A Novel Remote Sensing Image Enhancement Method, the Pseudo-Tasseled Cap Transformation: Taking Buildings and Roads in GF-2 as an Example
Abstract
:1. Introduction
2. Materials
2.1. Remote Sensing Data
2.2. Data Preprocessing
3. Pseudo-TCT and Verification Experiment
3.1. Pseudo-TCT
3.1.1. Orthogonal Linear Transform
3.1.2. Linear Stretching and Percentage Truncation Stretching
3.2. Verification Experiment of Inter-Class Separability
3.2.1. K-Means Clustering and ISODATA Clustering
3.2.2. Three-Dimensional Visualization and Intra-Class Consistency Visualization
4. Experiments and Results
4.1. Pseudo-TCT of GF-2
4.2. High Precision Label Making
4.3. Inter-Class Separability and Intra-Class Consistency Validation Experiments
4.3.1. K-Means Clustering and ISODATA Clustering Test for Inter-Class Separability
4.3.2. 3D Visualization of Typical Ground Objects and Visualization of Intra-Class Consistency
5. Discussion
5.1. Visual Effect Comparison
5.2. Comparison of K-Means Clustering Results and ISODATA Clustering Results
5.3. Spectral Feature Visualization and Intra-Class Consistency Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Image | Accuracy | Precision | Recall | F1 | IoU | Kappa | 1_Recall | Class Number |
---|---|---|---|---|---|---|---|---|
Region 2 | ||||||||
3210 | 0.3679 | 0.6028 | 0.6186 | 0.3672 | 0.2251 | 0.0948 | 0.9958 | 9 |
3201 | 0.3670 | 0.6026 | 0.6180 | 0.3663 | 0.2244 | 0.0942 | 0.9956 | 9 |
3120 | 0.3636 | 0.6025 | 0.6163 | 0.3630 | 0.2219 | 0.0925 | 0.9965 | 9 |
3102 | 0.3602 | 0.6021 | 0.6144 | 0.3598 | 0.2195 | 0.0907 | 0.9966 | 9 |
3021 | 0.3579 | 0.6019 | 0.6130 | 0.3576 | 0.2178 | 0.0894 | 0.9967 | 9 |
3012 | 0.3555 | 0.6017 | 0.6116 | 0.3552 | 0.2160 | 0.0881 | 0.9970 | 9 |
2310 | 0.2048 | 0.5869 | 0.5223 | 0.1910 | 0.1094 | 0.0154 | 0.9999 | 9 |
2301 | 0.3259 | 0.5980 | 0.5940 | 0.3258 | 0.1946 | 0.0722 | 0.9973 | 8 |
2130 | 0.2853 | 0.5942 | 0.5703 | 0.2835 | 0.1657 | 0.0520 | 0.9990 | 9 |
2103 | 0.4469 | 0.6121 | 0.6631 | 0.4394 | 0.2838 | 0.1413 | 0.9883 | 8 |
2031 | 0.2796 | 0.5933 | 0.5667 | 0.2774 | 0.1616 | 0.0492 | 0.9987 | 9 |
2013 | 0.2327 | 0.5883 | 0.5387 | 0.2246 | 0.1287 | 0.0274 | 0.9990 | 9 |
1320 | 0.3461 | 0.6017 | 0.6070 | 0.3461 | 0.2093 | 0.0837 | 0.9995 | 8 |
1302 | 0.3646 | 0.6038 | 0.6178 | 0.3640 | 0.2227 | 0.0938 | 0.9989 | 8 |
1230 | 0.2934 | 0.5957 | 0.5755 | 0.2921 | 0.1714 | 0.0563 | 0.9998 | 8 |
1203 | 0.2856 | 0.5948 | 0.5708 | 0.2839 | 0.1659 | 0.0524 | 0.9997 | 8 |
1032 | 0.4978 | 0.6246 | 0.6977 | 0.4841 | 0.3234 | 0.1801 | 0.9983 | 8 |
1023 | 0.3301 | 0.5998 | 0.5974 | 0.3301 | 0.1977 | 0.0751 | 0.9996 | 9 |
0321 | 0.3556 | 0.6030 | 0.6128 | 0.3553 | 0.2161 | 0.0890 | 0.9996 | 8 |
0312 | 0.3729 | 0.6052 | 0.6231 | 0.3720 | 0.2287 | 0.0987 | 0.9995 | 8 |
