Comprehensive Lipid Profile of ‘Maraština’ Grape Skins from Dalmatia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Vineyard Site and Grape Samples
2.3. Samples Preparation for Lipid Extraction
2.4. UHPLC-MS/MS Analysis of Lipids in Grape Skins
2.5. Data Analysis
3. Results and Discussion
3.1. Free Fatty Acid Composition
3.2. Triterpenoid, Glycerolipid, Glycerophospholipids, Sphingolipid, and Free Fatty Acid Esters Composition
3.3. Multivariate Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fahy, E.; Cotter, D.; Sud, M.; Subramaniam, S. Lipid classification, structures and tools. BBA-Mol. Cell Biol. Lipids 2011, 1811, 637–647. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Navarro, J.; Da Ros, A.; Masuero, D.; Izquierdo-Cañas, P.M.; Hermosín-Gutiérrez, I.; Gómez-Alonso, S.; Mattivi, F. LC-MS/MS analysis of free fatty acid composition and other lipids in skins and seeds of Vitis vinifera grape cultivars. Int. Food Res. J. 2019, 125, 108556. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, S.; Fahy, E.; Gupta, S.; Sud, M.; Byrnes, R.W.; Cotter, D.; Maurya, M.R. Bioinformatics and systems biology of the lipidome. Chem. Rev. 2011, 111, 6452–6490. [Google Scholar] [CrossRef]
- Ohlrogge, J.; Browse, J. Lipid biosynthesis. Plant Cell 1995, 7, 957–970. [Google Scholar] [PubMed]
- Gallander, J.F.; Peng, A.C. Lipid and fatty acid compositions of different grape types. Am. J. Enol. Vitic. 1980, 31, 24–27. [Google Scholar] [CrossRef]
- Higgins, P.A.; Peng, A.C. Lipid composition of ‘Concord’ grapes. Am. J. Enol. Vitic. 1976, 27, 32–35. [Google Scholar] [CrossRef]
- Garcia-Aloy, M.; Masuero, D.; Chitarrini, G.; Škrab, D.; Sivilotti, P.; Guella, G.; Vrhovsek, U.; Franceschi, P. Untargeted lipidomic profiling of grapes highlights the importance of modified lipid species beyond the traditional compound classes. Food Chem. 2023, 410, 135360. [Google Scholar] [CrossRef]
- Garrido, A.; Conde, A.; De Vos Ric, C.H.; Cunha, A. The influence of light microclimate on the lipid profile and associated transcripts of photosynthetically active grape berry seeds. Front. Plant Sci. 2023, 13, 1022379. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Barbe, J.C.; Darriet, P.; Geffroy, O.; Gomès, E.; Guillaumie, S.; Helwi, P.; Laboyrie, J.; Lytra, G.; Le Menn, N. Recent advancements in understanding the terroir effect on aromas in grapes and wines. Oeno One 2020, 54, 985–1006. [Google Scholar] [CrossRef]
- Garrido, A.; Serôdio, J.; De Vos, R.; Conde, A.; Cunha, A. Influence of foliar kaolin application and irrigation on photosynthetic activity of grape berries. Agronomy 2019, 9, 685. [Google Scholar] [CrossRef]
- Ancin, C.; Ayestaran, B.; Garcia, A.; Garrido, J. Evolution of fatty acid contents in Garnacha and Viura musts during fermentation and the aging of wine. Eur. Food Res. Technol. 1998, 206, 143–147. [Google Scholar]
