Assessment and Spatial Modelling of Agrochernozem Properties for Reclamation Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Data Collection and Chemical Analysis
2.3. Random Forest
2.4. Environmental Variables
2.5. Validation and Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thorne, P. Global surface temperatures. In Climate Change: Observed Impacts on Planet Earth, 2nd ed.; Letcher, T.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 21–35. [Google Scholar]
- Zalasiewicz, J.; Williams, M. Climate change through Earth’s history. In Climate Change: Observed Impacts on Planet Earth, 2nd ed.; Letcher, T.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 3–17. [Google Scholar]
- Abiodun, B.J.; Adedoyin, A. A modelling perspective of future climate change. In Climate Change: Observed Impacts on Planet Earth, 2nd ed.; Letcher, T.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 355–371. [Google Scholar]
- Hannah, L. Ecosystem change. In Climate Change Biology; Hannah, L., Ed.; Academic Press: London, UK, 2011; pp. 101–130. [Google Scholar]
- Dixon, G.R. The impact of climate and global change on crop production. In Climate Change; Letcher, T.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 307–324. [Google Scholar]
- Ronco, P.; Zennaro, F.; Torresan, S.; Critto, A.; Santini, M.; Trabucco, A.; Zollo, A.L.; Galluccio, G.; Marcomini, A. A risk assessment framework for irrigated agriculture under climate change. Adv. Water Resour. 2017, 110, 562–578. [Google Scholar] [CrossRef]
- Bigelow, D.P.; Zhang, H. Supplemental irrigation water rights and climate change adaptation. Ecol. Econ. 2018, 154, 156–167. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, W.; Zhuang, Q.; Luo, Y. Adaptation of paddy rice in China to climate change: The effects of shifting sowing date on yield and irrigation water requirement. Agric. Water Manag. 2020, 228, 105890. [Google Scholar] [CrossRef]
- Lee, S.H.; Choi, J.Y.; Hur, S.O.; Taniguchi, M.; Masuhara, N.; Kim, K.S.; Hyun, S.; Choi, E.; Sung, J.H.; Yoo, S.H. Food-centric interlinkages in agricultural food-energy-water nexus under climate change and irrigation management. Resour. Conserv. Recycl. 2020, 163, 105099. [Google Scholar]
- Shamseddin, M.A. Impacts of drought, food security policy and climate change on performance of irrigation schemes in Sub-saharan Africa: The case of Sudan. Agric. Water Manag. 2020, 232, 106064. [Google Scholar]
- Fraga, H.; Pinto, J.G.; Santos, J.A. Olive tree irrigation as a climate change adaptation measure in Alentejo, Portugal. Agric. Water Manag. 2020, 237, 106193. [Google Scholar] [CrossRef]
- Lal, R. Climate change and agriculture. In Climate Change: Observed Impacts on Planet Earth, 2nd ed.; Letcher, T.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 465–489. [Google Scholar]
- Malek, K.; Adam, J.C.; Stöckle, C.O.; Peters, R.T. Climate change reduces water availability for agriculture by decreasing non-evaporative irrigation losses. J. Hydrol. 2018, 561, 444–460. [Google Scholar] [CrossRef]
- Cody, K.C. Upstream with a shovel or downstream with a water right? Irrigation in a changing climate. Environ. Sci. Policy 2018, 80, 62–73. [Google Scholar] [CrossRef]
