Battery-Free Pork Freshness Estimation Based on Colorimetric Sensors and Machine Learning
Abstract
:1. Introduction
- The design of a compact sensor tag as a key component for monitoring the freshness of pork;
- The design of a system that can harvest RF energy, simplifying the process of designing and configuring the system;
- The design of a printed collinear antenna operating in the UHF band of 915 MHz, with the system’s efficiency enhanced by using an antenna with high RF energy harvesting efficiency;
- The design of a machine learning algorithm for detecting meat quality, with the 1D convolutional neural network (CNN) model outperforming other machine learning models;
- The development of an early warning system that prevents meat poisoning due to improper storage and exposure to warm temperatures during summer.
2. System Configuration
- A Support Vector Machine (SVM) model;
- A Multilayer Perceptron (MLP) model;
- A 1D-CNN model with the characteristics of a CNN applied;
- A ConvLSTM model, which applies a CNN to the long short-term memory (LSTM). This model is specialized for time-series training characteristics.
3. Material and Method
3.1. High-Efficiency Energy Harvesting with the Collinear Antenna
- Length 36 mm;
- Width 149 mm;
- Thickness 2.4 mm.
3.2. Friis Transmitter Formula
3.3. Calculation of PI Matching Network via Smith Chart
3.4. The Proposed Smart-Sensor Tag Design
4. RF Harvesting Experiment
4.1. RF Harvesting Evaluation of the Collinear Dipole Antenna
4.2. Kalman Filter for RF Harvesting Evaluation
Algorithm 1: Kalman Filtering for Energy Harvesting | ||
1: | Initialization: | |
Input: Initial state estimate , initial error covariance | ||
Output: None | ||
# Initialize state estimate | ||
# Initialize error covariance | ||
2: | Prediction: | |
Input: State transition matrix , state estimate at previous step , process noise covariance | ||
Output: Predicted state estimate , predicted error covariance | ||
# State estimate prediction | ||
# Error covariance prediction | ||
3: | Kalman Gain Calculation: | |
Input: Observation matrix , predicted error covariance , measurement noise covariance | ||
Output: Kalman gain | ||
# Kalman gain calculation | ||
4: | Update | |
Input: Observation , observation matrix , predicted state estimate , Kalman gain | ||
Output: Updated state estimate , updated error covariance | ||
#State estimate update | ||
# Error covariance update |
4.3. RF Energy Scavenging Performance
5. Food Monitoring Method and Data Preprocessing for Machine Learning
5.1. Criteria for Data Preprocessing Process and Degree of Rotten
5.2. Changes in the Color Space of RGB to HSV
5.3. Reference Data of the Degree of Rotten in the Storage of Livestock Products in Summer
6. Dimensionality Reduction for Data Visualization
Support Vector Machine
7. Machine Learning Models for Pork Freshness Classification
7.1. Multilayer Perceptron Model
7.2. Long Short-Term Memory Model
7.3. 1D-CNN Model
7.4. ConvLSTM Model
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Girolami, A.; Napolitano, F.; Faraone, D.; Braghieri, A. Measurement of meat color using a computer vision system. Meat Sci. 2013, 93, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Kim, S.; Kim, J.G. Diffuse reflectance spectroscopy to quantify the met-myoglobin proportion and meat oxygenation inside of pork and beef. Food Chem. 2019, 275, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Holman, B.W.; van de Ven, R.J.; Mao, Y.; Coombs, C.E.; Hopkins, D.L. Using instrumental (CIE and reflectance) measures to predict consumers’ acceptance of beef colour. Meat Sci. 2017, 127, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; He, L.; Jin, G.; Ma, S.; Wu, W.; Gai, L. Effect of different irradiation dose treatment on the lipid oxidation, instrumental color and volatiles of fresh pork and their changes during storage. Meat Sci. 2017, 128, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Wang, J.; Zhuang, H.; Yan, W.; Zhao, J.; Zhang, J. Effect of in-package high voltage dielectric barrier discharge on microbiological, color and oxidation properties of pork in modified atmosphere packaging during storage. Meat Sci. 2019, 149, 107–113. [Google Scholar] [CrossRef]
- Mansur, A.R.; Song, E.J.; Cho, Y.S.; Nam, Y.D.; Choi, Y.S.; Kim, D.O.; Seo, D.H.; Nam, T.G. Comparative evaluation of spoilage-related bacterial diversity and metabolite profiles in chilled beef stored under air and vacuum packaging. Food Microbiol. 2019, 77, 166–172. [Google Scholar] [CrossRef]
- Boada, M.; Lazaro, A.; Villarino, R.; Girbau, D. Battery-less NFC sensor for pH monitoring. IEEE Access 2019, 7, 33226–33239. [Google Scholar] [CrossRef]
- Lazaro, A.; Boada, M.; Villarino, R.; Girbau, D. Color measurement and analysis of fruit with a battery-less NFC sensor. Sensors 2019, 19, 1741. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.B.; Tran, V.T.; Chung, W.Y. Pressure measurement-based method for battery-free food monitoring powered by NFC energy harvesting. Sci. Rep. 2019, 9, 17556. [Google Scholar] [CrossRef] [Green Version]