- Santos, L.P.; Morais, D.R.; Souza, N.E.; Cottica, S.M.; Boroski, M.; Visentainer, J.V. Phenolic compounds and fatty acids in different parts of Vitis labrusca and V. vinifera grapes. Int. Food Res. J. 2011, 44, 1414–1418. [Google Scholar] [CrossRef]
- Varela, C.; Torrea, D.; Schmidt, S.A.; Ancin-Azpilicueta, C.; Henschke, P.A. Effect of oxygen and lipid supplementation on the volatile composition of chemically defined medium and Chardonnay wine fermented with Saccharomyces cerevisiae. Food Chem. 2012, 135, 2863–2871. [Google Scholar] [CrossRef] [PubMed]
- Dyer, J.M.; Chapital, D.C.; Kuan, J.W.; Mullen, R.T.; Pepperman, A.B. Metabolic engineering of Saccharomyces cerevisiae for production of novel lipid compounds. Appl. Microbiol. Biotechnol. 2002, 59, 224–230. [Google Scholar]
- Tesnière, C. Importance and role of lipids in wine yeast fermentation. Appl. Microbiol. Biotechnol. 2019, 103, 8293–8300. [Google Scholar] [CrossRef] [PubMed]
- Grillitsch, K.; Connerth, M.; Köfeler, H.; Arrey, T.N.; Rietschel, B.; Wagner, B.; Karas, M.; Daum, G. Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: Lipidome meets Proteome. BBA-Mol. Cell Biol. Lipids 2011, 1811, 1165–1176. [Google Scholar] [CrossRef]
- Gallart, M.; Francioli, S.; Viu-Marco, A.; López-Tamames, E.; Buxaderas, S. Determination of free fatty acids and their ethyl esters in musts and wines. J. Chromatogr. A 1997, 776, 283–291. [Google Scholar] [CrossRef]
- Abdulkadir, S.; Tsuchiya, M. One-step method for quantitative and qualitative analysis of fatty acids in marine animal samples. J. Exp. Mar. Biol. 2008, 354, 1–8. [Google Scholar] [CrossRef]
- Sjovall, P.; Lausmaa, J.; Johansson, B. Mass spectrometric imaging of lipids in brain tissue. J. Anal. Chem. 2004, 76, 4271–4278. [Google Scholar] [CrossRef]
- Shevchenko, A.; Simons, K. Lipidomics: Coming to grips with lipid diversity. Nat. Rev. 2010, 11, 593–598. [Google Scholar] [CrossRef]
- Wu, B.; Wei, F.; Xu, S.; Xie, Y.; Lv, X.; Chen, H.; Huang, F. Mass spectrometry-based lipidomics as a powerful platform in foodomics research. Trends Food Sci. Technol. 2021, 107, 358–376. [Google Scholar] [CrossRef]
- Della Corte, A.; Chitarrini, G.; Di Gangi, I.M.; Masuero, D.; Soini, E.; Mattivi, F.; Vrhovek, U. A rapid LC-MS/MS method for quantitative profiling of fatty acids, sterols, glycerolipids, glycerophospholipids and sphingolipids in grapes. Talanta 2015, 140, 53–61. [Google Scholar] [CrossRef]
- Milanović, V.; Cardinali, F.; Ferrocino, I.; Boban, A.; Franciosa, I.; Gajdoš Kljusurić, J.; Mucalo, A.; Osimani, A.; Aquilanti, L.; Garofalo, C.; et al. Croatian white grape variety Maraština: First taste of its indigenous mycobiota. Food Res. Int. 2022, 162, 111917. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane, G.H. A simple method for isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1953, 226, 497–509. [Google Scholar] [CrossRef]