- Rio, M.; Rey, D.; Prudhomme, C.; Holman, I.P. Evaluation of changing surface water abstraction reliability for supplemental irrigation under climate change. Agric. Water Manag. 2018, 206, 200–208. [Google Scholar] [CrossRef]
- Drewry, J.J.; Sam Carrick, S.; Penny, V.; Houlbrooke, D.J.; Laurenson, S.; Mesman, N.L. Effects of irrigation on soil physical properties in predominantly pastoral farming systems: A review. N. Zeal. J. Agric. Res. 2021, 64, 483–507. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Si, Z.; Gao, Y.; Duan, A. Modelling responses of cotton growth and yield to pre-planting soil moisture with the CROPGRO-Cotton model for a mulched drip irrigation system in the Tarim Basin. Agric. Water Manag. 2020, 241, 106378. [Google Scholar] [CrossRef]
- Abegunrin, T.P.; Awe, G.O.; Idowu, D.O.; Adejumobi, M.A. Impact of wastewater irrigation on soil physico-chemical properties, growth and water use pattern of two indigenous vegetables in southwest Nigeria. Catena 2016, 139, 167–178. [Google Scholar] [CrossRef]
- Andrews, D.M.; Robb, T.; Elliott, H.; Watson, J.E. Impact of long-term wastewater irrigation on the physicochemical properties of humid region soils: “The Living Filter” site case study. Agric. Water Manag. 2016, 178, 239–247. [Google Scholar] [CrossRef]
- Christou, A.; Maratheftis, G.; Eliadou, E.; Michael, C.; Hapeshi, E.; Fatta-Kassinos, D. Impact assessment of the reuse of two discrete treated wastewaters for the irrigation of tomato crop on the soil geochemical properties, fruit safety and crop productivity. Agric. Ecosyst. Environ. 2014, 192, 105–114. [Google Scholar] [CrossRef]
- Phogat, V.; Mallants, D.; Cox, J.W.; Šimůnek, J.; Oliver, D.P.; Pitt, T.; Petrie, P.R. Impact of long-term recycled water irrigation on crop yield and soil chemical properties. Agric. Water Manag. 2020, 237, 106167. [Google Scholar] [CrossRef]
- Li, C.; Xiong, Y.; Huang, Q.; Xu, X.; Huang, G. Impact of irrigation and fertilization regimes on greenhouse gas emissions from soil of mulching cultivated maize (Zea mays L.) field in the upper reaches of Yellow River, China. J. Clean. Prod. 2020, 259, 120873. [Google Scholar] [CrossRef]
- Miller, H.; Dias, K.; Hare, H.; Borton, M.A.; Blotevogel, J.; Danforth, C.; Wrighton, K.C.; Ippolito, J.A.; Borch, T. Reusing oil and gas produced water for agricultural irrigation: Effects on soil health and the soil microbiome. Sci. Total Environ. 2020, 722, 137888. [Google Scholar] [CrossRef]
- Padarian, J.; Minasny, B.; McBratney, A.B. Machine learning and soil sciences: A review aided by machine learning tools. Soil 2020, 6, 35–52. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Hengl, T.; Heuvelink, G.B.M.; Kempen, B.; Leenaars, J.G.B.; Walsh, M.G.; Shepherd, K.D.; Sila, A.; MacMillan, R.A.; de Jesus, J.M.; Tamene, L.; et al. Mapping soil properties of Africa at 250 m resolution: Random Forests significantly improve current predictions. PLoS ONE 2015, 10, e0125814. [Google Scholar] [CrossRef]
- Baltensweiler, A.; Heuvelink, G.B.M.; Hanewinkel, M.; Walthert, L. Microtopography shapes soil pH in flysch regions across Switzerland. Geoderma 2020, 380, 114663. [Google Scholar] [CrossRef]