0231 | 0.6343 | 0.6559 | 0.7782 | 0.5979 | 0.4371 | 0.2980 | 0.9947 | 7 |
0213 | 0.6705 | 0.6673 | 0.7997 | 0.6282 | 0.4702 | 0.3367 | 0.9940 | 7 |
0132 | 0.6622 | 0.6649 | 0.7954 | 0.6214 | 0.4626 | 0.3280 | 0.9958 | 7 |
0123 | 0.7058 | 0.6798 | 0.8200 | 0.6582 | 0.5041 | 0.3778 | 0.9919 | 7 |
Original | 0.1676 | - | 0.5000 | - | 0.0838 | 0.0000 | 1.0000 | 10 |
TCT | 0.1676 | - | 0.5000 | - | 0.0838 | 0.0000 | 1.0000 | 10 |
Region 3 | ||||||||
3210 | 0.1643 | 0.5266 | 0.5577 | 0.1607 | 0.0884 | 0.0128 | 0.9943 | 9 |
3201 | 0.1632 | 0.5267 | 0.5572 | 0.1597 | 0.0877 | 0.0127 | 0.9946 | 9 |
3120 | 0.1599 | 0.5266 | 0.5557 | 0.1567 | 0.0859 | 0.0123 | 0.9951 | 9 |
3102 | 0.1569 | 0.5267 | 0.5545 | 0.1541 | 0.0842 | 0.0120 | 0.9959 | 9 |
3021 | 0.1544 | 0.5268 | 0.5536 | 0.1518 | 0.0828 | 0.0118 | 0.9966 | 9 |
3012 | 0.1527 | 0.5268 | 0.5528 | 0.1502 | 0.0819 | 0.0116 | 0.9970 | 9 |
2310 | 0.1611 | 0.5271 | 0.5572 | 0.1579 | 0.0866 | 0.0127 | 0.9969 | 8 |
2301 | 0.1629 | 0.5273 | 0.5583 | 0.1595 | 0.0876 | 0.0129 | 0.9971 | 8 |
2130 | 0.1151 | 0.5261 | 0.5339 | 0.1148 | 0.0610 | 0.0072 | 0.9989 | 8 |
2103 | 0.3196 | 0.5336 | 0.6408 | 0.2848 | 0.1760 | 0.0375 | 0.9974 | 7 |
2031 | 0.1589 | 0.5277 | 0.5573 | 0.1558 | 0.0853 | 0.0127 | 0.9996 | 8 |
2013 | 0.3316 | 0.5339 | 0.6458 | 0.2932 | 0.1828 | 0.0395 | 0.9947 | 8 |
1320 | 0.1523 | 0.5275 | 0.5539 | 0.1499 | 0.0817 | 0.0118 | 0.9997 | 8 |
1302 | 0.1639 | 0.5279 | 0.5599 | 0.1603 | 0.0881 | 0.0133 | 0.9996 | 8 |
1230 | 0.1251 | 0.5267 | 0.5396 | 0.1245 | 0.0665 | 0.0085 | 0.9998 | 8 |
1203 | 0.1253 | 0.5266 | 0.5396 | 0.1247 | 0.0667 | 0.0085 | 0.9995 | 8 |
1032 | 0.2435 | 0.5307 | 0.6018 | 0.2274 | 0.1328 | 0.0247 | 0.9997 | 8 |
1023 | 0.2457 | 0.5307 | 0.6029 | 0.2292 | 0.1340 | 0.0251 | 0.9994 | 8 |
0321 | 0.2092 | 0.5289 | 0.5824 | 0.1994 | 0.1134 | 0.0193 | 0.9966 | 7 |
0312 | 0.2222 | 0.5293 | 0.5889 | 0.2101 | 0.1207 | 0.0211 | 0.9959 | 6 |
0231 | 0.1720 | 0.5281 | 0.5641 | 0.1676 | 0.0927 | 0.0144 | 0.9994 | 7 |
0213 | 0.1263 | 0.5268 | 0.5403 | 0.1256 | 0.0672 | 0.0086 | 0.9999 | 8 |
0132 | 0.3723 | 0.5361 | 0.6676 | 0.3215 | 0.2063 | 0.0479 | 0.9955 | 7 |
0123 | 0.3823 | 0.5370 | 0.6744 | 0.3284 | 0.2121 | 0.0505 | 0.9986 | 7 |
Original | 0.0496 | - | 0.5000 | - | 0.0248 | 0.0000 | 1.0000 | 10 |
TCT | 0.0496 | - | 0.5000 | - | 0.0248 | 0.0000 | 1.0000 | 10 |
Region 4 | ||||||||
3210 | 0.3609 | 0.6314 | 0.5689 | 0.3477 | 0.2143 | 0.0755 | 0.9911 | 9 |
3201 | 0.3605 | 0.6312 | 0.5686 | 0.3473 | 0.2140 | 0.0751 | 0.9910 | 9 |
3120 | 0.3588 | 0.6330 | 0.5681 | 0.3451 | 0.2125 | 0.0744 | 0.9928 | 9 |
3102 | 0.3575 | 0.6332 | 0.5673 | 0.3434 | 0.2114 | 0.0735 | 0.9933 | 9 |
3021 | 0.3560 | 0.6334 | 0.5664 | 0.3415 | 0.2101 | 0.0725 | 0.9937 | 9 |
3012 | 0.3550 | 0.6336 | 0.5659 | 0.3403 | 0.2093 | 0.0719 | 0.9941 | 9 |
