Valorization of Cassava By-Products: Cyanide Content and Quality Characteristics of Leaves and Peel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cassava Leaves and Their Fractions
2.2. Enzymatic Pretreatment for Peeling Cassava Tubers
2.3. Analysis of Dry Matter, Organic Matter, Crude Protein, and Fiber
2.4. Cyanide Measurement
2.5. Statistical Analysis
3. Results and Discussion
3.1. Quality Assessment and Cyanide Level of Cassava Leaves following Screw Pressing
3.2. Changes in Composition, Fiber, and Cyanide Content of Cassava Tuber Peel after Enzymatic Treatment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boukhers, I.; Boudard, F.; Morel, S.; Servent, A.; Portet, K.; Guzman, C.; Vitou, M.; Kongolo, J.; Michel, A.; Poucheret, P. Nutrition, Healthcare Benefits and Phytochemical Properties of Cassava (Manihot esculenta) Leaves Sourced from Three Countries (Reunion, Guinea, and Costa Rica). Foods 2022, 11, 2027. [Google Scholar] [CrossRef] [PubMed]
- Okoth, R.A.; Matofari, J.W.; Nduko, J.M. Effectiveness of Levilactobacillus brevis fermentation on antinutrients and protein quality of leaves of selected cassava varieties. Appl. Food Res. 2022, 2, 100134. [Google Scholar] [CrossRef]
- Ayele, H.H.; Latif, S.; Müller, J. Influence of Temperature and Screw Pressing on the Quality of Cassava Leaf Fractions. Agriculture 2022, 12, 42. [Google Scholar] [CrossRef]
- Hawashi, M.; Sitania, C.; Caesy, C.; Aparamarta, H.W.; Widjaja, T.; Gunawan, S. Kinetic data of extraction of cyanide during the soaking process of cassava leaves. Data Brief 2019, 25, 104279. [Google Scholar] [CrossRef]
- Chaiareekitwat, S.; Latif, S.; Mahayothee, B.; Khuwijitjaru, P.; Nagle, M.; Amawan, S.; Müller, J. Protein composition, chlorophyll, carotenoids, and cyanide content of cassava leaves (Manihot esculenta Crantz) as influenced by cultivar, plant age, and leaf position. Food Chem. 2022, 372, 131173. [Google Scholar] [CrossRef]
- Alamu, E.O.; Dixon, A.; Eyinla, T.E.; Maziya-Dixon, B. Characterization of macro and micro-minerals in cassava leaves from genotypes planted in three different agroecological locations in Nigeria. Heliyon 2022, 8, e11618. [Google Scholar] [CrossRef]
- Barati, Z.; Latif, S.; Romuli, S.; Müller, J. Enzyme-assisted mechanical peeling of cassava tubers. Catalysts 2020, 10, 66. [Google Scholar] [CrossRef]
- Barati, Z.; Latif, S.; Romuli, S.; Müller, J. Freeze-thaw pre-treatment of cassava tubers to improve efficiency of mechanical peeling. Appl. Sci. 2019, 9, 2856. [Google Scholar] [CrossRef]
- Edhirej, A.; Sapuan, S.M.; Jawaid, M.; Zahari, N.I. Cassava: Its polymer, fiber, composite, and application. Polym. Compos. 2017, 38, 555–570. [Google Scholar] [CrossRef]
- Baguma, M.; Migabo, C.; Nzabara, F.; Sami, W.L.; Akili, C.M.; Lwamushi, S.M.; Bisimwa, J.M.; Nkemba, A.; Chirhalwirwa, P.; Maheshe, G.B.; et al. Impact of Seasonal Variation and Processing Methods on the Cassava-Derived Dietary Cyanide Poisoning, Nutritional Status, and Konzo Appearance in South-Kivu, Eastern D.R. Congo. Processes 2022, 10, 337. [Google Scholar] [CrossRef]
- Otache, M.; Ubwa, S.; Godwin, A. Proximate Analysis and Mineral Composition of Peels of Three Sweet Cassava Cultivars. Asian J. Phys. Chem. Sci. 2017, 3, 1–10. [Google Scholar] [CrossRef]
- Sudaryanto, Y.; Hartono, S.B.; Irawaty, W.; Hindarso, H.; Ismadji, S. High surface area activated carbon prepared from cassava peel by chemical activation. Bioresour. Technol. 2006, 97, 734–739. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Al-Gheethi, A.; Asharuddin, S.M.; Othman, N. Potential of cassava peels as a sustainable coagulant aid for institutional wastewater treatment: Characterisation, optimisation and techno-economic analysis. Chem. Eng. J. 2021, 420, 127642. [Google Scholar] [CrossRef]
