Comparison of the Effectiveness of Reducing the Leaching of Formaldehyde from Immobilized Wool in Geopolymer and Cement Mortar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Mineral Wool
2.1.2. Metakaolin
2.1.3. Comparison of Stone Wool and Metakaolin
2.1.4. Geopolymer Mortar and Cement Mortar for Continued Research
2.2. Methods
2.2.1. Compressive Strength Test of Mortars
2.2.2. The Leachability of the Wool-Based Geopolymer and Wool-Based Concrete
3. Results
3.1. Compressive and Flexural Strength Test Results
3.2. Results of Geopolymer Mortar Leaching Tests Compared with the Limit Values
3.3. Results of Cement Mortar Leaching Tests Compared with the Limit Values
3.4. Comparison of the Results of Geopolymer and Cement Mortar Leaching Tests
3.5. Comparison of Phenol and Formaldehyde Leaching Results from Geopolymer, Cement Mortar, and Mineral Wool
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davidovits, J. Why the Pharaohs Built the Pyramids with Fake Stones; Geopolymer Institute: Saint-Quentin, France, 2009. [Google Scholar]
- Davidovits, J. Soft mineralurgy and geopolymers. In Proceedings of the geopolymer 88 International Conference, Universite de Technologie, Compiegne, France; 1988. [Google Scholar]
- Davidovits, J. Geopolymer Chemistry and Applications; Geopolymer Institute: Saint-Quentin, France, 2008. [Google Scholar]
- Błaszczyński, T.Z.; Król, M.R. Geopolymers in Construction/Zastosowanie Geopolimerów W Budownictwie; Civil And Environmental Engineering Reports: Koszalin, Poland, 2015. [Google Scholar] [CrossRef] [Green Version]
- Baszczyski, T.; Król, M. Durability of cement and geopolimer composites. IOP Conf. Ser. Mater. Sci. Eng. 2017, 251, 012005. [Google Scholar] [CrossRef]
- Väntsi, O.; Kärki, T. Mineral wool waste in Europe: A review of mineral wool waste quantity, quality, and current recycling methods. J. Mater. Cycles Waste Manag. 2014, 16, 62–72. [Google Scholar] [CrossRef]
- Sattler, T.; Pomberger, R.; Schimek, J.; Vollprecht, D. Mineral wool waste in Austria, associated health aspects and recycling options. Detritus 2020, 09, 174–180. [Google Scholar] [CrossRef] [Green Version]
- Piyush, G.; Garima, N. Flyash Based Geopolymer; Beni-Suef University Journal of Basic and Applied Scinces: Beni-Suef, Egipt, 2021. [Google Scholar]
- Morshed, P.D.K.; Abdulrehman, M.A. Colored Geopolymer Concrete Based on Fly Ash. Int. J. Eng. 2022, 35, 1752–1758. [Google Scholar]
- Ibrahim, W.M.W.; Al Bakri Abdullah, M.M.; Ahmad, R.; Tahir, M.F.M.; Mortar, N.A.M.; Azli, M.A.A.N. Mechanical and physical properties of bottom ash/fly ash geopolymer for pavement brick application. IOP Conf. Ser. Mater. Sci. Eng. 2020, 743, 012029. [Google Scholar] [CrossRef]
- Dilan, P.; Mustafa, G. Processing and characterization of geopolymer and sintered geopolymer foams of waste glass powders. Constr. Build. Mater. 2021, 300, 124259. [Google Scholar] [CrossRef]
- Zribi, M.; Baklouti, S. Phosphate-based geopolymers: A critical review. Polym. Bull. 2022, 79, 6827–6855. [Google Scholar] [CrossRef]
- Yliniemi, J.; Luukkonen, T.; Kaiser, A.; Illikainen, M. Mineral wool waste-based geopolymers. IOP Conf. Ser. Earth Environ. Sci. 2019, 297, 012006. [Google Scholar] [CrossRef]
- Appiah-Kubi, E.; Yalley, P.P.; Sam, A. Strength behaviour of Corn Husk Ash polymer concrete reinforced with coconut fibre. Cogent Eng. 2021, 8, 1993511. [Google Scholar] [CrossRef]