- Suleymanov, A.; Tuktarova, I.; Belan, L.; Suleymanov, R.; Gabbasova, I.; Araslanova, L. Spatial prediction of soil properties using random forest, k-nearest neighbors and cubist approaches in the foothills of the Ural Mountains, Russia. Model. Earth Syst. Environ. 2023; Online first. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Barthold, F.; Blank, B.; Kögel-Knabner, I. Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem. Plant Soil 2010, 340, 7–24. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Ayoubi, S.; Jafari, A.; Tajik, S.; Finke, P. Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran. Geoderma 2019, 338, 445–452. [Google Scholar] [CrossRef]
- Liebelt, P.; Frühauf, M.; Suleimanov, R.R.; Komissarov, M.A.; Yumaguzhina, D.R.; Galimova, R.G. Causes, consequences and opportunities of the post-Soviet land use changes in the forest-steppe zone of Bashkortostan. GEOÖKO 2015, 36, 77–111. [Google Scholar]
- Bogdan, E.A.; Kamalova, R.G.; Suleymanov, A.R.; Belan, L.N.; Tuktarova, I.O. Changing climatic indicators and mapping of soil temperature using Landsat data in the Yangan-Tau Unesco Global Geopark. SOCAR Proceed. 2022, 32–41. [Google Scholar] [CrossRef]
- Pennock, D.; Yates, T.; Braidek, J. Soil sampling design. In Soil Sampling and Methods of Analysis, 2nd ed.; Carter, M.R., Gregorich, E.G., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 25–37. [Google Scholar]
- FAO. Guidelines for Soil Description, 4th ed.; FAO: Rome, Italy, 2006. [Google Scholar]
- Pansu, M.; Gautheyrou, J. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Carter, M.R.; Gregorich, E.G. (Eds.) Soil Sampling and Methods of Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Shein, E.V.; Karpachevskii, L.O. Theories and Methods in Soil Physics; Grif and K Press: Moscow, Russia, 2007. (In Russian) [Google Scholar]
- Methodological Guidelines for Determining Heavy Metals in Soils; CINAO: Moscow, Russia, 1992. (In Russian)
- Kiryushin, V.I. The Ecological Basis of Farming; Kolos: Moscow, Russia, 1996. (In Russian) [Google Scholar]
- Karmanov, I.I.; Bulgakov, D.S.; Shishkonakova, E.A. An assessment system of natural and anthropogenic effects on changes. Dokuchaev Soil Bull. 2013, 72, 65–83. (In Russian) [Google Scholar] [CrossRef]
- Shishov, L.L.; Tonkonogov, V.D.; Lebedeva, I.I.; Gerasimova, M.I. Classification and Diagnosis of Soil Russia; Oekumena: Smolensk, Russia, 2004. (In Russian) [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014. Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2015. [Google Scholar]
- Wadoux, A.M.J.-C.; Minasny, B.; McBratney, A.B. Machine learning for digital soil mapping: Applications, challenges and suggested solutions. Earth-Sci. Rev. 2020, 210, 103359. [Google Scholar] [CrossRef]
- John, K.; Abraham Isong, I.; Michael Kebonye, N.; Okon Ayito, E.; Chapman Agyeman, P.; Marcus Afu, S. Using machine learning algorithms to estimate soil organic carbon variability with environmental variables and soil nutrient indicators in an alluvial soil. Land 2020, 9, 487. [Google Scholar] [CrossRef]
- Mahmoudzadeh, H.; Matinfar, H.R.; Taghizadeh-Mehrjardi, R.; Kerry, R. Spatial prediction of soil organic carbon using machine learning techniques in western Iran. Geoderma Reg. 2020, 21, e00260. [Google Scholar] [CrossRef]