2310 | 0.3363 | 0.6350 | 0.5547 | 0.3166 | 0.1938 | 0.0587 | 0.9979 | 9 |
2301 | 0.3332 | 0.6305 | 0.5518 | 0.3129 | 0.1913 | 0.0555 | 0.9955 | 9 |
2130 | 0.3011 | 0.6323 | 0.5316 | 0.2701 | 0.1649 | 0.0331 | 0.9997 | 9 |
2103 | 0.4648 | 0.6560 | 0.6390 | 0.4640 | 0.3023 | 0.1643 | 0.9925 | 8 |
2031 | 0.3072 | 0.6324 | 0.5356 | 0.2784 | 0.1699 | 0.0375 | 0.9993 | 9 |
2013 | 0.3280 | 0.6359 | 0.5495 | 0.3057 | 0.1868 | 0.0529 | 0.9994 | 9 |
1320 | 0.3578 | 0.6411 | 0.5696 | 0.3431 | 0.2113 | 0.0758 | 0.9996 | 8 |
1302 | 0.3629 | 0.6418 | 0.5730 | 0.3493 | 0.2155 | 0.0798 | 0.9995 | 8 |
1230 | 0.3247 | 0.6365 | 0.5475 | 0.3013 | 0.1841 | 0.0506 | 1.0000 | 8 |
1203 | 0.3077 | 0.6340 | 0.5361 | 0.2789 | 0.1702 | 0.0380 | 1.0000 | 8 |
1032 | 0.4121 | 0.6507 | 0.6061 | 0.4067 | 0.2569 | 0.1203 | 0.9999 | 9 |
1023 | 0.4225 | 0.6526 | 0.6131 | 0.4183 | 0.2657 | 0.1292 | 1.0000 | 9 |
0321 | 0.3672 | 0.6418 | 0.5757 | 0.3546 | 0.2192 | 0.0831 | 0.9989 | 8 |
0312 | 0.3716 | 0.6425 | 0.5786 | 0.3599 | 0.2229 | 0.0865 | 0.9988 | 8 |
0231 | 0.3210 | 0.6360 | 0.5451 | 0.2966 | 0.1811 | 0.0479 | 1.0000 | 8 |
0213 | 0.3032 | 0.6335 | 0.5331 | 0.2729 | 0.1666 | 0.0348 | 1.0000 | 8 |
0132 | 0.5635 | 0.6838 | 0.7075 | 0.5621 | 0.3913 | 0.2647 | 0.9999 | 7 |
0123 | 0.5911 | 0.6914 | 0.7260 | 0.5882 | 0.4175 | 0.2951 | 0.9998 | 8 |
Original | 0.2537 | - | 0.5000 | - | 0.1269 | 0.0000 | 1.0000 | 10 |
TCT | 0.2550 | 0.4570 | 0.4991 | 0.2054 | 0.1283 | -0.0009 | 0.9947 | 9 |
Appendix B
References
- Wiersma, D.J. The Analytical Design of Spectral Measurements for Multispectral Remote Sensor Systems; Purdue University: West Lafayette, IN, USA, 1979. [Google Scholar]
- Markham, B.L.; Townshend, J.R.G. Land Cover Classification Accuracy as a Function of Sensor Spatial Resolution. In Proceedings of the International Symposium on Remote Sensing of Environment, Ann Arbor, MI, USA, 11–15 May 1981. [Google Scholar]
- Hord, R.M. Digital Image Processing of Remotely Sensed Data; Elsevier: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Ahuja, S.N.; Biday, S. A Survey of Satellite Image Enhancement Techniques. Int. J. Adv. Innov. Res. IJAIR 2013, 2, 131–136. [Google Scholar]
- Chien, C.-L.; Tsai, W.-H. Image Fusion with No Gamut Problem by Improved Nonlinear IHS Transforms for Remote Sensing. IEEE Trans. Geosci. Remote Sens. 2013, 52, 651–663. [Google Scholar] [CrossRef]
- Bajpai, K.; Soni, R. Analysis of Image Enhancement Techniques Used in Remote Sensing Satellite Imagery. Int. J. Comput. Appl. 2017, 975, 8887. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, L.; Yang, H.; Wu, P.; Wang, B.; Pan, C.; Wu, Y. A Land Cover Classification Method for High-Resolution Remote Sensing Images Based on NDVI Deep Learning Fusion Network. Remote Sens. 2022, 14, 5455. [Google Scholar] [CrossRef]