- Chitarrini, G.; Zulini, L.; Masuero, D.; Vrhovšek, U. Lipid, phenol and carotenoid changes in ‘Bianca’ grapevine leaves after mechanical wounding: A case study. Protoplasma 2017, 254, 2095–2106. [Google Scholar] [CrossRef] [PubMed]
- Lukic, I.; DaRos, A.; Guella, G.; Camin, F.; Masuero, D.; Mulinacci, N.; Vrhovsek, U.; Mattivi, F. Lipid profiling and stable isotopic data analysis for differentiation of extra virgin olive oils based on their origin. Molecules 2020, 25, 5. [Google Scholar]
- Duan, L.L.; Shi, Y.; Jiang, R.; Yang, Q.; Wang, Y.Q.; Liu, P.T. Effects of adding unsaturated fatty acids on fatty acid composition of Saccharomyces cerevisiae and major volatile compounds in wine. S. Afr. J. Enol. Vitic. 2015, 36, 285–295. [Google Scholar] [CrossRef]
- Shahidi, F.; Hossain, A. Role of Lipids in Food Flavor Generation. Molecules 2022, 27, 5014. [Google Scholar] [CrossRef] [PubMed]
- Tumanov, S.; Pinu, F.; Greenwood, D.; Villas-Bôass, S. Effect of free fatty acids and lipolysis on Sauvignon Blanc fermentation. Aust. J. Grape Wine Res. 2018, 24, 398–405. [Google Scholar] [CrossRef]
- Ochando, T.; Mouret, J.R.; Humbert-Goffard, A.; Sablayrolles, J.M.; Farines, V. Impact of initial lipid content and oxygen supply on alcoholic fermentation in champagne-like musts. Food Res. Int. 2017, 98, 87–94. [Google Scholar] [CrossRef]
- Salmon, J.; Barre, P. Improvement of nitrogen assimilation and fermentation kinetics under enological conditions by derepression of alternative nitrogen-assimilatory pathways in an industrial Saccharomyces cerevisiae strain. Appl. Environ. Microbiol. 1998, 64, 3831–3837. [Google Scholar] [CrossRef] [PubMed]
- You, K.M.; Rosenfield, C.L.; Knipple, D.C. Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. AEM 2003, 69, 1499–1503. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.L.; Duan, L.L.; Liu, P.T.; Duan, C.Q. Transcriptional Comparison Investigating the Influence of the Addition of Unsaturated Fatty Acids on Aroma Compounds During Alcoholic Fermentation. Front Microbiol. 2019, 10, 1115. [Google Scholar] [CrossRef]
- Cárdenas, P.D.; Almeida, A.; Bak, S. Evolution of Structural Diversity of Triterpenoids. Front. Plant Sci. 2019, 10, 1523. [Google Scholar] [CrossRef] [PubMed]
- Ribéreau-Gayon, P.; Dubourdieu, D.; Donèche, B.; Lonvaud, A. Handbook of Enology, the Microbiology of Wine and Vinifications, 2nd ed.; John Wiley & Sons: Chichester, UK, 2006; pp. 91–93. [Google Scholar]
- Boban, A.; Vrhovsek, U.; Carlin, S.; Mucalo, A.; Budić-Leto, I. A Targeted and an Untargeted Metabolomics Approach to the Volatile Aroma Profile of Young ‘Maraština’ Wines. Metabolites 2022, 12, 1295. [Google Scholar] [CrossRef]
- van Meer, G.; Voelker, D.R.; Feigenson, G.W. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008, 9, 112–124. [Google Scholar] [CrossRef]
- Musshoff, F.; Wilson, I.D. Encyclopedia of Separation Science, 1st ed.; Academic Press: Oxford, UK, 2000; pp. 1921–1931. [Google Scholar]