- Leguizamón, A.J.; Rompato, K.M.; Hoyos, R.E.; Audisio, M.C. Nutritional evaluation of three varieties of cassava leaves (Manihot esculenta Crantz) grown in Formosa, Argentina. J. Food Compos. Anal. 2021, 101, 103986. [Google Scholar] [CrossRef]
- Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.C.; Nebbia, C.S.; et al. Evaluation of the health risks related to the presence of cyanogenic glycosides in foods other than raw apricot kernels. EFSA J. 2019, 17, 5662. [Google Scholar] [CrossRef]
- Ndubuisi, N.D.; Chidiebere, A.C.U. Cyanide in Cassava: A Review. Int. J. Genom. Data Min. 2018, 3, 118. [Google Scholar] [CrossRef]
- Bradbury, J.H.; Denton, I.C. Mild method for removal of cyanogens from cassava leaves with retention of vitamins and protein. Food Chem. 2014, 158, 417–420. [Google Scholar] [CrossRef]
- Estiasih, T.; Irawati; Kuliahsari, D.E.; Widayanti, V.T. Increasing Health Benefit of Wild Yam (Dioscorea hispida) Tuber by Red Mold (Angkak) Fermentation. IOP Conf. Ser. Earth Environ. Sci. 2020, 515, 012055. [Google Scholar] [CrossRef]
- Panghal, A.; Munezero, C.; Sharma, P.; Chhikara, N. Cassava toxicity, detoxification and its food applications: A review. Toxin Rev. 2019, 40, 1–16. [Google Scholar] [CrossRef]
- Bradbury, J.H.; Denton, I.C. Mild methods of processing cassava leaves to remove cyanogens and conserve key nutrients. Food Chem. 2011, 127, 1755–1759. [Google Scholar] [CrossRef]
- Ayele, H.H.; Latif, S.; Bruins, M.E.; Müller, J. Partitioning of Proteins and Anti-Nutrients in Cassava (Manihot esculenta Crantz) Leaf Processing Fractions after Mechanical Extraction and Ultrafiltration. Foods 2021, 10, 1714. [Google Scholar] [CrossRef] [PubMed]
- Ufuan Achidi, A.; Ajayi, O.A.; Bokanga, M.; Maziya-Dixon, B. The use of cassava leaves as food in Africa. Ecol. Food Nutr. 2005, 44, 423–435. [Google Scholar] [CrossRef]
- Quinn, A.A.; Myrans, H.; Gleadow, R.M. Cyanide Content of Cassava Food Products Available in Australia. Foods 2022, 11, 1384. [Google Scholar] [CrossRef] [PubMed]
- Latif, S.; Zimmermann, S.; Barati, Z.; Müller, J. Detoxification of Cassava Leaves by Thermal, Sodium Bicarbonate, Enzymatic, and Ultrasonic Treatments. J. Food Sci. 2019, 84, 1986–1991. [Google Scholar] [CrossRef] [PubMed]
- Castellanos, R.; Altamirano, S.B.; Moretti, R.H. Nutritional characteristics of cassava (Manihot esculenta Crantz) leaf protein concentrates obtained by ultrafiltration and acidic thermocoagulation. Plant Foods Hum. Nutr. 1994, 45, 357–363. [Google Scholar] [CrossRef]
- FAO/WHO. Safety Evaluation of Certain Food Additives and Contaminants: Prepared by the Seventy-Fourth Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA); World Health Organization: Geneva, Switzerland, 2012; pp. 605–684. [Google Scholar]
- Latif, S.; Romuli, S.; Barati, Z.; Müller, J. CFD assisted investigation of mechanical juice extraction from cassava leaves and characterization of the products. Food Sci. Nutr. 2020, 8, 3089–3098. [Google Scholar] [CrossRef]
- Dalvi-Isfahan, M.; Jha, P.K.; Tavakoli, J.; Daraei-Garmakhany, A.; Xanthakis, E.; Le-Bail, A. Review on identification, underlying mechanisms and evaluation of freezing damage. J. Food Eng. 2019, 255, 50–60. [Google Scholar] [CrossRef]
- Widiarto, S.; Pramono, E.; Suharso; Rochliadi, A.; Arcana, I.M. Cellulose nanofibers preparation from cassava peels via mechanical disruption. Fibers 2019, 7, 44. [Google Scholar] [CrossRef]
- Amoah, F.; Bobobee, E.Y.H.; Addo, A.; Darko, J.O.; Akowuah, J.O. A review of mechanical cassava peeling and its adoption by processors. J. Ghana Inst. Eng. 2022, 22, 23–38. [Google Scholar] [CrossRef]