- Gu, L.; Cao, Q.; Ren, R. Building Extraction Method Based on the Spectral Index for High-Resolution Remote Sensing Images over Urban Areas. J. Appl. Remote Sens. 2018, 12, 045501. [Google Scholar] [CrossRef]
- Yi, Z.; Jianhui, X. Impervious Surface Extraction with Linear Spectral Mixture Analysis Integrating Principal Components Analysis and Normalized Difference Building Index. In Proceedings of the 2016 4th International Workshop on Earth Observation and Remote Sensing Applications (EORSA), Guangzhou, China, 4–6 July 2016; pp. 428–432. [Google Scholar]
- Zeng, Y.; Guo, Y.; Li, J. Recognition and Extraction of High-Resolution Satellite Remote Sensing Image Buildings Based on Deep Learning. Neural Comput. Appl. 2022, 34, 2691–2706. [Google Scholar] [CrossRef]
- Kauth, R.J.; Thomas, G.S. The Tasselled Cap–a Graphic Description of the Spectral-Temporal Development of Agricultural Crops as Seen by Landsat. In Proceedings of the LARS Symposia, West Lafayette, IN, USA, 29 June–1 July 1976; p. 159. [Google Scholar]
- Chen, C.; Fu, J.; Zhang, S.; Zhao, X. Coastline Information Extraction Based on the Tasseled Cap Transformation of Landsat-8 OLI Images. Estuar. Coast. Shelf Sci. 2019, 217, 281–291. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, G.; Huang, C. Monitoring Desertification Processes in Mongolian Plateau Using MODIS Tasseled Cap Transformation and TGSI Time Series. J. Arid. Land 2018, 10, 12–26. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Liang, J.; Huang, W.; Xu, W.; Li, B.; Wang, J. Extraction of Water Body Information from Remote Sensing Imagery While Considering Greenness and Wetness Based on Tasseled Cap Transformation. Remote Sens. 2022, 14, 3001. [Google Scholar] [CrossRef]
- Liu, Q.; Guo, Y.; Liu, G.; Zhao, J. Classification of Landsat 8 OLI Image Using Support Vector Machine with Tasseled Cap Transformation. In Proceedings of the 2014 10th International Conference on Natural Computation (ICNC), Xiamen, China, 19–21 August 2014; pp. 665–669. [Google Scholar]
- Li, X.; Zhang, Y.; Luo, J.; Jin, X.; Xu, Y.; Yang, W. Quantification Winter Wheat LAI with HJ-1CCD Image Features over Multiple Growing Seasons. Int. J. Appl. Earth Obs. Geoinf. 2016, 44, 104–112. [Google Scholar] [CrossRef]
- Chao, C.; Xinyue, H.E.; Jiaoqi, F.U.; Yanli, C.H.U. A Method of Flood Submerging Area Extraction for Farmland Based on Tasseled Cap Transformation from Remote Sensing Images. J. Wuhan Univ. Inf. Sci. Ed. 2019, 44, 1560–1566. [Google Scholar] [CrossRef]
- Gillespie, A.R.; Kahle, A.B.; Walker, R.E. Color Enhancement of Highly Correlated Images. I. Decorrelation and HSI Contrast Stretches. Remote Sens. Environ. 1986, 20, 209–235. [Google Scholar] [CrossRef]
