Development of a Non-Destructive Tool Based on E-Eye and Agro-Morphological Descriptors for the Characterization and Classification of Different Brassicaceae Landraces
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Morphological Analysis
Dataset Used for the Morphological Analysis
2.3. E-Eye Analysis
Dataset Used for the E-Eye Analysis
2.4. Chemometric Modeling
3. Results
3.1. Explorative Analysis of Morphological Descriptors
3.2. SIMCA Analysis of the E-Eye Profiles
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Aly, S.H.; Kandil, N.H.; Hemdan, R.M.; Kotb, S.S.; Zaki, S.S.; Abdelaziz, O.M.; AbdelRazek, M.M.M.; Almahli, H.; El Hassab, M.A.; Al-Rashood, S.T.; et al. GC/MS Profiling of the Essential Oil and Lipophilic Extract of Moricandia sinaica Boiss. and Evaluation of Their Cytotoxic and Antioxidant Activities. Molecules 2023, 28, 2193. [Google Scholar] [CrossRef]
- Davì, F.; Taviano, M.F.; Acquaviva, R.; Malfa, G.A.; Cavò, E.; Arena, P.; Ragusa, S.; Cacciola, F.; El Majdoub, Y.O.; Mondello, L.; et al. Chemical Profile, Antioxidant and Cytotoxic Activity of a Phenolic-Rich Fraction from the Leaves of Brassica fruticulosa subsp. fruticulosa (Brassicaceae) Growing Wild in Sicily (Italy). Molecules 2023, 28, 2281. [Google Scholar] [CrossRef]
- Lučić, D.; Pavlović, I.; Brkljačić, L.; Bogdanović, S.; Farkaš, V.; Cedilak, A.; Nanić, L.; Rubelj, I.; Salopek-Sondi, B. Antioxidant and Antiproliferative Activities of Kale (Brassica oleracea L. Var. acephala DC.) and Wild Cabbage (Brassica incana Ten.) Polyphenolic Extracts. Molecules 2023, 28, 1840. [Google Scholar] [CrossRef]
- Malfa, G.A.; Pappalardo, F.; Miceli, N.; Taviano, M.F.; Ronsisvalle, S.; Tomasello, B.; Bianchi, S.; Davì, F.; Spadaro, V.; Acquaviva, R. Chemical, Antioxidant and Biological Studies of Brassica incana subsp. raimondoi (Brassicaceae) Leaf Extract. Molecules 2023, 28, 1254. [Google Scholar] [CrossRef]
- Montaner, C.; Mallor, C.; Laguna, S.; Zufiaurre, R. Bioactive compounds, antioxidant activity, and mineral content of bróquil: A traditional crop of Brassica oleracea var. italica. Front. Nutr. 2022, 9, 1006012. [Google Scholar] [CrossRef] [PubMed]
- Basit, A.; Ahmad, S.; Khan, K.U.R.; Aati, H.Y.; Sherif, A.E.; Ovatlarnporn, C.; Khan, S.; Rao, H.; Arshad, M.A.; Shahzad, M.N.; et al. Evaluation of the anti-inflammatory, antioxidant, and cytotoxic potential of Cardamine amara L. (Brassicaceae): A comprehensive biochemical, toxicological, and in silico computational study. Front. Chem. 2022, 10, 1077581. [Google Scholar] [CrossRef] [PubMed]
- Hip Kam, A.; Li, W.-W.; Bahorun, T.; Neergheen, V.S. Traditional processing techniques impacted the bioactivities of selected local consumed foods. Sci. Afr. 2023, 19, e01558. [Google Scholar] [CrossRef]
- Salami, M.; Heidari, B.; Tan, H. Comparative profiling of polyphenols and antioxidants and analysis of antiglycation activities in rapeseed (Brassica napus L.) under different moisture regimes. Food Chem. 2023, 399, 133946. [Google Scholar] [CrossRef]