- Olukunle, O.J.; Jimoh, M.O. Comparative analysis and performance evaluation of three cassava peeling machines. Int. Res. J. Eng. Sci. 2012, 1, 94–102. [Google Scholar]
- Sornyotha, S.; Kyu, K.L.; Ratanakhanokchai, K. An efficient treatment for detoxification process of cassava starch by plant cell wall-degrading enzymes. J. Biosci. Bioeng. 2010, 109, 9–14. [Google Scholar] [CrossRef] [PubMed]
- AOAC International. Official Methods of Analysis of AOAC; Association of Official Analytical Chemists: Arlington, VA, USA, 2005. [Google Scholar]
- Bradbury, M.G.; Egan, S.V.; Bradbury, J.H. Picrate paper kits for determination of total cyanogens in cassava roots and all forms of cyanogens in cassava products. J. Sci. Food Agric. 1999, 79, 593–601. [Google Scholar] [CrossRef]
- Rezaul Haque, M.; Howard Bradbury, J. Total cyanide determination of plants and foods using the picrate and acid hydrolysis methods. Food Chem. 2002, 77, 107–114. [Google Scholar] [CrossRef]
- Santamaría-Fernández, M.; Lübeck, M. Production of leaf protein concentrates in green biorefineries as alternative feed for monogastric animals. Anim. Feed Sci. Technol. 2020, 268, 114605. [Google Scholar] [CrossRef]
- Oni, A.O.; Onwuka, C.F.I.; Arigbede, O.M.; Anele, U.Y.; Oduguwa, O.O.; Onifade, O.S.; Tan, Z.L. Chemical composition and nutritive value of four varieties of cassava leaves grown in South-Western Nigeria. J. Anim. Physiol. Anim. Nutr. 2011, 95, 583–590. [Google Scholar] [CrossRef]
- Ogbadoyi, E.O.; Musa, A. Effect of Freezing on Some Plant Toxins and Micronutrients in the Leaves of Amaranthus Cruentus. J. Food Stud. 2013, 2, 75–92. [Google Scholar] [CrossRef]
- Ona, J.I.; Halling, P.J.; Ballesteros, M. Enzyme hydrolysis of cassava peels: Treatment by amylolytic and cellulolytic enzymes. Biocatal. Biotransform. 2019, 37, 77–85. [Google Scholar] [CrossRef]
- Oladiti, O.O.; Oluwadamil, O.O.; Adebola, I.O.; Juliet Bam, A. Hydrolysis of Cassava Peels with Concentrated Cellulase from Bacillus subtilis Improved Its Nutritional Contents. Asian J. Biol. Sci. 2020, 13, 353–360. [Google Scholar] [CrossRef]
- Sujithra, B.; Deepika, S.; Akshaya, K.; Ponnusami, V. Production and optimization of xanthan gum from three-step sequential enzyme treated cassava bagasse hydrolysate. Biocatal. Agric. Biotechnol. 2019, 21, 101294. [Google Scholar] [CrossRef]
- Olaniyi, O.O.; Bankefa, E.O.; Folasade, I.O.; Familoni, T.V. Nutrient enrichment of mannanase-treated cassava peels and corn cob. Res. J. Microbiol. 2015, 10, 533–541. [Google Scholar] [CrossRef]
- Barati, Z.; Latif, S.; Müller, J. Enzymatic hydrolysis of cassava peels as potential pre-treatment for peeling of cassava tubers. Biocatal. Agric. Biotechnol. 2019, 20, 101247. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukhtar, A.; Latif, S.; Barati, Z.; Müller, J. Valorization of Cassava By-Products: Cyanide Content and Quality Characteristics of Leaves and Peel. Appl. Sci. 2023, 13, 6340. https://doi.org/10.3390/app13106340
Mukhtar A, Latif S, Barati Z, Müller J. Valorization of Cassava By-Products: Cyanide Content and Quality Characteristics of Leaves and Peel. Applied Sciences. 2023; 13(10):6340. https://doi.org/10.3390/app13106340
Chicago/Turabian StyleMukhtar, Adnan, Sajid Latif, Ziba Barati, and Joachim Müller. 2023. "Valorization of Cassava By-Products: Cyanide Content and Quality Characteristics of Leaves and Peel" Applied Sciences 13, no. 10: 6340. https://doi.org/10.3390/app13106340
APA StyleMukhtar, A., Latif, S., Barati, Z., & Müller, J. (2023). Valorization of Cassava By-Products: Cyanide Content and Quality Characteristics of Leaves and Peel. Applied Sciences, 13(10), 6340. https://doi.org/10.3390/app13106340