- Lamichhane, S.; Kumar, L.; Wilson, B. Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review. Geoderma 2019, 352, 395–413. [Google Scholar] [CrossRef]
- Zhou, T.; Geng, Y.; Chen, J.; Sun, C.; Haase, D.; Lausch, A. Mapping of soil total nitrogen content in the Middle Reaches of the Heihe River Basin in China using multi-source remote sensing-derived variables. Remote Sens. 2019, 11, 2934. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013. [Google Scholar]
- Nie, W.B.; Li, Y.B.; Zhang, F.; Ma, X.Y. Optimal discharge for closed-end border irrigation under soil infiltration variability. Agric. Water Manag. 2019, 221, 58–65. [Google Scholar] [CrossRef]
- Filippucci, P.; Tarpanelli, A.; Massari, C.; Serafini, A.; Strati, V.; Alberi, M.; Raptis, K.G.C.; Mantovani, F.; Brocca, L. Soil moisture as a potential variable for tracking and quantifying irrigation: A case study with proximal gamma-ray spectroscopy data. Adv. Water Resour. 2020, 136, 103502. [Google Scholar] [CrossRef]
- Martínez-Gimeno, M.A.; Jiménez-Bello, M.A.; Lidón, A.; Manzano, J.; Badal, E.; Pérez-Pérez, J.G.; Bonet, L.; Intrigliolo, D.S.; Esteban, A. Mandarin irrigation scheduling by means of frequency domain reflectometry soil moisture monitoring. Agric. Water Manag. 2020, 235, 106151. [Google Scholar] [CrossRef]
- Yan, S.; Wu, Y.; Fan, J.; Zhang, F.; Paw, U.K.T.; Zheng, J.; Qiang, S.; Guo, J.; Zou, H.; Xiang, Y.; et al. A sustainable strategy of managing irrigation based on water productivity and residual soil nitrate in a no-tillage maize system. J. Clean. Prod. 2020, 262, 121279. [Google Scholar] [CrossRef]
- Belaid, N.; Feki, S.; Cheknane, B.; Frank-Neel, C.; Baudu, M. Impacts of irrigation systems on vertical and lateral metals distribution in soils irrigated with treated wastewater: Case study of Elhajeb-Sfax. Agric. Water Manag. 2019, 225, 105739. [Google Scholar] [CrossRef]
- Dhiman, J.; Prasher, S.O.; ElSayed, E.; Patel, R.M.; Nzediegwu, C.; Mawof, A. Heavy metal uptake by wastewater irrigated potato plants grown on contaminated soil treated with hydrogel based amendments. Environ. Technol. Innov. 2020, 19, 100952. [Google Scholar] [CrossRef]
- Abd-Elwahed, M.S. Effect of long-term wastewater irrigation on the quality of alluvial soil for agricultural sustainability. Ann. Agric. Sci. 2019, 64, 151–160. [Google Scholar] [CrossRef]
- Wang, S.; Zhuang, Q.; Wang, Q.; Jin, X.; Han, C. Mapping stocks of soil organic carbon and soil total nitrogen in Liaoning Province of China. Geoderma 2017, 305, 250–263. [Google Scholar] [CrossRef]
- Zhou, T.; Geng, Y.; Chen, J.; Pan, J.; Haase, D.; Lausch, A. High-resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms. Sci. Total Environ. 2020, 729, 138244. [Google Scholar] [CrossRef]
- Liang, X.; Rengasamy, P.; Smernik, R.; Mosley, L.M. Does the high potassium content in recycled winery wastewater used for irrigation pose risks to soil structural stability? Agric. Water Manag. 2021, 243, 106422. [Google Scholar] [CrossRef]
- Suleymanov, A.; Suleymanov, R.; Polyakov, V.; Dorogaya, E.; Abakumov, E. Conventional Tillage Effects on the Physico-Chemical Properties and Organic Matter of Chernozems Using 13C-NMR Spectroscopy. Agronomy 2022, 12, 2800. [Google Scholar] [CrossRef]