- Tan, J.; Jiang, H.; Li, Y.; He, R.; Liu, K.; Chen, Y.; He, X.; Liu, X.; Liu, H. Growth, Phytochemicals, and Antioxidant Activity of Kale Grown under Different Nutrient-Solution Depths in Hydroponic. Horticulturae 2023, 9, 53. [Google Scholar] [CrossRef]
- Peña, M.; Guzmán, A.; Martínez, R.; Mesas, C.; Prados, J.; Porres, J.M.; Melguizo, C. Preventive effects of Brassicaceae family for colon cancer prevention: A focus on in vitro studies. Biomed. Pharmacother. 2022, 151, 113145. [Google Scholar] [CrossRef]
- Bouranis, J.A.; Beaver, L.M.; Jiang, D.; Choi, J.; Wong, C.P.; Davis, E.W.; Williams, D.E.; Sharpton, T.J.; Stevens, J.F.; Ho, E. Interplay between Cruciferous Vegetables and the Gut Microbiome: A Multi-Omic Approach. Nutrients 2023, 15, 42. [Google Scholar] [CrossRef] [PubMed]
- Khalil, H.E.; Abdelwahab, M.F.; Emeka, P.M.; Badger-Emeka, L.I.; Abdel Hafez, S.M.N.; AlYahya, K.A.; Ahmed, A.-S.F.; Anter, A.F.; Abdel-Wahab, N.M.; Matsunami, K.; et al. Chemical Composition and Valorization of Broccoli Leaf By-Products (Brassica oleracea L. Variety: Italica) to Ameliorate Reno-Hepatic Toxicity Induced by Gentamicin in Rats. Appl. Sci. 2022, 12, 6903. [Google Scholar] [CrossRef]
- Koksal, E.; Gode, F.; Ozaltin, K.; Karakurt, I.; Suly, P.; Saha, P. Controlled Release of Vitamin U from Microencapsulated Brassica oleracea L. var. capitata Extract for Peptic Ulcer Treatment. Food Bioprocess Technol. 2023, 16, 677–689. [Google Scholar] [CrossRef]
- Jo, J.S.; Bhandari, S.R.; Kang, G.H.; Shin, Y.K.; Lee, J.G. Selection of broccoli (Brassica oleracea var. italica) on composition and content of glucosinolates and hydrolysates. Sci. Hortic. Amst. 2022, 298, 110984. [Google Scholar] [CrossRef]
- Favela-González, K.M.; Hernández-Almanza, A.Y.; la Fuente-Salcido, N.M. The value of bioactive compounds of cruciferous vegetables (Brassica) as antimicrobials and antioxidants: A review. J. Food Biochem. 2020, 44, e13414. [Google Scholar] [CrossRef] [PubMed]
- El-Daly, S.M.; Gamal-Eldeen, A.M.; Gouhar, S.A.; Abo-elfadl, M.T.; El-Saeed, G. Modulatory Effect of Indoles on the Expression of miRNAs Regulating G1/S Cell Cycle Phase in Breast Cancer Cells. Appl. Biochem. Biotechnol. 2020, 192, 1208–1223. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chan, Y.S.; Wong, K.; Yoshitake, R.; Sadava, D.; Synold, T.W.; Frankel, P.; Twardowski, P.W.; Lau, C.; Chen, S. Mechanism-Driven and Clinically Focused Development of Botanical Foods as Multitarget Anticancer Medicine: Collective Perspectives and Insights from Preclinical Studies, IND Applications and Early-Phase Clinical Trials. Cancers 2023, 15, 701. [Google Scholar] [CrossRef]
- Zhou, T.; Zhou, M.; Tong, C.; Zhuo, M. Cauliflower bioactive compound sulforaphane inhibits breast cancer development by suppressing NF-κB/MMP-9 signaling pathway expression. Cell. Mol. Biol. 2022, 68, 134–143. [Google Scholar] [CrossRef]
- Khalid, W.; Iqra; Afzal, F.; Rahim, M.A.; Abdul Rehman, A.; ul Rasul, H.; Arshad, M.S.; Ambreen, S.; Zubair, M.; Safdar, S.; et al. Industrial applications of kale (Brassica oleracea var. sabellica) as a functional ingredient: A review. Int. J. Food Prop. 2023, 26, 489–501. [Google Scholar] [CrossRef]
