Effects of Process Parameters on the Bead Shape in the Tandem Gas Metal Arc Welding of Aluminum 5083-O Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Welding Equipment
2.3. Welding Conditions
2.4. Analysis Method
3. Results and Discussion
3.1. Effect of Welding Parameters on Bead Shape
3.2. Model Estimation for Weld Bead Shape
3.2.1. Leg Length
3.2.2. Penetration Depth
3.3. Analysis of Phenomena through a High-Speed Camera
3.4. Model-Based Optimization and Validation
4. Conclusions
- The tandem GMAW process was used in these experiments, and a torch with a 7 mm gap between the tandem torches was designed and applied;
- The bead shape (leg length and penetration depth) gradually decreased owing to the decrease in heat input as the WS increased within the WS range of 123–157 cm/min;
- The leading arc directly strikes the solid to form a narrow molten article, which has an effect on the influence of the penetration depth;
- The trailing arc is transferred to the molten pool created by the leading arc, which expanded the molten pool and influenced the leg length;
- As a result of observing arc behavior using a high-speed camera, it was confirmed that the leading WFR affects the penetration depth, and the trailing WFR affects the leg length;
- In the lap fillet joint tandem GMAW process using aluminum 5083-O alloy (thickness: 1.5 mm) for the top plate and aluminum 5083-O alloy (thickness: 2.5 mm) for the bottom plate, a regression equation was derived to predict the bead shape (leg length and penetration depth). The coefficient of determination (R2) of the regression models was 0.9414 for the leg length and 0.9924 for the penetration depth;
- It was validated that the estimated models were effective in predicting the weld bead shape of the aluminum 5083-O alloy single lap joint using the tandem GMAW process.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fatchurrohman, N.; Iskandar, I.; Suraya, S.; Johan, K. Sustainable Analysis in the Product Development of Al-Metal Matrix Composites Automotive Component. Appl. Mech. Mater. 2015, 695, 32–35. [Google Scholar]
- Srivyas, P.D.; Charoo, M. Application of Hybrid Aluminum Matrix Composite in Automotive Industry. Mater. Today Proc. 2019, 18, 3189–3200. [Google Scholar] [CrossRef]
- Goecke, S.; Berlin, F.U.B.T.; Hedegård, J.; Joining, S.I.M.R.; ESAB Welding Equipment AB. Tandem mig/mag welding. Weld. Rev. Publ. Esab 2001, 56, 24–28. [Google Scholar]
- Chen, D.; Chen, M.; Wu, C. Effects of phase difference on the behavior of arc and weld pool in tandem P-GMAW. J. Mater. Process. Technol. 2015, 225, 45–55. [Google Scholar] [CrossRef]
- Wu, K.; Ding, N.; Yin, T.; Zeng, M.; Liang, Z. Effects of single and double pulses on microstructure and mechanical properties of weld joints during high-power double-wire GMAW. J. Manuf. Process. 2018, 35, 728–734. [Google Scholar] [CrossRef]
- Zhang, L.; Su, S.; Wang, J.; Chen, S. Investigation of arc behaviour and metal transfer in cross arc welding. J. Manuf. Process. 2019, 37, 124–129. [Google Scholar] [CrossRef]
- Rossini, L.F.S.; Reyes, R.A.V.; Spinelli, J.E. Double-wire tandem GMAW welding process of HSLA50 steel. J. Manuf. Process. 2019, 45, 227–233. [Google Scholar] [CrossRef]
- Kolahan, F.; Heidari, M. A new approach for predicting and optimizing weld bead geometry in gmaw. Int. J. Mech. Syst. Sci. Eng. 2010, 2, 138–142. [Google Scholar]
- Saravanan, S.; Pitchipoo, P. Optimization of GMAW Parameters to Improve the Mechanical Properties. Appl. Mech. Mater. 2015, 813–814, 456–461. [Google Scholar]
- Jeyaganesh, D.; Ziout, A.; Qudeiri, J.A. Optimization of p-gmaw parameters using grey relational analysis and taguchi method. In Proceedings of the 2021 IEEE 12th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT), Cape Town, South Africa, 13–15 May 2021; pp. 191–196. [Google Scholar]
- Venkadeshwaran, P.; Sakthivel, R.; Sridevi, R.; Meeran, R.A.; Chandrasekaran, K. Optimization of welding parameter on aa2014 in gmaw. Int. J. Emerg. Technol. Innov. Eng. 2015, 1, 60–66. [Google Scholar]
- Ramarao, M.; King, M.F.L.; Sivakumar, A.; Manikandan, V.; Vijayakumar, M.; Subbiah, R. Optimizing GMAW parameters to achieve high impact strength of the dissimilar weld joints using Taguchi approach. Mater. Today Proc. 2022, 50, 861–866. [Google Scholar] [CrossRef]