- Łaźniewska-Piekarczyk, B.; Czop, M.; Smyczek, D. The Comparison of the Environmental Impact of Waste Mineral Wool and Mineral in Wool-Based Geopolymer. Materials 2022, 15, 2050. [Google Scholar] [CrossRef] [PubMed]
- Jindal, B.B.; Alomayri, T.; Assaedi, H.; Kaze, C.R. Geopolymer concrete with metakaolin for sustainability: A comprehensive review on raw material’s properties, synthesis, performance, and potential application. Environ. Sci. Pollut. Res. 2023, 30, 25299–25324. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Jiménez, A.; Monzó, M.; Vicent, M.; Barba, A.; Palomo, A. Alkaline Activation of Metakaolin-Fly Ash Mixtures: Obtain of Zeoceramics and Zeocements. Microporous Mesoporous Mater. 2008, 108, 41–49. [Google Scholar] [CrossRef]
- Al-Jaberi, L.A.; Ibrahim, Y.K. Microstructure, Strength, and Physical Properties of Metakaolin- Based Geopolymer Mortar. Int. J. Eng. Artif. Intell. 2021, 2, 13–26. [Google Scholar]
- Faza, Y.; Harmaji, A.; Takarini, V.; Hasratiningsih, Z.; Cahyanto, A. Synthesis of Porous Metakaolin Geopolymer as Bone Substitute Materials. Key Engineering Materials. Key Eng. Mater. 2019, 829, 182–187. [Google Scholar] [CrossRef]
- Available online: https://astra-polska.com/wp-content/uploads/2020/11/karta-teczhniczna-MK40-1-2.pdf (accessed on 20 March 2023).
- Zhan, J.; Li, H.; Li, H.; Cheng, Z.; Fu, B. Composition design and characterization of alkali-activated Slag–Metakaolin materials. Front. Built Environ. 2022, 8, 1020217. [Google Scholar] [CrossRef]
- Council Decision of 19 December 2002 Establishing Criteria and Procedures for the Acceptance of Waste at Landfills Pursuant to Article 16 of and Annex II to Directive 1999/31/EC. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/PDF/?uri=CELEX:32003D0033&from=EN (accessed on 10 February 2023).
- Hasan, M.; Kabir, A. Prediction of compressive strength of concrete from early age test result. In Proceedings of the 4th Annual Paper Meet and 1st Civil Engineering Congress, Dhaka, Bangladesh, 22–24 December 2011. [Google Scholar] [CrossRef]
- Faluyi, F.; Arum, C.; Ikumapayi, C.M.; Alabi, S.A. A Review of the Compressive Strength Predictor Variables of Geopolymer Concrete. FUOYE J. Eng. Technol. 2022, 7, 404–414. [Google Scholar] [CrossRef]
- EN 196-1:2016; Methods of Testing Cement Determination of Strength. European Committee for Standardization (CEN): Brussels, Belgium, 2016.
- Regulation of the Minister of Maritime Economy and Inland Navigation of 12 July 2019 on Substances Particularly Harmful to the Aquatic Environment and the Conditions to Be Met When Discharging Sewage intoWaters or Soil, as Well as Discharging Rainwater or Meltwater into Waters or for Water Devices (Journal of Laws 2019, Item 1311). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20190001311 (accessed on 10 February 2023).
- The Regulation of the Minister of Economy of 16 July 2015 on the Acceptance of Waste at landfilling. (Journal of Laws 2015, Item 1227). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20150001277 (accessed on 10 February 2023).
- EN 12457-2:2006; Characterisation of Waste—Leaching—Compliance Test for Leaching of Granular Waste Materials and Sludges. Part 2: One Stage Batch Test at a Liquid to Solid Ratio of 10 L/kg for Materials with Particle Size below 4 mm (without or with Size Reduction). European Committee for Standardization (CEN): Brussels, Belgium, 2006.