- Gabbasova, I.M.; Suleimanov, R.R.; Sitdikov, R.N.; Garipov, T.T.; Komissarov, A.V. The Effect of Long-Term Irrigation on the Properties of Leached Chernozems in the Forest-Steppe of the Southern Cis-Ural Region. Eurasian Soil Sci. 2006, 39, 283–289. [Google Scholar] [CrossRef]
- Suleymanov, R.R.; Gizatshina, G.M.; Gabbasova, I.M. Suitability of Agrochernozem Soils for Irrigation Amelioration in the Southern Forest–Steppe Zone of the Republic of Bashkortostan. Arid. Ecosyst. 2021, 11, 186–192. [Google Scholar] [CrossRef]
- Hanauer, T.; Pohlenz, C.; Kalandadze, B.; Urushadze, T.; Felix-Henningsen, P. Soil distribution and soil properties in the subalpine region of Kazbegi; Greater Caucasus; Georgia: Soil quality rating of agricultural soils. Ann. Agric. Sci. 2017, 15, 1–10. [Google Scholar] [CrossRef]
- Castaldi, F.; Palombo, A.; Santini, F.; Pascucci, S.; Pignatti, S.; Casa, R. Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon. Remote Sens. Environ. 2016, 179, 54–65. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Žižala, D.; Saberioon, M.; Borůvka, L. Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging. Remote Sens. Environ. 2018, 218, 89–103. [Google Scholar] [CrossRef]
- Suleymanov, A.; Gabbasova, I.; Suleymanov, R.; Abakumov, E.; Polyakov, V.; Liebelt, P. Mapping soil organic carbon under erosion processes using remote sensing. Hung. Geogr. Bull. 2021, 70, 49–64. [Google Scholar] [CrossRef]
- Suleymanov, A.; Abakumov, E.; Suleymanov, R.; Gabbasova, I.; Komissarov, M. The soil nutrient digital mapping for precision agriculture cases in the Trans-Ural steppe zone of Russia using topographic attributes. ISPRS Int. J. Geo-Inf. 2021, 10, 243. [Google Scholar] [CrossRef]
- Sahabiev, I.; Smirnova, E.; Giniyatullin, K. Spatial Prediction of Agrochemical Properties on the Scale of a Single Field Using Machine Learning Methods Based on Remote Sensing Data. Agronomy 2021, 11, 2266. [Google Scholar] [CrossRef]
- Tziachris, P.; Aschonitis, V.; Chatzistathis, T.; Papadopoulou, M. Assessment of Spatial Hybrid Methods for Predicting Soil Organic Matter Using DEM Derivatives and Soil Parameters. CATENA 2019, 174, 206–216. [Google Scholar] [CrossRef]
- Pahlavan-Rad, M.R.; Dahmardeh, K.; Brungard, C. Predicting Soil Organic Carbon Concentrations in a Low Relief Landscape, Eastern Iran. Geoderma Reg. 2018, 15, e00195. [Google Scholar] [CrossRef]
- Were, K.; Bui, D.T.; Dick, Ø.B.; Singh, B.R. A Comparative Assessment of Support Vector Regression, Artificial Neural Networks, and Random Forests for Predicting and Mapping Soil Organic Carbon Stocks across an Afromontane Landscape. Ecol. Indic. 2015, 52, 394–403. [Google Scholar] [CrossRef]
- Biswas, S.K.; Mojid, M.A. Changes in Soil Properties in Response to Irrigation of Potato by Urban Wastewater. Commun. Soil Sci. Plant Anal. 2018, 49, 828–839. [Google Scholar] [CrossRef]
- Al-Omran, A.M.; Al-Wabel, M.I.; El-Maghraby, S.E.; Nadeem, M.E.; Al-Sharani, S. Spatial Variability for Some Properties of the Wastewater Irrigated Soils. J. Saudi Soc. Agric. Sci. 2013, 12, 167–175. [Google Scholar] [CrossRef]
- Suleymanov, A.; Nizamutdinov, T.; Morgun, E.; Abakumov, E. Evaluation and Spatial Variability of Cryogenic Soil Properties (Yamal-Nenets Autonomous District, Russia). Soil Syst. 2022, 6, 65. [Google Scholar] [CrossRef]