- Robertson, P.K.; O’Callaghan, J.F. The Application of Perceptual Color Spaces to the Display of Remotely Sensed Imagery. IEEE Trans. Geosci. Remote Sens. 1988, 26, 49–59. [Google Scholar] [CrossRef]
- Das, M.; Ghosh, S.K. Deep-STEP: A Deep Learning Approach for Spatiotemporal Prediction of Remote Sensing Data. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1984–1988. [Google Scholar] [CrossRef]
- Zheng, Z.; Tang, X.; Yue, Q.; Bo, A.; Lin, Y. Color Difference Optimization Method for Multi-Source Remote Sensing Image Processing. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 474, p. 042030. [Google Scholar]
- Li, J.; Meng, L.; Yang, B.; Tao, C.; Li, L.; Zhang, W. LabelRS: An Automated Toolbox to Make Deep Learning Samples from Remote Sensing Images. Remote Sens. 2021, 13, 2064. [Google Scholar] [CrossRef]
- Athar, S.; Wang, Z. A Comprehensive Performance Evaluation of Image Quality Assessment Algorithms. IEEE Access 2019, 7, 140030–140070. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C. Reduced-and No-Reference Image Quality Assessment. IEEE Signal Process. Mag. 2011, 28, 29–40. [Google Scholar] [CrossRef]
- Chandler, D.M. Seven Challenges in Image Quality Assessment: Past, Present, and Future Research. ISRN Signal Process. 2013, 2013, 905685. [Google Scholar] [CrossRef]
- Yin, G.; Wang, W.; Yuan, Z.; Han, C.; Ji, W.; Sun, S.; Wang, C. Content-Variant Reference Image Quality Assessment via Knowledge Distillation. Proc. AAAI Conf. Artif. Intell. 2022, 36, 3134–3142. [Google Scholar] [CrossRef]
- Ponomarenko, N.; Lukin, V.; Zelensky, A.; Egiazarian, K.; Carli, M.; Battisti, F. TID2008-a Database for Evaluation of Full-Reference Visual Quality Assessment Metrics. Adv. Mod. Radioelectron. 2009, 10, 30–45. [Google Scholar]
- Bosse, S.; Maniry, D.; Müller, K.-R.; Wiegand, T.; Samek, W. Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment. IEEE Trans. Image Process. 2017, 27, 206–219. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Yan, Q.; Zhu, Y.; Zhang, C.; Ge, X.; Sun, J.; Zhang, Y. Blindly Assess Image Quality in the Wild Guided by A Self-Adaptive Hyper Network–Supplementary Material; Northwestern Polytechnical University: Xi’an, China, 2020. [Google Scholar]
- Rehman, A.; Wang, Z. Reduced-Reference Image Quality Assessment by Structural Similarity Estimation. IEEE Trans. Image Process. 2012, 21, 3378–3389. [Google Scholar] [CrossRef] [PubMed]
- Cheon, M.; Yoon, S.-J.; Kang, B.; Lee, J. Perceptual Image Quality Assessment with Transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 433–442. [Google Scholar]
- Bosse, S.; Maniry, D.; Wiegand, T.; Samek, W. A Deep Neural Network for Image Quality Assessment. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; IEEE: Phoenix, AZ, USA, 2016; pp. 3773–3777. [Google Scholar]