- Emmanuel, N.; Haridas, R.; Chelakkara, S.; Nair, R.B.; Gopi, A.; Sajitha, M.; Yoosaf, K. Smartphone Assisted Colourimetric detection and quantification of Pb 2+ and Hg 2+ ions using Ag nanoparticles from aqueous medium. IEEE Sens. J. 2020, 20, 8512–8519. [Google Scholar] [CrossRef]
- Nguyen, H.; Misbah, I.; Shih, W.C. Smartphone nano-colorimetry for on-demand multiplex lead and mercury detection and quantitation in drinking water. IEEE Sens. J. 2020, 20, 6685–6691. [Google Scholar] [CrossRef]
- Do, H.; Kim, D.; Lam, M.B.; Chung, W. Self-powered food assessment system using LSTM network and 915 MHz RF energy harvesting. IEEE Access 2021, 9, 97444–97456. [Google Scholar] [CrossRef]
- Lam, M.B.; Dang, N.T.; Nguyen, T.; Chung, W. A neural network-based model of radio frequency energy harvesting characteristics in a self-powered food monitoring system. IEEE Sens. J. 2019, 19, 8813–8823. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Lam, M.B.; Chung, W.Y. Battery-less pork freshness monitoring based on high-efficiency RF energy harvesting. J. Sens. Sci. Technol. 2020, 29, 293–302. [Google Scholar] [CrossRef]
- Lam, M.B.; Nguyen, T.H.; Chung, W.Y. Deep learning-based food quality estimation using radio frequency-powered sensor mote. IEEE Access 2020, 8, 88360–88371. [Google Scholar] [CrossRef]
- Cao, X.; Chung, W. Range-extended wireless food spoilage monitoring with a high energy efficient battery-free sensor tag. Sens. Actuators A Phys. 2019, 299, 111632. [Google Scholar] [CrossRef]
- Wu, J.; Li, J.; Cui, X.; Mao, L. Miniaturized dual-band patch antenna mounted on metallic plates for RFID passive tag. In Proceedings of the International Conference on Control, Automation and Systems (CASE), Gyeonggi-do, Republic of Korea, 30 July 2011; pp. 1–4. [Google Scholar]
- Bong, F.L.; Lim, E.H.; Lo, F.L. Flexible folded-patch antenna with serrated edges for metal-mountable UHF RFID tag. IEEE Trans. Antennas Propag. 2016, 65, 873–877. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Sun, S.; Xu, H. Compact collinear quasi-Yagi antenna array for wireless energy harvesting. IEEE Access 2020, 8, 35308–35317. [Google Scholar] [CrossRef]
- Ballandovich, S.V.; Antonov, Y.G.; Kostikov, G.A.; Liubina, L.M.; Sugak, M.I. Collinear wideband-dipoles antenna array with the omnidirectional radiation pattern in the azimuth plane. In Proceedings of the IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), St. Petersburg, Russia, 28–31 January 2019. [Google Scholar]
- Hosseini-Fahraji, A.; Manteghi, M. Design of a broadband high-gain end-fed coaxial collinear antenna. IEEE Antennas Wirel. 2021, 20, 1770–1774. [Google Scholar] [CrossRef]
- Liu, W.; Huang, K.; Wang, T.; Hou, J.; Zhang, Z. Broadband high-efficiency RF rectifier with a cross-shaped match stub of two one-eighth-wavelength transmission lines. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 1170–1173. [Google Scholar] [CrossRef]
- Mohan, C.L.; Kavya, K.C.S.; Kotamraju, S.K. Design, and analysis of capacitive shunt RF MEMS switch for reconfigurable antenna. Trans. Electr. Electron. Mater. 2021, 22, 57–66. [Google Scholar] [CrossRef]
- Mishra, D.; De, S.; Jana, S.; Basagni, S.; Chowdhury, K.; Heinzelman, W. Smart RF energy harvesting communications: Challenges and opportunities. IEEE Commun. Mag. 2015, 53, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Wang, P.; Niyato, D.; Kim, D.I.; Han, Z. Wireless networks with RF energy harvesting: A contemporary survey. IEEE Commun. Surv. Tutor. 2014, 17, 757–789. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Hu, J.; Zhang, D.; Guo, H.; Zhang, Y.; Shen, X. RF energy harvesting and transfer in cognitive radio sensor networks: Opportunities and challenges. IEEE Commun. Mag. 2018, 56, 104–110. [Google Scholar] [CrossRef]
- Jabbar, H.; Song, Y.S.; Jeong, T.T. RF energy harvesting system and circuits for charging of mobile devices. IEEE Trans. Consum. Electron. 2010, 56, 247–253. [Google Scholar] [CrossRef]
- Roy, S.K.; Nicolson, A.; Paliwal, K.K. DeepLPC: A deep learning approach to augmented Kalman filter-based single-channel speech enhancement. IEEE Access 2021, 9, 64524–64538. [Google Scholar] [CrossRef]
- Poncela, P.; Ruiz, E.; Miranda, K. Factor extraction using Kalman filter and smoothing: This is not just another survey. Int. J. 2021, 37, 1399–1425. [Google Scholar] [CrossRef]
- Yu, L.S.; Chou, S.Y.; Wu, H.Y.; Chen, Y.C.; Chen, Y.H. Rapid and semi-quantitative colorimetric loop-mediated isothermal amplification detection of ASFV via HSV color model transformation. J. Microbiol. Immunol. Infect. 2021, 54, 963–970. [Google Scholar] [CrossRef]
- Zhong, H.; Wang, R. A visual-degradation-inspired model with HSV color-encoding for contour detection. J. NeuroSci. 2021, 369, 109423. [Google Scholar] [CrossRef]
- Korea Consumer Agency. Korea Consumer Agency Website. Available online: https://www.kca.go.kr/home/sub.do?menukey=4006&mode=view&no=1001921090 (accessed on 10 November 2022).