- EN ISO 10523:2012; Determination of pH. European Committee for Standardization (CEN): Brussels, Belgium, 2012.
- PN-EN ISO 11885:2009; Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Polish Committee for Standardization: Warszawa, Poland, 2009. Available online: https://sklep.pkn.pl (accessed on 20 February 2023).
- ISO 12846:2012; Water Quality—Determination of Mercury—Method Using Atomic Absorption Spectrometry (AAS) with and without Enrichment. International Organization for Standardization: London, UK, 2012. Available online: https://sklep.pkn.pl/ (accessed on 20 March 2023).
- EN ISO 10304-1:2009/AC:2012; Water Quality—Determination of Dissolved Anions by Liquid Chromatography of Ions—Part 1: Determination of Bromide, Chloride, Fluoride, Nitrate, Nitrite, Phosphate and Sulfate—Technical Corrigendum. European Committee for Standardization (CEN): Brussels, Belgium, 2012. Available online: https://sklep.pkn.pl (accessed on 20 February 2023).
- PN-EN 1484:1999; Water Analysis—Guidelines for the Determination of Total Organic Carbon (TOC) and Dissolved Organic Carbon (DOC). Polish Committee for Standardization: Warszawa, Poland, 1999. Available online: https://sklep.pkn.pl (accessed on 20 February 2023).
- PN-EN 15216:2010; Charakteryzowanie Odpadów—Oznaczanie Całkowitej Substancji Rozpuszczonej (TDS) W Wodzie I Eluatach. Polish Committee for Standardization: Warszawa, Poland, 2010. Available online: https://sklep.pkn.pl (accessed on 20 February 2023).
- PN-ISO 6439:1994; Water Quality pDetermination of Phenolic Index γSpectrometric Methods with 4-Aminoantypirin after Distillation. Polish Committee for Standardization: Warszawa, Poland, 1994. Available online: https://sklep.pkn.pl (accessed on 20 February 2023).
- EPA Method 316:2020; Method 316—Sampling and Analysis for Formaldehyde Emissions From Stationary Sources in the Mineral Wool and Wool Fiberglass Industries 10-7-2020.pdf. United States Environmental Protection Agency: Washington, DC, USA, 2020. Available online: https://sklep.pkn.pl (accessed on 20 March 2023).
- Yliniemi, J.; Laitinen, O.; Kinnunen, P.; Illikainen, M. Pulverization of fibrous mineral wool waste. J. Mater. Cycles Waste Manag. 2018, 20, 1248–1256. [Google Scholar] [CrossRef] [Green Version]
- Trejbal, J.; Zobal, O.; Domonkos, M.; Prošek, Z. New possibilities for recycling of mineral wool separated from thermal insulation waste. Acta Polytech. CTU Proc. 2022, 34, 122–126. [Google Scholar] [CrossRef]