- Bozic, D.; Živančević, K.; Baralić, K.; Miljaković, E.A.; Djordjević, A.B.; Ćurčić, M.; Bulat, Z.; Antonijević, B.; Đukić-Ćosić, D. Conducting bioinformatics analysis to predict sulforaphane-triggered adverse outcome pathways in healthy human cells. Biomed. Pharmacother. 2023, 160, 114316. [Google Scholar] [CrossRef]
- Spoor, W.; Zohary, D.; Hopf, M. Domestication of Plants in the Old World, 3rd ed.; Oxford University Press: New York, NY, USA, 2000; 316p. [Google Scholar] [CrossRef]
- Laghetti, G.; Martignano, F.; Falco, V.; Cifarelli, S.; Gladis, T.; Hammer, K. “Mugnoli”: A Neglected Race of Brassica oleracea L. from Salento (Italy). Genet. Resour. Crop Evol. 2005, 52, 635–639. [Google Scholar] [CrossRef]
- Palmitessa, O.D.; Gadaleta, A.; Leoni, B.; Renna, M.; Signore, A.; Paradiso, V.M.; Santamaria, P. Effects of Greenhouse vs. Growth Chamber and Different Blue-Light Percentages on the Growth Performance and Quality of Broccoli Microgreens. Agronomy 2022, 12, 1161. [Google Scholar] [CrossRef]
- Hammer, K.; Montesano, V.; Direnzo, P.; Laghetti, G. Conservation of crop genetic resources in Italy with a focus on vegetables and a case study of a neglected race of brassica oleracea. Agriculture 2018, 8, 105. [Google Scholar] [CrossRef]
- Argentieri, M.P.; Accogli, R.; Fanizzi, F.P.; Avato, P. Glucosinolates profile of “mugnolo”, a variety of Brassica oleracea L. native to southern Italy (Salento). Planta Med. 2011, 77, 287–292. [Google Scholar] [CrossRef]
- GIBA. Gruppo di Lavoro Biodiversità in Agricoltura. Available online: https://www.reterurale.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/9580 (accessed on 19 April 2023).
- Geladi, P.; Grahn, H.F. Multivariate Image Analysis. In Encyclopedia of Analytical Chemistry: Applications, Theory, and Instrumentation; Wiley–Blackwell: Hoboken, NJ, USA, 2006. [Google Scholar]
- Antonelli, A.; Cocchi, M.; Fava, P.; Foca, G.; Franchini, G.C.; Manzini, D.; Ulrici, A. Automated evaluation of food colour by means of multivariate image analysis coupled to a wavelet-based classification algorithm. Anal. Chim. Acta 2004, 515, 3–13. [Google Scholar] [CrossRef]
- Sohn, S.-I.; Pandian, S.; Zaukuu, J.-L.Z.; Oh, Y.-J.; Lee, Y.-H.; Shin, E.-K.; Thamilarasan, S.K.; Kang, H.-J.; Ryu, T.-H.; Cho, W.-S. Rapid discrimination of Brassica napus varieties using visible and Near-infrared (Vis-NIR) spectroscopy. J. King Saud Univ. Sci. 2023, 35, 102495. [Google Scholar] [CrossRef]
- Li Vigni, M.; Durante, C.; Cocchi, M. Exploratory Data Analysis. In Data Handling in Science and Technology; Marini, F., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 28, pp. 55–126. [Google Scholar]
- Biancolillo, A.; Marini, F.; Ruckebusch, C.; Vitale, R. Chemometric strategies for spectroscopy-based food authentication. Appl. Sci. 2020, 10, 6544. [Google Scholar] [CrossRef]
