Estimation of Multi-Frequency, Multi-Incidence and Multi-Polarization Backscattering Coefficients over Bare Agricultural Soil Using Statistical Algorithms
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. In Situ Data
2.2.1. Topsoil Moisture
2.2.2. Soil Texture
2.2.3. Surface Roughness
2.3. Microwave Satellite Data
3. Methods
3.1. Multiple Linear Regression
3.2. Random Forest
3.3. Statistical Model Setup and Accuracy Metrics
4. Results and Discussion
4.1. Overall Performance of the Statistical Approaches
4.1.1. Multi-Incidence Estimates of X-Band Backscattering Coefficients
4.1.2. Multi-Incidence and Multi-Polarization Estimates of C-Band Backscattering Coefficients
4.1.3. Evaluation of the Statistical Algorithms Compared to Models Developed in the Literature—Which Approach to Retain?
4.2. Importance of the Soil Descriptors and Incidence Angle in Backscattering Estimates
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Band | Polar. States | Inc. Ang. | TSM | Cte |
---|---|---|---|---|
X | HH | −0.100 | 11.025 | −7.220 |
C | HH | −0.163 | 15.941 | −6.030 |
C | VV | −0.147 | 15.372 | −6.575 |
Band | Polar. States | TSM | % of Clay | Hrms Par. |
---|---|---|---|---|
X | HH | −0.100 | 11.025 | −7.220 |
C | HH | −0.163 | 15.941 | −6.030 |
C | HV | 20.215 | −8.211 | 0.742 |
References
- Brown, S.C.M.; Quegan, S.; Morrison, K.; Bennett, J.C.; Cookmartin, G. High-resolution measurements of scattering in wheat canopies-implications for crop parameter retrieval. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1602–1610. [Google Scholar] [CrossRef] [Green Version]
- Fieuzal, R.; Baup, F.; Marais-Sicre, C. Monitoring wheat and rapeseed by using synchronous optical and radar satellite data—from temporal signatures to crop parameters estimation. Adv. Remote Sens. 2013, 2, 162–180. [Google Scholar] [CrossRef] [Green Version]
- Picard, G.; Le Toan, T.; Mattia, F. Understanding C-band radar backscatter from wheat canopy using a multiple-scattering coherent model. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1583–1591. [Google Scholar] [CrossRef]
- Saich, P.; Borgeaud, M. Interpreting ERS SAR signatures of agricultural crops in Flevoland, 1993–1996. IEEE Trans. Geosci. Remote Sens. 2000, 38, 651–657. [Google Scholar] [CrossRef]
- Aubert, M.; Baghdadi, N.; Zribi, M.; Douaoui, A.; Loumagne, C.; Baup, F.; El Hajj, M.; Garrigues, S. Analysis of TerraSAR-X data sensitivity to bare soil moisture, roughness, composition and soil crust. Remote Sens. Environ. 2011, 115, 1801–1810. [Google Scholar] [CrossRef] [Green Version]
- Champion, I.; Faivre, R. Sensitivity of the radar signal to soil moisture: Variation with incidence angle, frequency, and polarization. IEEE Trans. Geosci. Remote Sens. 1997, 35, 781–783. [Google Scholar] [CrossRef]
- Dobson, M.C.; Ulaby, F.T. Microwave backscatter dependence on surface roughness, soil moisture, and soil texture: Part III—Soil tension. IEEE Trans. Geosci. Remote Sens. 1981, 19, 51–61. [Google Scholar] [CrossRef]
- Mattia, F.; Le Toan, T.; Souyris, J.C.; De Carolis, G.; Floury, N.; Posa, F.; Pasquariello, G. The effect of surface roughness on multifrequency polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 954–966. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Batlivala, P.P.; Dobson, M.C. Microwave backscatter dependence on surface roughness, soil moisture, and soil texture: Part I—Bare Soil. IEEE Trans. Geosci. Electron. 1978, 16, 286–295. [Google Scholar] [CrossRef]