- Bennett, T.; Allan, J.; Garden, J.; Shaver, M. Low Formaldehyde Binders for Mineral Wool Insulation: A Review. Glob. Chall. 2022, 6, 2100110. [Google Scholar] [CrossRef] [PubMed]
- Neuhaus, T.; Oppl, R.; Clausen, A. Formaldehyde Emissions from Mineral Wool in Building Constructions into Indoor Air; Indoor Air: Copenhagen, Denmark, 2008. [Google Scholar]
Chemical Composition | SiO2 | Al2O3 | Fe2O3 | TiO2 | CaO | K2O | MgO | SO3 | Na2O | P2O5 |
---|---|---|---|---|---|---|---|---|---|---|
Mineral wool | 43.8 | 16.4 | 5.4 | 0.5 | 21.83 | 0.21 | 9.7 | 0.0 | 1.9 | 0.1 |
Metakaolin | 52.00 | 45.00 | 0.50 | 1.50 | 0.40 | 0.05 | 0.20 | 0 | 0.15 | 0 |
Chemical Composition | SiO2 | Al2O3 | Fe2O3 | TiO2 | CaO | K2O | MgO | SO3 | Na2O | P2O5 |
---|---|---|---|---|---|---|---|---|---|---|
Mineral wool | 33.9 | 29.9 | 6 | 0.5 | 19.4 | 0.18 | 6.8 | 0.5 | 2.1 | 0.1 |
NSD (g) | MSW (g) | MK (g) | CEM II (g) | NaOH (g) | H2O (g) | ||
---|---|---|---|---|---|---|---|
Geopolymer mortars | WM1 | 1350 | 135 | 315 | 0 | 212 | 212 |
WM2 | 1350 | 225 | 225 | 0 | 187 | 187 | |
WM3 | 1350 | 315 | 135 | 0 | 162 | 162 | |
Cement mortars | WM4 | 1350 | 135 | 0 | 315 | 0 | 225 |
WM5 | 1350 | 225 | 0 | 225 | 0 | 225 | |
WM6 | 1350 | 315 | 0 | 135 | 0 | 225 |
Sample No. | Flexural Strength (Mpa) | Compressive Strength (Mpa) | ||
---|---|---|---|---|
Average Value | Standard Deviation | Average Value | Standard Deviation | |
WM1 | 2.96 | 0.97 | 11.34 | 1.73 |
WM2 | 3.12 | 0.27 | 9.24 | 1.28 |
WM3 | 3.68 | 0.40 | 8.53 | 1.79 |
WM4 | 1.48 | 0.51 | 17.78 | 1.77 |
WM5 | 2.58 | 0.14 | 17.07 | 1.07 |
WM6 | 1.90 | 0.18 | 5.99 | 1.16 |
Criteria for Waste Landfilling Acceptance [26] | |||||||
---|---|---|---|---|---|---|---|
Neutral | Other Than Neutral and Hazardous | Hazardous | |||||
PL | Unit | WM1 | WM2 | WM3 | |||
Arsenic, As | mg/kg | 0.42 | 0.39 | 0.42 | 0.5 | 2 | 25 |
Barium, Ba | mg/kg | 0.040 | 0.020 | <0.01 | 20 | 100 | 300 |
Cadmium, Cd | mg/kg | <0.01 | <0.01 | <0.01 | 0.04 | 1 | 5 |
Chromium, Cr | mg/kg | 0.24 | 0.19 | 0.13 | 0.5 | 10 | 70 |
Copper, Cu | mg/kg | 2.54 | 1.59 | 0.99 | 2 | 50 | 100 |
Mercury, Hg | mg/kg | 0.003 | 0.003 | 0.009 | 0.01 | 0.2 | 2 |
Molybdenum, Mo | mg/kg | <0.20 | 0.22 | 0.3 | 0.5 | 10 | 30 |
Nickel, Ni | mg/kg | 0.49 | 0.58 | 0.46 | 0.4 | 10 | 40 |
Lead, Pb | mg/kg | 4.08 | 2.03 | 0.92 | 0.5 | 10 | 50 |
Antimony, Sb | mg/kg | <0.20 | <0.20 | 0.21 | 0.06 | 0.7 | 5 |
Selenium, Se | mg/kg | 0.24 | <0.20 | <0.20 | 0.1 | 0.5 | 7 |
Zinc, Zn | mg/kg | 0.13 | 0.050 | 0.040 | 4 | 50 | 200 |
