the Way Forward: A Study of Maseru, Lusaka, and Harare Cities; World Bank: Washington, DC, USA, 2020. [Google Scholar]
- Maro, P. Village Patterns of Land-Use Change. In Environmental Change in Lesotho; Springer: Dordrecht, The Netherlands, 2011; pp. 111–148. [Google Scholar] [CrossRef]
- Botea, I.A.; Compernolle, N.; Chakravarty, S. Female Migration in Lesotho: Determinants and Opportunities. World Bank Policy Res. Work. Available online: https://openknowledge.worldbank.org/server/api/core/bitstreams/649f5715-3ad2-5256-a59a-96c335e005f1/content (accessed on 20 November 2022).
- Dhanaraj, K.; Angadi, D.P. Land Use Land Cover Mapping and Monitoring Urban Growth Using Remote Sensing and GIS Techniques in Mangaluru, India. GeoJournal 2022, 87, 1133–1159. [Google Scholar] [CrossRef]
- Pijanowski, B.C.; Brown, D.G.; Shellito, B.A.; Manik, G.A. Using Neural Networks and GIS to Forecast Land Use Changes: A Land Transformation Model. Comput. Environ. Urban Syst. 2002, 26, 553–575. [Google Scholar] [CrossRef]
- Latchem, C.; Walker, D. Telecentres: Case Studies and Key Issues; Commonwealth of Learning (COL): Vancouver, BC, Canada, 2001. [Google Scholar]
- Palerm, J. Country Environmental Profile of Lesotho. Available online: https://europa.eu/capacity4dev/file/32947/download?token=ZxRTK7YA (accessed on 13 September 2022).
- Lesotho Meteorological Services: Maseru, Lesotho. Available online: https://www.lesmet.org.ls/ (accessed on 1 July 2022).
- Jombo, S.; Adam, E.; Odindi, J. Quantification of Landscape Transformation Due to the Fast Track Land Reform Programme (FTLRP) in Zimbabwe Using Remotely Sensed Data. Land Use Policy 2017, 68, 287–294. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Helder, D.; Morfitt, R.; Choate, M.J.; Merchant, J.W.; Bulley, H. Effects of Landsat 5 Thematic Mapper and Landsat 7 Enhanced Thematic Mapper Plus Radiometric and Geometric Calibrations and Corrections on Landscape Characterization. Remote Sens. Environ. 2001, 78, 55–70. [Google Scholar] [CrossRef]
- Lesotho Land Cover Atlas. 2017. Available online: https://www.fao.org/3/i7102e/i7102e.pdf (accessed on 15 October 2022).
- Dihkan, M.; Guneroglu, N.; Karsli, F.; Guneroglu, A. Remote Sensing of Tea Plantations Using an SVM Classifier and Pattern-Based Accuracy Assessment Technique. Int. J. Remote Sens. 2013, 34, 8549–8565. [Google Scholar] [CrossRef]
- Jombo, S.; Adam, E.; Odindi, J. Classification of Tree Species in a Heterogeneous Urban Environment Using Object-Based Ensemble Analysis and World View-2 Satellite Imagery. Appl. Geomat. 2021, 13, 373–387. [Google Scholar] [CrossRef]
- Kamusoko, C. Remote Sensing Image Classification in R; Springer: Singapore, 2019. [Google Scholar]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Liu, S.; McGree, J.; Ge, Z.; Xie, Y. Computational and Statistical Methods for Analysing Big Data with Applications; Academic Press: Cambridge, MA, USA, 2015; ISBN 0-08-100651-9. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Colkesen, I. A Kernel Functions Analysis for Support Vector Machines for Land Cover Classification. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 352–359. [Google Scholar] [CrossRef]
- Shi, D.; Yang, X. Mapping Vegetation and Land Cover in a Large Urban Area Using a Multiple Classifier System. Int. J. Remote Sens. 2017, 38, 4700–4721. [Google Scholar] [CrossRef]
- Congalton, R.G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- DeVellis, R. Inter-Rater Reliability: Encyclopedia of Social Measurement; Elsevier Academic Press: Oxford, UK, 2005. [Google Scholar]
- Mosammam, H.M.; Nia, J.T.; Khani, H.; Teymouri, A.; Kazemi, M. Monitoring Land Use Change and Measuring Urban Sprawl Based on Its Spatial Forms: The Case of Qom City. Egypt. J. Remote Sens. Space Sci. 2017, 20, 103–116. [Google Scholar]
- Gibson, L.; Münch, Z.; Palmer, A.; Mantel, S. Future Land Cover Change Scenarios in South African Grasslands–Implications of Altered Biophysical Drivers on Land Management. Heliyon 2018, 4, e00693. [Google Scholar] [CrossRef]
- NextGIS Modules for Land Use Change Simulations. Available online: https://nextgis.com/blog/molusce/ (accessed on 9 June 2020).