- Dubois, P.C.; van Zyl, J.; Engman, T. Measuring soil moisture with imaging radars. IEEE Trans. Geosci. Remote Sens. 1995, 33, 915–926. [Google Scholar] [CrossRef] [Green Version]
- Oh, Y.; Sarabandi, K.; Ulaby, F.T. An empirical model and an inversion technique for radar scattering from bare soil surfaces. IEEE Trans. Geosci. Remote Sens. 1992, 30, 370–381. [Google Scholar] [CrossRef]
- Oh, Y. Quantitative retrieval of soil moisture content and surface roughness from multipolarized radar observations of bare soil surfaces. IEEE Geosci. Remote Sens. 2004, 42, 596–601. [Google Scholar] [CrossRef]
- Chen, K.S.; Wu, T.D.; Tsay, M.K.; Fung, A.K. A note on the multiple scattering in an IEM model. IEEE Trans. Geosci. Remote Sens. 2000, 38, 249–256. [Google Scholar] [CrossRef]
- Fung, A.K.; Li, Z.; Chen, K.S. Backscattering from a randomly rough dielectric surface. IEEE Trans. Geosci. Remote Sens. 1992, 30, 356–369. [Google Scholar] [CrossRef]
- Fung, A.K. Microwave Scattering and Emission Models and Their Applications; Artech House Publishers: Norwood, MA, USA, 1994. [Google Scholar]
- Hasting, F.D.; Schneider, J.B.; Broschat, S.L. A Monte Carlo FDTD technique for rough surface scattering. IEEE Trans. Antennas Propag. 1995, 43, 1183–1191. [Google Scholar] [CrossRef]
- Soriano, G.; Saillard, M. Scattering of electomagnetic waves from two dimensional rough surfaces with impedance approximation. J. Opt. Soc. Am. 2001, 18, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive. In Radar Remote Sensing and Surface Scattering and Emission Theory; Artech House Publishers: Norwood, MA, USA, 1982; Volume II. [Google Scholar]
- Johnson, J.T.; Warnick, K.F.; Xu, P. On the geometrical optics (Hagfors’ law) and physical optics approximations for scattering from exponentially correlated surfaces. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2619–2629. [Google Scholar] [CrossRef]
- Imperatore, P.; Iodice, A.; Riccio, D. Electromagnetic wave scattering from layered structures with an arbitrary number of rough interfaces. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1056–1072. [Google Scholar] [CrossRef]
- Iodice, A.; Natale, A.; Riccio, D. Kirchhoff scattering from fractal and classical rough surfaces: Physical interpretation. IEEE Trans. Ant. Prop. 2013, 61, 2156–2163. [Google Scholar] [CrossRef]
- Comite, D.; Pierdicca, N. Monostatic and bistatic scattering modeling of the anisotropic rough soil. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2543–2556. [Google Scholar] [CrossRef]
- Di Martino, G.; Di Simone, A.; Iodice, A.; Riccio, D. Bistatic scattering from anisotropic rough surfaces via a closed-form two-scale model. IEEE Trans. Geosci. Remote Sens. 2021, 59, 3656–3671. [Google Scholar] [CrossRef]
- Fieuzal, R. Apports des Données Radar Pour L’estimation des Paramètres Biophysiques des Surfaces Agricoles; Sciences de la Terre; Université Toulouse III-Paul Sabatier: Toulouse, France, 2013. [Google Scholar]
- Baghdadi, N.; King, C.; Chanzy, A.; Wigneron, J.P. An empirical calibration of the integral equation model based on SAR data, soil moisture and surface roughness measurement over bare soils. Int. J. Remote Sens. 2002, 23, 4325–4340. [Google Scholar] [CrossRef]
- Baghdadi, N.; Gherboudj, I.; Zribi, M.; Sahebi, M.; King, C.; Bonn, F. Semi-empirical calibration of the IEM backscattering model using radar images and moisture and roughness field measurements. Int. J. Remote Sens. 2004, 25, 3593–3623. [Google Scholar] [CrossRef]