Compound | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | M10 | M11 |
---|---|---|---|---|---|---|---|---|---|---|---|
Myristic acid (C14:0) | 3.88 ± 0.59 abc | 5.29 ± 0.4 bc | 4.06 ± 0.33 abc | 2.72 ± 0.56 ab | 2.6 ± 1 ab | 9.73 ± 2.14 e | 2.36 ± 0.2 a | 9.48 ± 0.95 e | 8.37 ± 1.7 de | 6.16 ± 0.58 cd | 5.55 ± 0.75 c |
Arachidic acid (C20:0) | 3.56 ± 0.53 ab | 2.56 ± 0.47 ab | 2.64 ± 0.32 ab | 3.91 ± 1.06 b | 2.89 ± 0.72 ab | 3.24 ± 2.22 ab | 1.38 ± 0.23 a | 7.35 ± 0.86 c | 2.36 ± 0.2 ab | 2.55 ± 0.31 ab | 3.04 ± 0.35 ab |
Palmitic acid (C16:0) | 18.06 ± 3.69 abc | 19.16 ± 2.92 abc | 17.47 ± 2.65 abc | 14.82 ± 5.62 ab | 13.46 ± 3.95 a | 19.37 ± 3.83 abc | 14.93 ± 0.19 ab | 26.09 ± 2.69 bc | 24.01 ± 5.45 bc | 20.51 ± 0.73 abc | 19.45 ± 2.98 abc |
Behenic acid (C22:0) | 5.7 ± 1.48 ab | 4.38 ± 0.55 ab | 3.93 ± 0.49 ab | 5.21 ± 1.35 ab | 4.42 ± 1.57 ab | 3.39 ± 2.56 ab | 2.38 ± 0.49 a | 6.18 ± 1.26 b | 4.17 ± 0.13 ab | 5.15 ± 0.58 ab | 6.88 ± 0.9 b |
Linolenic acid (C18:3) | 0.41 ± 0.05 a | 0.47 ± 0.11 a | 0.5 ± 0.04 ab | 0.4 ± 0.09 a | 0.5 ± 0.16 ab | 0.89 ± 0.37 b | 0.38 ± 0.09 a | 0.6 ± 0.11 ab | 0.44 ± 0.25 a | 0.32 ± 0.04 a | 0.32 ± 0.06 a |
Lignoceric acid (C24:0) | 10.09 ± 2.62 ab | 7.31 ± 2.24 ab | 7.41 ± 1.59 ab | 12.4 ± 1.47 b | 10.72 ± 2.75 ab | 9.19 ± 2.35 ab | 6.7 ± 2.33 a | 9.1 ± 1.48 ab | 6.41 ± 0.49 a | 8.81 ± 0.7 ab | 10.8 ± 1.86 ab |
Palmitoleic acid (C16:1) | 0.57 ± 0.21 | 0.58 ± 0.17 | 0.81 ± 0.24 | 0.9 ± 0.43 | 0.44 ± 0.05 | 1.07 ± 0.69 | 0.51 ± 0.07 | 1.54 ± 0.84 | 0.96 ± 0.52 | 0.84 ± 0.08 | 0.59 ± 0.21 |
Oleic acid + cis-Vaccenic acid (C18:1) | 0.95 ± 0.13 | 0.89 ± 0.12 | 0.98 ± 0.19 | 0.85 ± 0.29 | 0.85 ± 0.26 | 1.01 ± 0.6 | 0.85 ± 0.03 | 0.92 ± 0.33 | 1.95 ± 1.74 | 0.95 ± 0.12 | 0.86 ± 0.13 |
Linoleic acid (C18:2) | 0.65 ± 0.1 | 0.67 ± 0.17 | 0.64 ± 0.04 | 0.6 ± 0.12 | 0.63 ± 0.25 | 0.81 ± 0.17 | 0.65 ± 0.09 | 0.75 ± 0.05 | 0.66 ± 0.35 | 0.57 ± 0.04 | 0.61 ± 0.09 |
Stearic acid (C18:0) | 8.57 ± 2 | 8.92 ± 1.29 | 9.91 ± 3.82 | 7.91 ± 2.5 | 7.78 ± 1.71 | 6.57 ± 2.34 | 8.21 ± 0.46 | 7.95 ± 3.72 | 9.02 ± 0.11 | 9.39 ± 0.75 | 8.7 ± 1.04 |
∑Free fatty acids | 52.43 ± 10.69 ab | 50.21 ± 6.78 ab | 48.35 ± 6.83 ab | 49.7 ± 13.11 ab | 44.28 ± 12.02 a | 55.28 ± 10.85 ab | 38.34 ± 1.49 a | 69.98 ± 6.42 b | 58.35 ± 10.76 b | 55.24 ± 3.38 ab | 56.8 ± 7.6 ab |
Oleanolic acid | 218.93 ± 13.84 | 160.44 ± 15.09 | 189.7 ± 5.67 | 257.82 ± 68.17 | 233.84 ± 80.06 | 204.66 ± 22.09 | 249.49 ± 8.48 | 176.03 ± 19.12 | 175.66 ± 6.81 | 170.15 ± 8.14 | 208.89 ± 46.3 |
∑Triterpenoid | 218.93 ± 13.84 | 160.44 ± 15.09 | 189.7 ± 5.67 | 257.82 ± 68.17 | 233.84 ± 80.06 | 204.66 ± 22.09 | 249.49 ± 8.48 | 176.03 ± 19.12 | 175.66 ± 6.81 | 170.15 ± 8.14 | 208.89 ± 46.3 |
1-linoleoyl-rac-GL | 1.43 ± 0.14 a | 1.52 ± 0.15 a | 1.41 ± 0.21 a | 1.34 ± 0.42 a | 1.37 ± 0.51 a | 3.28 ± 1.75 b | 1.24 ± 0.18 a | 2.15 ± 0.33 ab | 1.55 ± 0.16 a | 1.28 ± 0.1 a | 1.32 ± 0.13 a |