- Liu, L.; Liu, B.; Huang, H.; Bovik, A.C. No-Reference Image Quality Assessment Based on Spatial and Spectral Entropies. Signal Process. Image Commun. 2014, 29, 856–863. [Google Scholar] [CrossRef]
- Rollet, R.; Benie, G.B.; Li, W.; Wang, S.; Boucher, J.M. Image Classification Algorithm Based on the RBF Neural Network and K-Means. Int. J. Remote Sens. 1998, 19, 3003–3009. [Google Scholar] [CrossRef]
- Lv, Z.; Hu, Y.; Zhong, H.; Wu, J.; Li, B.; Zhao, H. Parallel K-Means Clustering of Remote Sensing Images Based on Mapreduce. In Proceedings of the Web Information Systems and Mining: International Conference, WISM 2010, Sanya, China, 23–24 October 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 162–170. [Google Scholar]
- Lv, Z.; Liu, T.; Shi, C.; Benediktsson, J.A.; Du, H. Novel Land Cover Change Detection Method Based on K-Means Clustering and Adaptive Majority Voting Using Bitemporal Remote Sensing Images. IEEE Access 2019, 7, 34425–34437. [Google Scholar] [CrossRef]
- Abbas, A.W.; Minallh, N.; Ahmad, N.; Abid, S.A.R.; Khan, M.A.A. K-Means and ISODATA Clustering Algorithms for Landcover Classification Using Remote Sensing. Sindh Univ. Res. J.-SURJ Sci. Ser. 2016, 48, 315–318. [Google Scholar]
- Tong, X.-Y.; Xia, G.-S.; Lu, Q.; Shen, H.; Li, S.; You, S.; Zhang, L. Land-Cover Classification with High-Resolution Remote Sensing Images Using Transferable Deep Models. Remote Sens. Environ. 2020, 237, 111322. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, G.; Huang, C.; Xie, C. Comparison of Tasselled Cap Transformations Based on the Selective Bands of Landsat 8 OLI TOA Reflectance Images. Int. J. Remote Sens. 2015, 36, 417–441. [Google Scholar] [CrossRef]
- Horne, J.H. A Tasseled Cap Transformation for IKONOS Images. In Proceedings of the ASPRS 2003 Annual Conference Proceedings, Anchorage, AK, USA, 5–9 May 2003. [Google Scholar]
- Yang, M.; Jiao, L.; Liu, F.; Hou, B.; Yang, S. Transferred Deep Learning-Based Change Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6960–6973. [Google Scholar] [CrossRef]
- Lian, R.; Wang, W.; Mustafa, N.; Huang, L. Road Extraction Methods in High-Resolution Remote Sensing Images: A Comprehensive Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5489–5507. [Google Scholar] [CrossRef]
- Yuan, X.; Shi, J.; Gu, L. A Review of Deep Learning Methods for Semantic Segmentation of Remote Sensing Imagery. Expert Syst. Appl. 2021, 169, 114417. [Google Scholar] [CrossRef]
- Rahaman, M.; Hillas, M.M.; Tuba, J.; Ruma, J.F.; Ahmed, N.; Rahman, R.M. Effects of Label Noise on Performance of Remote Sensing and Deep Learning-Based Water Body Segmentation Models. Cybern. Syst. 2022, 53, 581–606. [Google Scholar] [CrossRef]
- Kazempour, D.; Beer, A.; Kroger, P.; Seidl, T. I Fold You so! An Internal Evaluation Measure for Arbitrary Oriented Subspace Clustering. In Proceedings of the 2020 International Conference on Data Mining Workshops (ICDMW), Sorrento, Italy, 17–20 November 2020; IEEE: Sorrento, Italy, 2020; pp. 316–323. [Google Scholar]