- Baghdadi, N.; Holah, N.; Zribi, M. Calibration of the Integral Equation Model for SAR data in C-band and HH and VV polarizations. Int. J. Remote Sens. 2006, 27, 805–816. [Google Scholar] [CrossRef]
- Baghdadi, N.; Chaaya, J.A.; Zribi, M. Semiempirical calibration of the integral equation model for SAR data in C-band and cross polarization using radar images and field measurements. IEEE Geosci. Remote Sens. Lett. 2011, 8, 14–18. [Google Scholar] [CrossRef] [Green Version]
- Baghdadi, N.; Choker, M.; Zribi, M.; Hajj, M.E.; Paloscia, S.; Verhoest, N.E.C.; Lievens, H.; Baup, F.; Mattia, F. A new empirical model for radar scattering from bare soil surfaces. Remote Sens. 2016, 8, 920. [Google Scholar] [CrossRef] [Green Version]
- Fieuzal, R.; Baup, F. Improvement of bare soil semiempirical radar backscattering models (Oh and Dubois) with SAR multi-spectral satellite data (at X, C and L bands). Adv. Remote Sens. 2016, 5, 296–314. [Google Scholar] [CrossRef] [Green Version]
- Callens, M.; Verhoest, N.E.C.; Davidson, M.W.J. Parameterization of tillage-induced single-scale soil roughness from 4-M profiles. IEEE Trans. Geosci. Remote Sens. 2006, 44, 878–888. [Google Scholar] [CrossRef]
- Davidson, M.W.J.; Le Toan, T.; Mattia, F.; Satalino, G.; Manninen, T.; Borgeaud, M. On the characterization of agricultural soil roughness for radar remote sensing studies. IEEE Trans. Geosci. Remote Sens. 2000, 38, 630–640. [Google Scholar] [CrossRef] [Green Version]
- Jackson, T.J.; McNairn, H.; Weltz, M.A.; Brisco, B.; Brown, R. First order surface roughness correction of active microwave observations for estimating soil moisture. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1065–1069. [Google Scholar] [CrossRef]
- Du, P.; Samat, A.; Waske, B.; Liu, S.; Li, Z. Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features. ISPRS J. Photogramm. Remote. Sens. 2015, 105, 38–53. [Google Scholar] [CrossRef]
- Loosvelt, L.; Peters, J.; Skriver, H.; Lievens, H.; Van Coillie, F.M.B.; De Baets, B.; Verhoest, N.E.C. Random Forests as a tool for estimating uncertainty at pixel-level in SAR image classification. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 173–184. [Google Scholar] [CrossRef]
- Marais Sicre, C.; Fieuzal, R.; Baup, F. Contribution of multispectral (optical and radar) satellite images to the classification of agricultural surfaces. Int. J. Appl. Earth Obs. Geoinf. 2020, 84, 101972. [Google Scholar] [CrossRef]
- Waske, B.; Braun, M. Classifier ensembles for land cover mapping using multitemporal SAR imagery. ISPRS J. Photogramm. Remote. Sens. 2009, 64, 450–457. [Google Scholar] [CrossRef]
- Baghdadi, N.; Cresson, R.; El Hajj, M.; Ludwig, R.; La Jeunesse, I. Estimation of soil parameters over bare agriculture areas from C-band polarimetric SAR data using neural networks. Hydrol. Earth Syst. Sci. 2012, 16, 1607–1621. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; He, B.; Li, X.; Zeng, J.; Wang, X.; Wang, Z.; Zeng, Y.; Su, Z. First Assessment of Sentinel-1A data for surface soil moisture estimations using a coupled water cloud model and advanced integral equation model over the Tibetan plateau. Remote Sens. 2017, 9, 714. [Google Scholar] [CrossRef] [Green Version]
- El Hajj, M.; Baghdadi, N.; Zribi, M.; Bazzi, H. Synergic use of Sentinel-1 and Sentinel-2 images for operational soil moisture mapping at high spatial resolution over agricultural areas. Remote Sens. 2017, 9, 1292. [Google Scholar] [CrossRef] [Green Version]