Chlorides, Cl− | mg/kg | 17.0 | 15 | 13.8 | 800 | 15,000 | 25,000 |
Fluorides, F− | mg/kg | 28.4 | 20.6 | 13.1 | 10 | 150 | 500 |
Sulphates, SO42− | mg/kg | 117 | 45.3 | 175 | 1000 | 20,000 | 50,000 |
Dissolved organic carbon, DOC | mg/kg | 633 | 965 | 1000 | 500 | 800 | 1000 |
Total dissolved solids (TDS) | mg/kg | 72,760 | 70,000 | 67,540 | 4000 | 60,000 | 100,000 |
Phenolic index | mg/kg | 0.870 | 1.35 | 0.620 | 1 | - | - |
Criteria for Waste Landfilling Acceptance [26] | |||||||
---|---|---|---|---|---|---|---|
Unit | WM4 | WM5 | WM6 | Neutral | Other Than Neutral and Hazardous | Hazardous | |
Arsenic, As | mg/kg s·m | <0.01 | <0.01 | <0.01 | 0.5 | 2 | 25 |
Barium, Ba | mg/kg s·m | 1.80 | 2.36 | 2.52 | 20 | 100 | 300 |
Cadmium, Cd | mg/kg s·m | <0.01 | <0.01 | <0.01 | 0.04 | 1 | 5 |
Chromium, Cr | mg/kg s·m | 3.23 | 2.04 | 1.33 | 0.5 | 10 | 70 |
Copper, Cu | mg/kg s·m | 0.14 | 0.15 | 0.17 | 2 | 50 | 100 |
Mercury, Hg | mg/kg s·m | 0.0004 | 0.0004 | 0.0002 | 0.01 | 0.2 | 2 |
Molybdenum, Mo | mg/kg s·m | 0.73 | 0.41 | 0.37 | 0.5 | 10 | 30 |
Nickel, Ni | mg/kg s·m | <0.01 | <0.01 | <0.01 | 0.4 | 10 | 40 |
Lead, Pb | mg/kg s·m | <0.01 | <0.01 | <0.01 | 0.5 | 10 | 50 |
Antimony, Sb | mg/kg s·m | 1.03 | 0.91 | 0.94 | 0.06 | 0.7 | 5 |
Selenium, Se | mg/kg s·m | <0.20 | <0.20 | <0.20 | 0.1 | 0.5 | 7 |
Zinc, Zn | mg/kg s·m | <0.01 | <0.01 | 0.01 | 4 | 50 | 200 |
Chlorides, Cl− | mg/kg s·m | 31 | 31 | 46.6 | 800 | 15,000 | 25,000 |
Fluorides, F− | mg/kg s·m | 2.50 | 2.50 | 3.40 | 10 | 150 | 500 |
Sulphates, SO42− | mg/kg s·m | 1870 | 1600 | 1550 | 1000 | 20,000 | 50,000 |
Dissolved organic carbon, DOC | mg/kg s·m | 37.4 | 38.5 | 44.8 | 500 | 800 | 1000 |
Total dissolved solids (TDS) | mg/kg s·m | 5400 | 4210 | 4040 | 4000 | 60,000 | 100,000 |
Phenolic index | mg/kg s·m | 0.870 | 1.35 | 0.620 | 1 | - | - |
PL | Unit | WM1 | WM2 | WM3 | WM4 | WM5 | WM6 |
---|---|---|---|---|---|---|---|
Arsenic, As | mg/kg | 0.42 | 0.39 | 0.42 | <0.01 | <0.01 | <0.01 |
Barium, Ba | mg/kg | 0.040 | 0.020 | <0.01 | 1.80 | 2.36 | 2.52 |
Cadmium, Cd | mg/kg | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Chromium, Cr | mg/kg | 0.24 | 0.19 | 0.13 | 3.23 | 2.04 | 1.33 |
Copper, Cu | mg/kg | 2.54 | 1.59 | 0.99 | 0.14 | 0.15 | 0.17 |
Mercury, Hg | mg/kg | 0.003 | 0.003 | 0.009 | 0.0004 | 0.0004 | 0.0002 |
Molybdenum, Mo | mg/kg | <0.20 | 0.22 | 0.3 | 0.73 | 0.41 | 0.37 |
Nickel, Ni | mg/kg | 0.49 | 0.58 | 0.46 | <0.01 | <0.01 | <0.01 |
Lead, Pb | mg/kg | 4.08 | 2.03 | 0.92 | <0.01 | <0.01 | <0.01 |