- Saputra, M.H.; Lee, H.S. Prediction of Land Use and Land Cover Changes for North Sumatra, Indonesia, Using an Artificial-Neural-Network-Based Cellular Automaton. Sustainability 2019, 11, 3024. [Google Scholar] [CrossRef]
- Yuan, H.; Van Der Wiele, C.F.; Khorram, S. An Automated Artificial Neural Network System for Land Use/Land Cover Classification from Landsat TM Imagery. Remote Sens. 2009, 1, 243–265. [Google Scholar] [CrossRef]
- Brown, W.M.; Groves, D.I.; Gedeon, T.D. An Artificial Neural Network Method for Mineral Prospectivity Mapping: A Comparison with Fuzzy Logic and Bayesian Probability Methods. Geophys. Appl. Artif. Neural Netw. Fuzzy Log. 2003, 21, 179–196. [Google Scholar]
- Mokhtarzade, M.; Zoej, M.V. Road Detection from High-Resolution Satellite Images Using Artificial Neural Networks. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 32–40. [Google Scholar] [CrossRef]
- Mezaal, M.R.; Pradhan, B.; Sameen, M.I.; Mohd Shafri, H.Z.; Yusoff, Z.M. Optimized Neural Architecture for Automatic Landslide Detection from High-Resolution Airborne Laser Scanning Data. Appl. Sci. 2017, 7, 730. [Google Scholar] [CrossRef]
- Berberoglu, S.; Lloyd, C.D.; Atkinson, P.M.; Curran, P.J. The Integration of Spectral and Textural Information Using Neural Networks for Land Cover Mapping in the Mediterranean. Comput. Geosci. 2000, 26, 385–396. [Google Scholar] [CrossRef]
- Nugroho, A.B.; Hasyim, A.W.; Usman, F. Urban Growth Modelling of Malang City Using Artificial Neural Network Based on Multi-Temporal Remote Sensing. Civ. Environ. Sci. J. 2018, 1, 52–61. [Google Scholar] [CrossRef]
- Baylies, C.; Wright, C. Female Labour in the Textile and Clothing Industry of Lesotho. Afr. Aff. 1993, 92, 577–591. [Google Scholar] [CrossRef]
- Gibbs, T. ‘Union Boys in Caps Leading Factory Girls Astray?’The Politics of Labour Reform in Lesotho’s ‘Feminised’Garment Industry. J. South. Afr. Stud. 2005, 31, 95–115. [Google Scholar] [CrossRef]
- Maphosa, F.; Morojele, R.N. Changing the Culture of Migration? Attitudes towards Education among Former Basotho Labour Migrants to South African Mines. Afr. Dev. 2013, 38, 151–170. [Google Scholar]
- Bureau of Statistics Lesotho Data Portal. Available online: https://www.bos.gov.ls (accessed on 30 October 2020).
- Nuhu, S. Peri-Urban Land Governance in Developing Countries: Understanding the Role, Interaction and Power Relation among Actors in Tanzania. In Urban Forum; Springer: Berlin/Heidelberg, Germany, 2019; Volume 30, pp. 1–16. [Google Scholar]
- Otuoze, S.H.; Hunt, D.V.; Jefferson, I. Predictive Modeling of Transport Infrastructure Space for Urban Growth Phenomena in Developing Countries’ Cities: A Case Study of Kano—Nigeria. Sustainability 2020, 13, 308. [Google Scholar] [CrossRef]
- Hapazari, J.; Loubser, N.D. Rural People’s Perceptions Regarding Causes and Solutions of Poverty: The Lesotho Milieu. East. Afr. Soc. Sci. Res. Rev. 2021, 37, 103–121. [Google Scholar] [CrossRef]
- Anderson, J.R. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; US Government Printing Office: Washington, DC, USA, 1976; Volume 964.