- Paloscia, S.; Pettinato, S.; Santi, E.; Notarnicola, C.; Pasolli, L.; Reppucci, A. Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation. Remote Sens. Environ. 2013, 134, 234–248. [Google Scholar] [CrossRef]
- Santi, E.; Paloscia, S.; Pettinato, S.; Notarnicola, C.; Pasolli, L.; Pistocchi, A. Comparison between SAR soil moisture estimates and hydrological model simulations over the Scrivia test site. Remote Sens. 2013, 5, 4961–4976. [Google Scholar] [CrossRef] [Green Version]
- Santi, E.; Paloscia, S.; Pettinato, S.; Fontanelli, G. Application of artificial neural networks for the soil moisture retrieval from active and passive microwave spaceborne sensors. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 61–73. [Google Scholar] [CrossRef]
- Baghdadi, N.; El Hajj, M.; Choker, M.; Zribi, M.; Bazzi, H.; Vaudour, E.; Gilliot, J.M.; Ebengo, D.M. Potential of Sentinel-1 images for estimating the soil roughness over bare agricultural soils. Water 2018, 10, 131. [Google Scholar] [CrossRef] [Green Version]
- Maleki, M.; Amini, J.; Notarnicola, C. Soil roughness retrieval from TerraSar-X data using neural network and fractal method. Adv. Space Res. 2019, 64, 1117–1129. [Google Scholar] [CrossRef]
- Zribi, M.; Kotti, F.; Lili-Chabaane, Z.; Baghdadi, N.; Ben Issa, N.; Amri, R.; Amri, B.; Chehbouni, A. Soil texture estimation over a semiarid area using TerraSAR-X radar data. IEEE Trans. Geosci. Remote Sens. Lett. 2012, 9, 353–357. [Google Scholar] [CrossRef] [Green Version]
- Ezzahar, J.; Ouaadi, N.; Zribi, M.; Elfarkh, J.; Aouade, G.; Khabba, S.; Er-Raki, S.; Chehbouni, A.; Jarlan, L. Evaluation of backscattering models and support vector machine for the retrieval of bare soil moisture from Sentinel-1 data. Remote Sens. 2020, 12, 72. [Google Scholar] [CrossRef] [Green Version]
- Fieuzal, R.; Baup, F. Use of statistical approach combined with SAR polarimetric indices for surface moisture estimation over bare agricultural soil. Environ. Sci. Proc. 2021, 5, 22. [Google Scholar]
- Fieuzal, R.; Baup, F. Estimation of surface soil moisture at the intra-plot spatial scale by using low and high incidence angles TerraSAR-X images. Environ. Sci. Proc. 2021, 5, 6. [Google Scholar]
- Pasolli, L.; Notarnicola, C.; Bruzzone, L.; Bertoldi, G.; Chiesa, S.D.; Niedrist, G.; Tappeiner, U.; Zebisch, M. Polarimetric RADARSAT-2 imagery for soil moisture retrieval in alpine areas. Can. J. Remote Sens. 2011, 37, 535–547. [Google Scholar] [CrossRef]
- Fieuzal, R.; Baup, F. Statistical estimation of backscattering coefficients in X-band over bare agricultural soils. In Proceedings of the 2020 Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS), Tunis, Tunisia, 9–11 March 2020; pp. 302–305. [Google Scholar]
- Baup, F.; Fieuzal, R.; Marais-Sicre, C.; Dejoux, J.F.; le Dantec, V.; Mordelet, P.; Claverie, M.; Hagolle, O.; Lopes, A.; Keravec, P.; et al. MCM’10: An experiment for satellite multi-sensors crop monitoring from high to low resolution observations. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 4849–4852. [Google Scholar]
- Breit, H.; Fritz, T.; Balss, U.; Lachaise, M.; Niedermeier, A.; Vonavka, M. TerraSAR-X SAR processing and products geoscience and remote sensing. IEEE Trans. Geosci. Remote Sens. 2010, 48, 727–740. [Google Scholar] [CrossRef]
- Morena, L.C.; James, K.V.; Beck, J. An introduction to the RADARSAT-2 mission. Can. J. Remote Sens. 2004, 30, 221–234. [Google Scholar] [CrossRef]
- NEST. Available online: http://nest.array.ca/web/nest (accessed on 26 November 2015).