Antimony, Sb | mg/kg | <0.20 | <0.20 | 0.21 | 1.03 | 0.91 | 0.94 |
Selenium, Se | mg/kg | 0.24 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 |
Zinc, Zn | mg/kg | 0.13 | 0.050 | 0.040 | <0.01 | <0.01 | 0.01 |
Chlorides, Cl− | mg/kg | 17.0 | 15 | 13.8 | 31 | 31 | 46.6 |
Fluorides, F− | mg/kg | 28.4 | 20.6 | 13.1 | 2.50 | 2.50 | 3.40 |
Sulphates, SO42− | mg/kg | 117 | 45.3 | 175 | 1870 | 1600 | 1550 |
Dissolved organic carbon, DOC | mg/kg | 633 | 965 | 1000 | 37.4 | 38.5 | 44.8 |
Total dissolved solids (TDS) | mg/kg | 72,760 | 70,000 | 67,540 | 5400 | 4210 | 4040 |
Sodium, Na | mg/kg | 29,710 | 27,330 | 28,940 | 826 | 346 | 249 |
pH (T) | - (°C) | 12.7 (22.3) | 12.7 (22.4) | 12.7 (22.5) | 11.2 (23) | 11.1 (22.9) | 11.1 (22.5) |
Formaldehyde | mg/kg | 5.56 | 8.30 | 12.6 | 5.18 | 7.22 | 8.41 |
Phenolic index | mg/kg | 0.870 | 1.35 | 0.620 | 0.210 | 0.350 | 0.470 |
Unit | WM1 | WM2 | WM3 | WM4 | WM5 | WM6 | Mineral Wool | |
---|---|---|---|---|---|---|---|---|
pH (Temperature) | °C | 12.7 (22.3) | 12.7 (22.4) | 12.7 (22.5) | 11.2 (23) | 11.1 (22.9) | 11.1 (22.5) | 8.9 (21.9) |
Formaldehyde | mg/kg | 5.56 | 8.30 | 12.60 | 5.18 | 7.22 | 8.41 | 578 |
Phenolic index | mg/kg | 8.70 | 1.35 | 0.62 | 0.21 | 0.35 | 0.47 | 7.80 |
Sample No. | Wool Quantity (%) | Formaldehyde (mg/kg) |
---|---|---|
WM1 | 7.5 | 5.56 |
WM2 | 12.5 | 8.30 |
WM3 | 17.5 | 12.60 |
WM4 | 7.5 | 5.18 |
WM5 | 12.5 | 7.22 |
WM6 | 17.5 | 8.41 |
Mineral wool | 100 | 578 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łaźniewska-Piekarczyk, B.; Smyczek, D.; Czop, M. Comparison of the Effectiveness of Reducing the Leaching of Formaldehyde from Immobilized Wool in Geopolymer and Cement Mortar. Appl. Sci. 2023, 13, 4895. https://doi.org/10.3390/app13084895
Łaźniewska-Piekarczyk B, Smyczek D, Czop M. Comparison of the Effectiveness of Reducing the Leaching of Formaldehyde from Immobilized Wool in Geopolymer and Cement Mortar. Applied Sciences. 2023; 13(8):4895. https://doi.org/10.3390/app13084895
Chicago/Turabian StyleŁaźniewska-Piekarczyk, Beata, Dominik Smyczek, and Monika Czop. 2023. "Comparison of the Effectiveness of Reducing the Leaching of Formaldehyde from Immobilized Wool in Geopolymer and Cement Mortar" Applied Sciences 13, no. 8: 4895. https://doi.org/10.3390/app13084895
APA StyleŁaźniewska-Piekarczyk, B., Smyczek, D., & Czop, M. (2023). Comparison of the Effectiveness of Reducing the Leaching of Formaldehyde from Immobilized Wool in Geopolymer and Cement Mortar. Applied Sciences, 13(8), 4895. https://doi.org/10.3390/app13084895