- Cocchi, M.; Biancolillo, A.; Marini, F. Chemometric Methods for Classification and Feature Selection. In Data Analysis for Omic Sciences: Methods and Applications, Comprehensive Analytical Chemistry; Jaumot, J., Bedia, C., Tauler, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 82, pp. 265–299. ISBN 9780444640444. [Google Scholar]
- Di Donato, F.; Di Cecco, V.; Torricelli, R.; D’Archivio, A.A.; Di Santo, M.; Albertini, E.; Veronesi, F.; Garramone, R.; Aversano, R.; Marcantonio, G.; et al. Discrimination of potato (Solanum tuberosum L.) accessions collected in majella national park (Abruzzo, Italy) using mid-infrared spectroscopy and chemometrics combined with morphological and molecular analysis. Appl. Sci. 2020, 10, 1630. [Google Scholar] [CrossRef]
- Calvini, R.; Orlandi, G.; Foca, G.; Ulrici, A. Colourgrams GUI: A graphical user-friendly interface for the analysis of large datasets of RGB images. Chemom. Intell. Lab. Syst. 2020, 196, 103915. [Google Scholar] [CrossRef]
- Foschi, M.; Di Maria, V.; D’Archivio, A.A.; Marini, F.; Biancolillo, A. E-Eye-Based Approach for Traceability and Annuality Compliance of Lentils. Appl. Sci. 2023, 13, 1433. [Google Scholar] [CrossRef]
- Jolliffe, I.T. A Note on the Use of Principal Components in Regression. J. R. Stat. Soc. Ser. C Applied Stat. 1982, 31, 300–303. [Google Scholar] [CrossRef]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis, 1st ed.; John Wiley: New York, NY, USA, 1990; ISBN 0-471-87876-6. [Google Scholar]
- Wold, S.; Sjöström, M. SIMCA: A method for analysing chemical data in terms of similarity and analogy. In Chemometrics, Theory and Application; Kowalski, B.R., Ed.; American Chemical Society: Washington, DC, USA, 1977; pp. 243–282. [Google Scholar]
GLBA | Plant Part | Descriptors | Expression |
---|---|---|---|
2 | Leaf | Plant habit | Erect/semi-erect/horizontal |
3 | Leaf | curvature | Absent/weak/medium/strong/very strong |
4 | Leaf | Green color | Very light/light/medium/dark/very dark |
5 | Leaf | Leaf type | Integer/Lobed |
6 | Leaf | Number of lobes | Low/medium/high |
7 | Leaf | Incisions | Very superficial/superficial/medium/deep/very deep |
8 | Leaf | Waviness of the leaf margin | Absent/weak/medium/strong/very strong |
9 | Leaf | Serrated margin | Absent/weak/medium/strong/very strong |
10 | Leaf | Length | Short/medium/long |
11 | Leaf | Width | Small/medium/large |
12 | Leaf | Length of the terminal lobe | Narrow/medium/wide |
13 | Leaf | Width of the terminal lobe | Narrow/medium/wide |
14 | Leaf | Villous surface upper leaf | Absent/weak/medium/strong/very strong |
15 | Leaf | Anthocyanin pigmentation | Absent/weak/medium/strong/very strong |
16 | Root | Position | Very shallow/shallow/medium/deep/very deep |
17 | Root | Suborous layer of the epidermis | Absent/present |
18 | Root | Color of the epidermis outside the soil | White/green/yellow/orange/bronze/scarlet/red/purple red/purple blue |
19 | Root | Intensity of the color of the epidermis outside the soil | Light/medium/dark |
20 | Root | Color of the epidermis inside the soil | White/yellow/red/purple |
21 | Root | Color of flesh | White/yellow |