- Morales-Barquero, L.; Lyons, M.B.; Phinn, S.R.; Roelfsema, C.M. Trends in Remote Sensing Accuracy Assessment Approaches in the Context of Natural Resources. Remote Sens. 2019, 11, 2305. [Google Scholar] [CrossRef]
- Jombo, S.; Adam, E.; Byrne, M.J.; Newete, S.W. Evaluating the Capability of Worldview-2 Imagery for Mapping Alien Tree Species in a Heterogeneous Urban Environment. Cogent Soc. Sci. 2020, 6, 1754146. [Google Scholar] [CrossRef]
- Holloway, A. Drought Emergency, Yes… Drought Disaster, No: Southern Africa 1991–93. Camb. Rev. Int. Aff. 2000, 14, 254–276. [Google Scholar] [CrossRef]
- Rantšo, T.A.; Seboka, M. Agriculture and Food Security in Lesotho: Government Sponsored Block Farming Programme in the Berea, Leribe and Maseru Districts. Cogent Food Agric. 2019, 5, 1657300. [Google Scholar] [CrossRef]
- Bureau of Statistics Population and Housing Census List. Available online: https://www.bos.gov.ls (accessed on 1 November 2019).
- Crush, J. The State of Poverty and Food Insecurity in Maseru, Lesotho; Southern African Migration Programme: Cape Town, South Africa, 2016; ISBN 1-920597-12-3. [Google Scholar]
Mission | Sensor | Date | Resolution | Path/Row |
---|---|---|---|---|
Landsat-5 | TM | 29 March 1988 | 30 m | 170/080 |
Landsat-5 | TM | 11 March 1993 | ||
Landsat-5 | TM | 5 February 1998 | ||
Landsat-5 | TM | 20 December 2003 | ||
Landsat-7 | TM | 20 March 2008 | ||
Landsat-8 | OLI | 15 December 2013 | ||
Landsat-8 | OLI | 14 January 2019 |
1988 | 1993 | 1998 | 2003 | 2008 | 2013 | 2019 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TR | TS | TR | TS | TR | TS | TR | TS | TR | TS | TR | TS | TR | TS | ||
LULC classes | AF | 112 | 47 | 98 | 42 | 38 | 15 | 43 | 18 | 75 | 32 | 77 | 33 | 60 | 25 |
BS | 126 | 54 | 133 | 56 | 122 | 51 | 134 | 57 | 127 | 54 | 126 | 33 | 126 | 53 | |
BU | 211 | 90 | 211 | 90 | 220 | 94 | 216 | 92 | 216 | 92 | 227 | 97 | 213 | 90 | |
GL | 115 | 48 | 110 | 46 | 85 | 36 | 81 | 34 | 77 | 33 | 88 | 37 | 68 | 28 | |
WB | 91 | 39 | 80 | 33 | 77 | 33 | 60 | 25 | 70 | 30 | 70 | 29 | 87 | 37 | |
WV | 75 | 31 | 83 | 35 | 68 | 28 | 94 | 39 | 80 | 33 | 94 | 40 | 75 | 32 |
1988 | 1993 | 1998 | 2003 | 2008 | 2013 | 2019 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ha | % | Ha | % | Ha | % | Ha | % | Ha | % | Ha | % | Ha | % | ||
LULC classes | AF | 6470 | 21.7 | 6091 | 20.4 | 4901 | 16.4 | 3161 | 10.6 | 1031 | 3.5 | 947 | 3.2 | 510 | 1.7 |
BS | 3671 | 12.3 | 6246 | 20.9 | 8347 | 28.0 | 9542 | 32.0 | 9850 | 33.0 | 10,252 | 34.4 | 10,538 | 35.3 | |
BU | 4548 | 15.3 | 5739 | 19.2 | 8226 | 27.6 | 9265 | 31.1 | 11,515 | 38.6 | 12,520 | 42.0 | 14,302 | 48.0 | |
GL | 12,911 | 43.3 | 9656 | 32.4 | 6341 | 21.3 | 6003 | 20.1 | 5618 | 18.8 | 4557 | 15.3 | 3138 | 10.5 | |
WB | 583 | 2.0 | 453 | 1.5 | 424 | 1.4 | 422 | 1.4 | 413 | 1.4 | 401 | 1.3 | 381 | 1.3 | |
WV | 1642 | 5.5 | 1641 | 5.5 | 1586 | 5.3 | 1432 | 4.8 | 1398 | 4.7 | 1148 | 3.8 | 956 | 3.2 |
Year | Classes | OA | KI | ||||||
---|---|---|---|---|---|---|---|---|---|
AF | BS | BU | GL | WB | WV | ||||
1988 | Reference total | 48 | 61 | 76 | 54 | 38 | 32 | 89 | 0.86 |
Classified | 47 | 54 | 90 | 48 | 39 | 31 | |||