∑Glycerolipid | 1.43 ± 0.14 a | 1.52 ± 0.15 a | 1.41 ± 0.21 a | 1.34 ± 0.42 a | 1.37 ± 0.51 a | 3.28 ± 1.75 b | 1.24 ± 0.18 a | 2.15 ± 0.33 ab | 1.55 ± 0.16 a | 1.28 ± 0.1 a | 1.32 ± 0.13 a |
1,2-dioleoyl_PC | 0.32 ± 0.15 | 0.3 ± 0.08 | 0.28 ± 0.07 | 0.37 ± 0.2 | 0.17 ± 0.07 | 0.54 ± 0.32 | 0.21 ± 0.13 | 0.3 ± 0.08 | 0.47 ± 0.06 | 0.29 ± 0.04 | 0.34 ± 0.08 |
1,2-dioleoyl_GLP_Na | 0.45 ± 0.1 | 0.32 ± 0.06 | 0.4 ± 0.05 | 0.48 ± 0.15 | 0.38 ± 0.13 | 0.48 ± 0.26 | 0.27 ± 0.07 | 0.38 ± 0.17 | 0.35 ± 0.03 | 0.39 ± 0.08 | 0.5 ± 0.08 |
∑Glycerophospholipids | 0.77 ± 0.25 | 0.63 ± 0.14 | 0.68 ± 0.11 | 0.85 ± 0.34 | 0.55 ± 0.2 | 1.02 ± 0.58 | 0.49 ± 0.19 | 0.67 ± 0.26 | 0.82 ± 0.08 | 0.68 ± 0.12 | 0.83 ± 0.15 |
Ceramide | 0.02 ± 0.01 ab | 0.01 ± 0 a | 0.02 ± 0.01 ab | 0.01 ± 0 a | 0.01 ± 0 a | 0.03 ± 0.01 b | 0.02 ± 0.01 ab | 0.02 ± 0.01 ab | 0.02 ± 0.01 ab | 0.02 ± 0 ab | 0.01 ± 0 a |
∑Sphingolipid | 0.02 ± 0.01 ab | 0.01 ± 0 a | 0.02 ± 0.01 ab | 0.01 ± 0 a | 0.01 ± 0 a | 0.03 ± 0.01 b | 0.02 ± 0.01 ab | 0.02 ± 0.01 ab | 0.02 ± 0.01 ab | 0.02 ± 0 ab | 0.01 ± 0 a |
Ethyl palmitate | 0.36 ± 0.02 b | 0.38 ± 0.04 b | 0.34 ± 0.04 ab | 0.34 ± 0.08 ab | 0.28 ± 0.11 ab | 0.14 ± 0.1 a | 0.37 ± 0.13 b | 0.28 ± 0.06 ab | 0.31 ± 0.05 ab | 0.39 ± 0.02 b | 0.35 ± 0.02 b |
Ethyl linoleate | 0.03 ± 0 | 0.04 ± 0.01 | 0.07 ± 0.02 | 0.08 ± 0.02 | 0.06 ± 0.03 | 0.06 ± 0.03 | 0.08 ± 0.01 | 0.05 ± 0 | 0.05 ± 0.01 | 0.06 ± 0.01 | 0.06 ± 0.02 |
Ethyl oleate | 0.25 ± 0.05 | 0.25 ± 0.02 | 0.24 ± 0 | 0.29 ± 0.1 | 0.22 ± 0.09 | 0.12 ± 0.11 | 0.24 ± 0.04 | 0.27 ± 0.01 | 0.22 ± 0.05 | 0.23 ± 0.03 | 0.29 ± 0.06 |
Ethyl stearate | 0.26 ± 0.05 | 0.27 ± 0.04 | 0.33 ± 0.09 | 0.41 ± 0.13 | 0.31 ± 0.14 | 0.27 ± 0.19 | 0.37 ± 0.08 | 0.22 ± 0.09 | 0.26 ± 0.06 | 0.27 ± 0.04 | 0.3 ± 0.08 |
∑ Fatty acid ethyl esters | 0.9 ± 0.09 | 0.95 ± 0.02 | 0.98 ± 0.11 | 1.11 ± 0.32 | 0.86 ± 0.35 | 0.6 ± 0.41 | 1.05 ± 0.11 | 0.83 ± 0.09 | 0.84 ± 0.14 | 0.94 ± 0.04 | 1 ± 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boban, A.; Masuero, D.; Vrhovsek, U.; Budić-Leto, I. Comprehensive Lipid Profile of ‘Maraština’ Grape Skins from Dalmatia. Appl. Sci. 2023, 13, 6446. https://doi.org/10.3390/app13116446
Boban A, Masuero D, Vrhovsek U, Budić-Leto I. Comprehensive Lipid Profile of ‘Maraština’ Grape Skins from Dalmatia. Applied Sciences. 2023; 13(11):6446. https://doi.org/10.3390/app13116446
Chicago/Turabian StyleBoban, Ana, Domenico Masuero, Urska Vrhovsek, and Irena Budić-Leto. 2023. "Comprehensive Lipid Profile of ‘Maraština’ Grape Skins from Dalmatia" Applied Sciences 13, no. 11: 6446. https://doi.org/10.3390/app13116446
APA StyleBoban, A., Masuero, D., Vrhovsek, U., & Budić-Leto, I. (2023). Comprehensive Lipid Profile of ‘Maraština’ Grape Skins from Dalmatia. Applied Sciences, 13(11), 6446. https://doi.org/10.3390/app13116446