- Rahmani, S.R.; Ackerson, J.P.; Schulze, D.; Adhikari, K.; Libohova, Z. Digital Mapping of Soil Organic Matter and Cation Exchange Capacity in a Low Relief Landscape Using LiDAR Data. Agronomy 2022, 12, 1338. [Google Scholar] [CrossRef]
- Heil, J.; Jörges, C.; Stumpe, B. Fine-scale mapping of soil organic matter in agricultural soils using UAVs and machine learning. Remote Sens. 2022, 14, 3349. [Google Scholar] [CrossRef]
- Polyakov, V.; Kartoziia, A.; Nizamutdinov, T.; Wang, W.; Abakumov, E. Soil-geomorphological mapping of Samoylov Island based on UAV imaging. Front. Environ. Sci. 2022, 10, 948367. [Google Scholar] [CrossRef]
- Hengl, T.; Heuvelink, G.B.M.; Rossiter, D.G. About regression-kriging: From equations to case studies. Comput. Geosci. 2007, 33, 1301–1315. [Google Scholar] [CrossRef]
- Aldana-Jague, E.; Heckrath, G.; Macdonald, A.; van Wesemael, B.; Van Oost, K. UAS-Based Soil Carbon Mapping Using VIS-NIR (480–1000 nm) Multi-Spectral Imaging: Potential and Limitations. Geoderma 2016, 275, 55–66. [Google Scholar] [CrossRef]
Environmental Covariates | Acronym | Spatial Resolution (m) | Definition | Central Wavelength (nm) |
---|---|---|---|---|
Sentinel-2A bands and indices | B2 | 10 | Blue | 492.4 |
B3 | 10 | Green | 559.8 | |
B4 | 10 | Red | 664.6 | |
B5 | 20 | Red edge 1 | 704.1 | |
B6 | 20 | Red edge 2 | 740.5 | |
B7 | 20 | Red edge 3 | 782.8 | |
B8 | 10 | NIR 1 | 832.8 | |
B8a | 20 | NIR 2 | 864.7 | |
B11 | 20 | SWIR 1 | 1613.7 | |
B12 | 20 | SWIR 2 | 2202.4 | |
NDVI | 10 | Normalized Difference Vegetation Index | - | |
Topographic attributes (SRTM) | El | 30 | Elevation (m) | - |
Aspect | 30 | Aspect (%) | - | |
Slope | 30 | Slope angle (%) | - | |
MrRTF | 30 | Multiresolution of ridge top flatness index | - | |
MrVBF | 30 | Multiresolution Valley Bottom Flatness index | - |
Horizon (Depth, cm) | Description of Soil Horizon |
---|---|
Aplow 0–28 | Dark grey, almost black, moist, powdery lumpy, heavy loamy, medium dense, many roots, transition through ploughing line is unnoticeable. |
A1 28–84 | Dark grey, moist, grainy, heavy loamy, medium compacted, gradual transition. |
A1Bca 84–125 | Dark brown with grey shade, wet, coarse, heavy loamy, mycelium carbonate, effervescence from 10% HCl, transition is noticeable. |
Bca 125–150 | Brown, unevenly colored with humus shades in the directions of roots, moist, lumpy, heavy loamy, impermeable, carbonates in the form of mycelium and softened large grains, effervescence from 10% HCl, transition is gradual. |
Cca 150–180 | Yellowish brown, wet, unsolid, large-cloddy, heavy clay, mycelium carbonates and softened large white grains, effervescence from 10% HCl. |
Horizon (Depth, cm) | pH (H2O) | C org, % | N Alkaline Hydrolyzable, mg/kg | Exchangeable Cations | Available | Base Saturation, % | Solids, % | ||
---|---|---|---|---|---|---|---|---|---|
Ca2+ | Mg2+ | P2O5 | K2O | ||||||
cmol(+)/kg | mg/kg | ||||||||
Aplow 0–28 | 6.6 ± 0.4 | 4.4 ± 0.7 | 186 ± 29 | 34.7 ± 3.5 | 7.7 ± 1.3 | 51 ± 14 | 152 ± 24 | 98 | 0.05 ± 0.01 |
A1 28–84 | 6.7 ± 0.4 | 3.7 ± 0.7 | 154 ± 39 | 32.3 ± 3.0 | 7.1 ± 0.4 | 53 ± 16 | 157 ± 25 | 94 | 0.04 ± 0.03 |
A1Bca 84–125 | 6.9 ± 0.6 | 2.5 ± 0.3 | 114 ± 28 | 29.2 ± 3.9 | 6.2 ± 0.9 | 43 ± 17 | 129 ± 18 | 94 | 0.04 ± 0.01 |