Correctly classified | 42 | 52 | 72 | 46 | 35 | 27 | |||
UA (%) | 88 | 85 | 92 | 85 | 82 | 84 | |||
PA (%) | 89 | 96 | 80 | 96 | 90 | 87 | |||
1993 | Reference total | 43 | 54 | 78 | 47 | 36 | 42 | 90 | 0.88 |
Classified | 42 | 56 | 90 | 46 | 33 | 35 | |||
Correctly classified | 40 | 49 | 75 | 43 | 32 | 33 | |||
UA (%) | 90 | 91 | 96 | 91 | 89 | 79 | |||
PA (%) | 95 | 88 | 83 | 93 | 97 | 94 | |||
1998 | Reference total | 9 | 52 | 98 | 34 | 33 | 28 | 88 | 0.84 |
Classified | 15 | 51 | 94 | 36 | 33 | 28 | |||
Correctly classified | 6 | 48 | 90 | 31 | 29 | 22 | |||
UA | 67 | 92 | 92 | 91 | 88 | 79 | |||
PA (%) | 40 | 94 | 96 | 86 | 88 | 79 | |||
2003 | Reference total | 14 | 58 | 94 | 36 | 26 | 37 | 91 | 0.88 |
Classified | 18 | 57 | 92 | 34 | 23 | 37 | |||
Correctly classified | 12 | 57 | 88 | 29 | 20 | 34 | |||
UA (%) | 86 | 98 | 94 | 81 | 92 | 92 | |||
PA (%) | 67 | 100 | 96 | 85 | 87 | 92 | |||
2008 | Reference total | 33 | 52 | 96 | 35 | 28 | 30 | 95 | 0.94 |
Classified | 32 | 54 | 92 | 33 | 30 | 33 | |||
Correctly classified | 31 | 50 | 90 | 32 | 27 | 30 | |||
UA (%) | 94 | 96 | 94 | 91 | 96 | 100 | |||
PA (%) | 97 | 93 | 98 | 97 | 90 | 91 | |||
2013 | Reference total | 22 | 59 | 85 | 42 | 28 | 43 | 92 | 0.90 |
Classified | 33 | 53 | 90 | 37 | 29 | 40 | |||
Correctly classified | 20 | 53 | 83 | 31 | 28 | 39 | |||
UA (%) | 91 | 90 | 98 | 74 | 100 | 91 | |||
PA (%) | 61 | 100 | 92 | 84 | 97 | 98 | |||
2019 | Reference total | 22 | 52 | 94 | 23 | 38 | 36 | 89 | 0.86 |
Classified | 25 | 53 | 90 | 28 | 37 | 32 | |||
Correctly classified | 20 | 52 | 85 | 20 | 36 | 30 | |||
UA (%) | 91 | 100 | 90 | 87 | 95 | 83 | |||
PA (%) | 80 | 98 | 94 | 71 | 97 | 94 |
Parameter | Value (%) |
---|---|
Kappa (histogram) | 88 |
Kappa (location) | 89 |
Kappa (overall) | 84 |
Percentage (%) of correctness | 87 |
Class | 2019 | 2050 | Predicted Change 2019–2050 | |||
---|---|---|---|---|---|---|
ha | % | ha | % | ha | % | |
AG | 847.1 | 2.8 | 657.8 | 2.2 | −189.3 | −22.3 |
BS | 6939.6 | 23.3 | 4609.8 | 15.5 | −2328.8 | −33.6 |
BU | 11,973.2 | 40.1 | 17,407.7 | 58.4 | 5434.5 | 45.4 |
GL | 8139.8 | 27.3 | 5228.8 | 17.5 | −2910.0 | −35.8 |
WB | 421.3 | 1.4 | 412.4 | 1.4 | −9.1 | −2.2 |
WV | 1506.1 | 5.1 | 1495.9 | 5.0 | −10.2 | −0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adam, E.; Masupha, N.E.; Xulu, S. Spatial Assessment and Prediction of Urbanization in Maseru Using Earth Observation Data. Appl. Sci. 2023, 13, 5854. https://doi.org/10.3390/app13105854
Adam E, Masupha NE, Xulu S. Spatial Assessment and Prediction of Urbanization in Maseru Using Earth Observation Data. Applied Sciences. 2023; 13(10):5854. https://doi.org/10.3390/app13105854
Chicago/Turabian StyleAdam, Elhadi, Nthabeleng E. Masupha, and Sifiso Xulu. 2023. "Spatial Assessment and Prediction of Urbanization in Maseru Using Earth Observation Data" Applied Sciences 13, no. 10: 5854. https://doi.org/10.3390/app13105854
APA StyleAdam, E., Masupha, N. E., & Xulu, S. (2023). Spatial Assessment and Prediction of Urbanization in Maseru Using Earth Observation Data. Applied Sciences, 13(10), 5854. https://doi.org/10.3390/app13105854