Main Parameters | Spectra | GF-2 | IKONOS |
---|---|---|---|
Type of orbit | Regression Sun-synchronous orbit | Sun-synchronous orbit | |
Orbit height | 631 km | 681 km | |
Orbital inclination | 97.9080° | 98.1° | |
Spectral range | Panchromatic | 0.45–0.90 μm | 0.45–0.90 μm |
Multispectral | 0.45–0.52 μm | 0.45–0.53 μm | |
0.52–0.59 μm | 0.52–0.61 μm | ||
0.63–0.69 μm | 0.64–0.72 μm | ||
0.77–0.89 μm | 0.77–0.88 μm | ||
Spatial resolution | Panchromatic | 0.8 m (1 m after orthorectification) | 1 m |
Multispectral | 3.2 m (4 m after orthorectification) | 4 m |
Image | Accuracy | Precision | Recall | F1 | IoU | Kappa | 1_Recall |
---|---|---|---|---|---|---|---|
Region4 | |||||||
0123 | 0.9184 | 0.9124 | 0.8665 | 0.8862 | 0.8010 | 0.7729 | 0.7612 |
Original | 0.8435 | 0.8593 | 0.7115 | 0.7466 | 0.6210 | 0.5058 | 0.4434 |
TCT | 0.8822 | 0.8729 | 0.8029 | 0.8293 | 0.7197 | 0.6607 | 0.6420 |
Image B | |||||||
0123 | 0.7237 | 0.6659 | 0.6885 | 0.6728 | 0.5213 | 0.3491 | 0.6122 |
Original | 0.7492 | 0.6739 | 0.6485 | 0.6574 | 0.5161 | 0.3177 | 0.4306 |
TCT | 0.7535 | 0.6818 | 0.6647 | 0.6716 | 0.5289 | 0.3444 | 0.4729 |
Image | Bare Soil | Building | Mountain | Road | Shadow | Vegetation | Water Body | Total |
---|---|---|---|---|---|---|---|---|
Original | 48,190 | 18,010 | 24,169 | 12,394 | 8850 | 22,475 | 76,827 | 210,915 |
TCT | 35,365 | 7389 | 20,578 | 9435 | 2767 | 14,302 | 175 | 90,011 |
0123 | 37,708 | 7368 | 18,388 | 7304 | 919 | 10,828 | 2648 | 85,163 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, J.; Dong, W.; Guo, Y.; Chen, X.; Zhou, R.; Liu, W. A Novel Remote Sensing Image Enhancement Method, the Pseudo-Tasseled Cap Transformation: Taking Buildings and Roads in GF-2 as an Example. Appl. Sci. 2023, 13, 6585. https://doi.org/10.3390/app13116585
Deng J, Dong W, Guo Y, Chen X, Zhou R, Liu W. A Novel Remote Sensing Image Enhancement Method, the Pseudo-Tasseled Cap Transformation: Taking Buildings and Roads in GF-2 as an Example. Applied Sciences. 2023; 13(11):6585. https://doi.org/10.3390/app13116585
Chicago/Turabian StyleDeng, Jiqiu, Wuzhou Dong, Yiwei Guo, Xiaoyan Chen, Renhao Zhou, and Wenyi Liu. 2023. "A Novel Remote Sensing Image Enhancement Method, the Pseudo-Tasseled Cap Transformation: Taking Buildings and Roads in GF-2 as an Example" Applied Sciences 13, no. 11: 6585. https://doi.org/10.3390/app13116585
APA StyleDeng, J., Dong, W., Guo, Y., Chen, X., Zhou, R., & Liu, W. (2023). A Novel Remote Sensing Image Enhancement Method, the Pseudo-Tasseled Cap Transformation: Taking Buildings and Roads in GF-2 as an Example. Applied Sciences, 13(11), 6585. https://doi.org/10.3390/app13116585