Bca 125–150 | 7.3 ± 0.8 | 0.9 ± 0.3 | 52 ± 17 | 27.3 ± 5.6 | 6.2 ± 0.9 | 46 ± 12 | 127 ± 18 | 96 | 0.04 ± 0.01 |
Cca 150–180 | 8.3 ± 0.1 | 0.6 ± 0.2 | 26 ± 4 | 29.6 ± 1.4 | 5.4 ± 0.7 | 17 ± 2 | 54 ± 8 | 100 | 0.02 ± 0.01 |
Horizon (Depth, cm) | Bulk Density, g/cm3 | Hardness, kg/cm2 | Porosity | Wilting Point, % | Field Moisture Capacity | Capillary Moisture Capacity | Total Moisture Capacity | Sand (1–0.05 mm) | Silt (0.05–0.001 mm) | Clay (<0.001 mm) |
---|---|---|---|---|---|---|---|---|---|---|
% | ||||||||||
Aplow 0–28 | 1.02 ± 0.02 | 1.32 ± 0.02 | 58.9 ± 2.2 | 14.2 ± 0.2 | 43.0 ± 3.7 | 45.0 ± 4.7 | 53.7 ± 1.9 | 12.7 ± 0.1 | 65.9 ± 0.5 | 21.4 ± 0.4 |
A1 28–84 | 1.04 ± 0.03 | 3.13 ± 0.07 | 58.1 ± 2.7 | 14.3 ± 0.1 | 44.8 ± 1.5 | 45.7 ± 1.3 | 52.1 ± 1.3 | 7.8 ± 0.2 | 68.8 ± 4.3 | 23.4 ± 2.1 |
A1Bca 84–125 | 1.22 ± 0.001 | 6.89 ± 0.23 | 44.4 ± 0.2 | 13.5 ± 0.4 | 35.1 ± 1.2 | 36.1 ± 0.5 | 40.8 ± 0.9 | 13.6 ± 2.9 | 58.5 ± 6.8 | 27.9 ± 3.8 |
Bca 125–150 | 1.39 ± 0.007 | 14.99 ± 1.14 | 35.1 ± 0.08 | 12.2 ± 0.2 | 26.0 ± 0.1 | 27.3 ± 1.6 | 30.1 ± 0.9 | 14.9 ± 0.8 | 53.9 ± 0.7 | 31.2 ± 0.1 |
Cca 150–180 | 1.44 ± 0.03 | 19.99 ± 1.61 | 32.8 ± 1.6 | 11.8 ± 0.1 | 23.9 ± 1.8 | 25.9 ± 3.3 | 29.3 ± 1.0 | 14.9 ± 1.1 | 56.2 ± 0.9 | 28.9 ± 0.1 |
Horizon (Depth, cm) | Pb | Cd | Hg | Co | Zn | Cu | Mn |
---|---|---|---|---|---|---|---|
mg/kg | |||||||
Aplow, 0–28 cm | 2.71 ± 0.36 | 0.18 ± 0.02 | 0.024 ± 0.003 | 0.13 ± 0.01 | 0.33 ± 0.05 | 0.11 ± 0.01 | 11.27 ± 1.11 |
Level of detection | <M.A.C. 2 (6.0 mg/kg) | <M.A.C. (2.0 mg/kg) | <M.A.C. (2.1 mg/kg) | low content | low content | low content | medium content |
Soil Parameter | ME | RMSE | Top 3 Important Variables |
---|---|---|---|
SOC | 0.36% | 0.60% | B12, NDVI, Aspect |
pH | 0.23 | 0.48 | Slope, Aspect, Elevation |
Mg | 2.43 cmol(+)/kg | 1.56 cmol(+)/kg | Slope, MRVBF, B2 |
Ca | 1.58 cmol(+)/kg | 2.51 cmol(+)/kg | B11, B4, MRVBF |
N | 8.53 mg/kg | 2.92 mg/kg | NDVI, B2, Aspect |
P | 2.47 mg/kg | 1.57 mg/kg | B12, B8A, Elevation |
K | 20.88 mg/kg | 4.57 mg/kg | B8A, Aspect, B11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suleymanov, R.; Suleymanov, A.; Zaitsev, G.; Adelmurzina, I.; Galiakhmetova, G.; Abakumov, E.; Shagaliev, R. Assessment and Spatial Modelling of Agrochernozem Properties for Reclamation Measurements. Appl. Sci. 2023, 13, 5249. https://doi.org/10.3390/app13095249
Suleymanov R, Suleymanov A, Zaitsev G, Adelmurzina I, Galiakhmetova G, Abakumov E, Shagaliev R. Assessment and Spatial Modelling of Agrochernozem Properties for Reclamation Measurements. Applied Sciences. 2023; 13(9):5249. https://doi.org/10.3390/app13095249
Chicago/Turabian StyleSuleymanov, Ruslan, Azamat Suleymanov, Gleb Zaitsev, Ilgiza Adelmurzina, Gulnaz Galiakhmetova, Evgeny Abakumov, and Ruslan Shagaliev. 2023. "Assessment and Spatial Modelling of Agrochernozem Properties for Reclamation Measurements" Applied Sciences 13, no. 9: 5249. https://doi.org/10.3390/app13095249
APA StyleSuleymanov, R., Suleymanov, A., Zaitsev, G., Adelmurzina, I., Galiakhmetova, G., Abakumov, E., & Shagaliev, R. (2023). Assessment and Spatial Modelling of Agrochernozem Properties for Reclamation Measurements. Applied Sciences, 13(9), 5249. https://doi.org/10.3390/app13095249