24 | Root | Shape in longitudinal section | narrow transverse elliptical/transverse elliptical/rounded/oval/squared/wide oblong/narrow oblong/obtriangular |
25 | Root | Length | Very short/Short/medium/long/very long |
26 | Root | Diameter | Small/medium/large |
27 | Root | Position of the widest part of the root | above the central part/in the center/below the central part |
28 | Root | Curvature of the main axis | Absent/present |
29 | Root | collar shape | Very depressed/Depressed/Flattened/Prominent/Very Prominent |
30 | Root | Shape of the base | Depressed/truncated/rounded/obtuse/pointed |
Class | PCs | Senscv | Speccv | Effcv | Senspred | Specpred |
---|---|---|---|---|---|---|
A | 6 | 55.0 | 45.0 | 39.7 | 30.0 | 37.1 |
B | 4 | 90.0 | 86.9 | 88.4 | 100.0 | 92.8 |
C | 4 | 75.0 | 75.4 | 75.2 | 70.0 | 77.1 |
D | 6 | 55.0 | 39.2 | 46.4 | 70.0 | 32.8 |
E | 4 | 80.0 | 69.1 | 74.3 | 90.0 | 68.6 |
F | 6 | 75.0 | 61.3 | 63.1 | 80.0 | 68.6 |
G | 4 | 75.0 | 60.8 | 67.5 | 90.0 | 67.1 |
H | 4 | 80.0 | 68.2 | 73.8 | 80.0 | 65.7 |
SpecwrtA | SpecwrtB | SpecwrtC | SpecwrtD | SpecwrtE | SpecwrtF | SpecwrtG | SpecwrtH | |
---|---|---|---|---|---|---|---|---|
A | -- | 0.0 | 30.0 | 80.0 | 50.0 | 20.0 | 30.0 | 50.0 |
B | 100.0 | -- | 70.0 | 100.0 | 100.0 | 90.0 | 90.0 | 100.0 |
C | 90.0 | 0.0 | -- | 90.0 | 100.0 | 70.0 | 100.0 | 90.0 |
D | 80.0 | 30.0 | 50.0 | -- | 20.0 | 20.0 | 10.0 | 20.0 |
E | 100.0 | 80.0 | 80.0 | 90.0 | -- | 70.0 | 40.0 | 20.0 |
F | 100.0 | 10.0 | 60.0 | 80.0 | 70.0 | -- | 80.0 | 80.0 |
G | 90.0 | 90.0 | 90.0 | 70.0 | 30.0 | 70.0 | -- | 30.0 |
H | 100.0 | 70.0 | 80.0 | 80.0 | 20.0 | 60.0 | 50.0 | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biancolillo, A.; Ferretti, R.; Scappaticci, C.; Foschi, M.; D’Archivio, A.A.; Di Santo, M.; Di Martino, L. Development of a Non-Destructive Tool Based on E-Eye and Agro-Morphological Descriptors for the Characterization and Classification of Different Brassicaceae Landraces. Appl. Sci. 2023, 13, 6591. https://doi.org/10.3390/app13116591
Biancolillo A, Ferretti R, Scappaticci C, Foschi M, D’Archivio AA, Di Santo M, Di Martino L. Development of a Non-Destructive Tool Based on E-Eye and Agro-Morphological Descriptors for the Characterization and Classification of Different Brassicaceae Landraces. Applied Sciences. 2023; 13(11):6591. https://doi.org/10.3390/app13116591
Chicago/Turabian StyleBiancolillo, Alessandra, Rossella Ferretti, Claudia Scappaticci, Martina Foschi, Angelo Antonio D’Archivio, Marco Di Santo, and Luciano Di Martino. 2023. "Development of a Non-Destructive Tool Based on E-Eye and Agro-Morphological Descriptors for the Characterization and Classification of Different Brassicaceae Landraces" Applied Sciences 13, no. 11: 6591. https://doi.org/10.3390/app13116591
APA StyleBiancolillo, A., Ferretti, R., Scappaticci, C., Foschi, M., D’Archivio, A. A., Di Santo, M., & Di Martino, L. (2023). Development of a Non-Destructive Tool Based on E-Eye and Agro-Morphological Descriptors for the Characterization and Classification of Different Brassicaceae Landraces. Applied Sciences, 13(11), 6591. https://doi.org/10.3390/app13116591