- Korean Ministry of Food and Drug Safety. Food and Drug Safety Assessment Service. Available online: https://www.nifds.go.kr/brd/m_21/view.do?seq=12693 (accessed on 10 November 2022).
- An, R.; Xu, Y.; Liu, X. A rough margin-based multi-task ν-twin support vector machine for pattern classification. Appl. Soft Comput. 2021, 112, 107769. [Google Scholar] [CrossRef]
- Chakraborty, A.; Mitra, S.; De, D.; Pal, A.J.; Ghaemi, F.; Ahmadian, A.; Ferrara, M. Determining protein–protein interaction using support vector machine: A review. IEEE Access 2021, 9, 12473–12490. [Google Scholar] [CrossRef]
- Mai, N.D.; Lee, B.G.; Chung, W.Y. Affective computing on machine learning-based emotion recognition using a self-made EEG device. Sensors 2021, 21, 5135. [Google Scholar] [CrossRef]
- Kim, D.; Lee, J.; Chung, W.Y.; Lee, J. Artificial intelligence-based optimal grasping control. Sensors 2020, 20, 2020. [Google Scholar] [CrossRef]
- Greff, K.; Srivastava, R.K.; Koutnik, J. LSTM: A search space odyssey. IEEE Trans. Neural. Netw. Learn Syst. 2016, 28, 2222–2232. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.; Waong, W.; Woo, W. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Adv. Neural. Inf. Process Syst. 2015, 28, 802–810. [Google Scholar]
- Mohine, S.; Bansod, B.S.; Bhalla, R.; Basra, A. Acoustic modality based hybrid deep 1D CNN-BiLSTM algorithm for moving vehicle classification. IEEE Trans Intell. Transp. Syst. 2022, 9, 16206–16216. [Google Scholar] [CrossRef]
- Alibrahim, H.; Ludwig, S.A. Hyperparameter optimization: Comparing genetic algorithm against grid search and bayesian optimization. In Proceedings of the 2021 IEEE Congress on Evolutionary Computation (CEC), Kraków, Poland, 28 June–1 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1551–1559. [Google Scholar]
- Bergstra, J.; Bardenet, R.; Bengio, U.; Kegl, B. Algorithms for hyper-parameter optimization. Adv. Neural. Inf. Process Syst. 2011, 24, 2546–2554. [Google Scholar]
Filter | Kernel Size | Learning Rate | Dropout Rate | Weight Decay | Train Accuracy |
---|---|---|---|---|---|
64, 128 | 2 | 0.001 | 0.3 | 0.0001 | 0.9768 |
64, 128 | 3 | 0.001 | 0.3 | 0.0001 | 0.9851 |
64, 32 | 2 | 0.001 | 0.5 | 0.0001 | 0.9870 |
64, 32 | 3 | 0.001 | 0.3 | 0.001 | 0.9861 |
MLP | LSTM | 1D-CNN | ConvLSTM | |
---|---|---|---|---|
Accuracy | 0.9797 | 0.9814 | 0.9870 | 0.9676 |
Loss | 0.0347 | 0.0314 | 0.0307 | 0.0950 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.-E.; Nando, Y.A.; Chung, W.-Y. Battery-Free Pork Freshness Estimation Based on Colorimetric Sensors and Machine Learning. Appl. Sci. 2023, 13, 4896. https://doi.org/10.3390/app13084896
Kim D-E, Nando YA, Chung W-Y. Battery-Free Pork Freshness Estimation Based on Colorimetric Sensors and Machine Learning. Applied Sciences. 2023; 13(8):4896. https://doi.org/10.3390/app13084896
Chicago/Turabian StyleKim, Dong-Eon, Yudi April Nando, and Wan-Young Chung. 2023. "Battery-Free Pork Freshness Estimation Based on Colorimetric Sensors and Machine Learning" Applied Sciences 13, no. 8: 4896. https://doi.org/10.3390/app13084896
APA StyleKim, D. -E., Nando, Y. A., & Chung, W. -Y. (2023). Battery-Free Pork Freshness Estimation Based on Colorimetric Sensors and Machine Learning. Applied Sciences, 13(8), 4896. https://doi.org/10.3390/app13084896