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Grömping, U. Variable importance assessment in regression: Linear regression versus random forest. Am. Statistician. 2009, 63, 308–319. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random Forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote. Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Fawagreh, K.; Gaber, M.M.; Elyan, E. Random forests: From early developments to recent advancements. Syst. Sci. Control Eng. 2014, 2, 602–609. [Google Scholar] [CrossRef] [Green Version]
- Baghdadi, N.; Zribi, M. Evaluation of radar backscatter models IEM, OH and Dubois using experimental observations. Int. J. Remote Sens. 2006, 27, 3831–3852. [Google Scholar] [CrossRef]
- Baghdadi, N.; Saba, E.; Aubert, M.; Zribi, M.; Baup, F. Evaluation of radar backscattering models IEM, Oh, and Dubois for SAR data in X-Band over bare soils. IEEE Geosci. Remote Sens. Lett. 2011, 8, 1160–1164. [Google Scholar] [CrossRef]
- Choker, M.; Baghdadi, N.; Zribi, M.; El Hajj, M.; Paloscia, S.; Verhoest, N.E.C.; Lievens, H.; Mattia, F. Evaluation of the Oh, Dubois and IEM backscatter models using a large dataset of SAR data and experimental soil measurements. Water 2017, 9, 38. [Google Scholar] [CrossRef]
- Rahman, M.M.; Moran, M.S.; Thoma, D.P.; Bryant, R.; Sano, E.E.; Holifield Collins, C.D.; Skirvin, S.; Kershner, C.; Orr, B.J. A derivation of roughness correlation length for parameterizing radar backscatter models. Int. J. Remote Sens. 2007, 28, 3995–4012. [Google Scholar] [CrossRef]
- Fieuzal, R.; Baup, F. Estimation of leaf area index and crop height of sunflowers using multi-temporal optical and SAR satellite data. Int. J. Remote Sens. 2016, 37, 2780–2809. [Google Scholar] [CrossRef]
- Ulaby, F.T. Radar Response to Vegetation. IEEE Trans. Ant. Propag. 1975, 23, 36–45. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Bradley, G.A.; Dobson, M.C. Microwave backscatter dependence on surface roughness, soil moisture, and soil texture: Part II—Vegetation-covered soil. IEEE Trans. Geosci. Electron. 1970, 17, 33–40. [Google Scholar] [CrossRef]
- Brisco, B.; Brown, R.J.; Snider, B.; Sofko, G.J.; Koehler, J.A.; Wacker, A.G. Tillage effects on the radar backscattering coefficient of grain stubble fields. Int. J. Remote Sens. 1991, 12, 2283–2298. [Google Scholar] [CrossRef]
- Hallikainen, M.T.; Ulaby, F.T.; Dobson, M.C.; El-Rayes, M.A.; Lil-Kun, W. Microwave dielectric behavior of wet soil—Part 1: Empirical models and experimental observations. IEEE Trans. Geosci. Remote Sens. 1985, 23, 25–34. [Google Scholar] [CrossRef]
Soil | Variable | Measurement | Values |
---|---|---|---|
Descriptor | Name (Unit) | Date | [Min–Max] Mean |
Topsoil Moisture | (% m3.m−3) | 20 February 2010 | [24.0–32.9] 28.9 |
27 February 2010 | [20.1–25.2] 23.3 | ||
5 March 2010 | [21.2–31.0] 27.0 | ||
16 March 2010 | [11.8–23.7] 17.9 | ||
26 March 2010 | [11.5–25.6] 20.8 | ||
8 April 2010 | [6.7–24.6] 15.9 | ||
14 April 2010 | [3.5–18.9] 11.2 | ||
1 May 2010 | [25.8–31.2] 28.7 | ||
10 May 2010 | [20.0–24.1] 21.8 | ||
20 May 2010 | [12.5–15.5] 14.0 | ||
29 July 2010 | [7.0–17.0] 11.1 | ||
17 August 2010 | [2.7–10.8] 5.9 | ||
30 August 2010 | [2.5–6.0] 3.8 | ||
15 September 2010 | [2.4–6.4] 4.2 | ||
4 October 2010 | [7.0–16.3] 11.2 | ||
12 October 2010 | [21.3–31.3] 25.5 | ||
18 October 2010 | [9.8–21.9] 14.5 | ||
22 October 2010 | [7.7–17.8] 12.1 | ||
2 November 2010 | [18.1–29.2] 23.3 | ||
12 November 2010 | [22.6–35.3] 26.6 | ||
24 November 2010 | [22.0–29.6] 26.3 | ||
Soil Texture | Clay (%) | Once during | [9–58] 24 |
Silt (%) | the experimental | [22–77] 52 | |
Sand (%) | period | [4–53] 24 | |
Surface Roughness | ├ hrms (cm) | [0.6–7.9] 2.2 | |
├ lc (cm) | After each | [1.9–18.5] 7.7 | |
|| hrms (cm) | tillage event | [0.5–5.6] 1.5 | |
|| lc (cm) | [1.1–14.9] 4.4 |
Mission | Mode | Acquisition Date (mm, dd, yy) | Pass | Incidence Angle (°) | Pixel Size (m) | Polarization States |
---|---|---|---|---|---|---|
TS-X | Spotlight | 15 March 2010 | D | 28.7 | 2 | HH |
TS-X | Spotlight | 14 April 2010 | A | 32.3 | 2 | HH |
TS-X | Spotlight | 8 April 2010; 30 April 2010; 29 August 2010 | A | 45.5 | 1.75 | HH |
TS-X | Spotlight | 5 March 2010; 21 May 2010; 18 August 2010 | D | 53.3 | 1.5 | HH |
30 September 2010; 11 September 2010; 22 September 2010 | ||||||
2 November 2010; 13 November 2010; 24 November 2010 | ||||||
TS-X | StripMap | 21 February 2010; 26 March 2010; 9 May 2010; 20 May 2010 | D | 27.3 | 2.75 | HH |
16 August 2010; 29 September 2010; 10 October 2010 | ||||||
21 October 2010; 12 November 2010; 21 November 2010 | ||||||
TS-X | StripMap | 15 September 2010 | A | 31.8 | 2.75 | HH |
TS-X | StripMap | 27 February 2010; 31 July 2010 | D | 41.7 | 3 | HH |
RS-C | FQ5 | 5 March 2010; 24 November 2010 | A | 24.3 | 5 | Full |
RS-C | FQ6 | 21 October 2010; 14 November 2010 | D | 25.6 | 5 | Full |
RS-C | FQ10 | 26 February 2010; 15 April 10; 9 May 2010; 30 September 2010 | A | 30.0 | 5 | Full |
RS-C | FQ11 | 26 March 2010; 17 August 2010 | D | 31.1 | 5 | Full |
RS-C | FQ15 | 15 March 2010; 8 April 2010; 2 May 2010; 30 August 2010; 17 October 2010 | A | 35.1 | 5 | Full |
RS-C | FQ16 | 20 May 2010; 31 July 2010; 11 October 2010 | D | 36.2 | 5 | Full |
RS-C | FQ20 | 3 November 2010 | A | 39.9 | 5 | Full |
RS-C | FQ21 | 20 February 2010; 16 March 2010 | D | 40.8 | 5 | Full |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fieuzal, R.; Baup, F. Estimation of Multi-Frequency, Multi-Incidence and Multi-Polarization Backscattering Coefficients over Bare Agricultural Soil Using Statistical Algorithms. Appl. Sci. 2023, 13, 4893. https://doi.org/10.3390/app13084893
Fieuzal R, Baup F. Estimation of Multi-Frequency, Multi-Incidence and Multi-Polarization Backscattering Coefficients over Bare Agricultural Soil Using Statistical Algorithms. Applied Sciences. 2023; 13(8):4893. https://doi.org/10.3390/app13084893
Chicago/Turabian StyleFieuzal, Rémy, and Frédéric Baup. 2023. "Estimation of Multi-Frequency, Multi-Incidence and Multi-Polarization Backscattering Coefficients over Bare Agricultural Soil Using Statistical Algorithms" Applied Sciences 13, no. 8: 4893. https://doi.org/10.3390/app13084893
APA StyleFieuzal, R., & Baup, F. (2023). Estimation of Multi-Frequency, Multi-Incidence and Multi-Polarization Backscattering Coefficients over Bare Agricultural Soil Using Statistical Algorithms. Applied Sciences, 13(8), 4893. https://doi.org/10.3390/app13084893