- Duan, B.; Wang, J.C.; Lu, Z.H.; Zhang, G.X.; Zhang, C.H. Parameter Analysis and Optimization of the Rotating Arc NG-GMAW Welding Process. Int. J. Simul. Model. 2018, 17, 170–179. [Google Scholar] [CrossRef]
- Tham, G.; Yaakub, M.Y.; Abas, S.K.; Manurung, Y.H.; Abu Jalil, B. Predicting the GMAW 3F T-Fillet Geometry and Its Welding Parameter. Procedia Eng. 2012, 41, 1794–1799. [Google Scholar] [CrossRef]
- Yu, J.; Kim, D. Effects of welding current and torch position parameters on minimizing the weld porosity of zinc-coated steel. Int. J. Adv. Manuf. Technol. 2017, 95, 551–567. [Google Scholar] [CrossRef]
- Shen, X.; Ma, G.; Chen, P. Effect of welding process parameters on hybrid GMAW-GTAW welding process of AZ31B magnesium alloy. Int. J. Adv. Manuf. Technol. 2018, 94, 2811–2819. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, T.; Cruz-Hernández, V.; García-Rentería, M.; Torres-Gonzalez, R.; García-Villarreal, S.; Curiel-López, F.; Falcón-Franco, L. First assessment on the microstructure and mechanical properties of gtaw-gmaw hybrid welding of 6061-t6 aa. J. Manuf. Process. 2020, 59, 658–667. [Google Scholar] [CrossRef]
- Lee, D.Y.; Leifsson, L.; Kim, J.-Y.; Lee, S.H. Optimisation of hybrid tandem metal active gas welding using Gaussian process regression. Sci. Technol. Weld. Join. 2020, 25, 208–217. [Google Scholar] [CrossRef]
- Wu, D.; Hua, X.; Ye, D.; Ma, X.; Li, F. Understanding of the weld pool convection in twin-wire GMAW process. Int. J. Adv. Manuf. Technol. 2017, 88, 219–227. [Google Scholar] [CrossRef]
- Häßler, M.; Rose, S.; Füssel, U. The influence of arc interactions and a central filler wire on shielding gas flow in tandem GMAW. Weld. World 2016, 60, 713–718. [Google Scholar] [CrossRef]
- Wu, K.; Wang, Y.; Tao, T.; Zhan, J.; Hong, X. Effect of phase shift on arc interference and weld bead formation in aluminum alloy tandem GMAW with a median pulsed waveform. Int. J. Adv. Manuf. Technol. 2022, 120, 8013–8030. [Google Scholar] [CrossRef]
- Ueyama, T.; Ohnawa, T.; Tanaka, M.; Nakata, K. Effects of torch configuration and welding current on weld bead formation in high speed tandem pulsed gas metal arc welding of steel sheets. Sci. Technol. Weld. Join. 2005, 10, 750–759. [Google Scholar] [CrossRef]
- Ahsan, R.U.; Kim, Y.R.; Kim, C.H.; Kim, J.W.; Ashiri, R.; Park, Y.D. Porosity formation mechanisms in cold metal transfer (CMT) gas metal arc welding (GMAW) of zinc coated steels. Sci. Technol. Weld. Join. 2016, 21, 209–215. [Google Scholar] [CrossRef]
Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | Al |
---|---|---|---|---|---|---|---|---|
0.11 | 0.31 | 0.05 | 0.66 | 4.51 | 0.09 | 0.03 | 0.01 | 94.2 |
Condition | Leading Arc | Trailing Arc |
---|---|---|
Power source | Welbee P500L | Welbee W350 |
Current type | DC pulse (Polarity: DCEP) | |
Filler wire | ER5356 (diameter: 1.2 mm) | |
Wire feed rate (m/min) | 2.6–9.5 | |
Welding speed (cm/min) | 123–157 | |
Work angle (°) | 30 | |
CTWD (mm) | 17 | |
Shielding gas | Ar (15 L/min) | Ar (15 L/min) |
Design Units | |||||
---|---|---|---|---|---|
Factor | −1.682 | −1 | 0 | 1 | 1.682 |
X1 (cm/min) | 123 | 130 | 140 | 150 | 157 |
X2 (m/min) | 2.6 | 4.0 | 6.0 | 8.0 | 9.4 |
X3 (m/min) | 2.6 | 4.0 | 6.0 | 8.0 | 9.4 |
Run | X1 | X2 | X3 | Yleg | Ypen | ||||
---|---|---|---|---|---|---|---|---|---|
1 | −1 | −1 | −1 | 3.5 | 4.6 | 4.4 | 0.0 | 0.0 | 0.0 |
2 | 1 | −1 | −1 | 3.6 | 4.3 | 3.6 | 0.0 | 0.3 | 0.0 |
3 | −1 | 1 | −1 | 5.8 | 5.6 | 5.7 | 1.7 | 1.8 | 1.6 |
4 | 1 | 1 | −1 | 5.0 | 5.2 | 5.0 | 1.3 | 1.3 | 1.3 |
5 | −1 | −1 | 1 | 6.0 | 6.2 | 6.2 | 2.0 | 1.7 | 1.8 |
6 | 1 | −1 | 1 | 5.5 | 5.7 | 5.4 | 1.1 | 1.2 | 1.0 |
7 | −1 | 1 | 1 | 7.5 | 7.6 | 7.6 | 4.8 | 5.0 | 5.0 |
8 | 1 | 1 | 1 | 7.7 | 6.7 | 7.4 | 4.0 | 4.3 | 4.3 |
9 | −1.682 | 0 | 0 | 6.1 | 5.8 | 6.1 | 1.8 | 2.1 | 2.0 |
10 | 1.682 | 0 | 0 | 5.2 | 4.9 | 4.8 | 1.2 | 0.8 | 0.9 |
11 | 0 | −1.682 | 0 | 3.8 | 5.0 | 4.1 | 0.0 | 0.3 | 0.2 |
12 | 0 | 1.682 | 0 | 7.4 | 7.0 | 7.5 | 4.0 | 4.1 | 3.9 |
13 | 0 | 0 | −1.682 | 3.6 | 3.9 | 3.5 | 0.0 | 0.2 | 0.0 |
14 | 0 | 0 | 1.682 | 7.0 | 6.9 | 7.0 | 3.9 | 4.1 | 3.8 |
15 | 0 | 0 | 0 | 5.4 | 5.3 | 5.2 | 1.2 | 1.1 | 1.0 |
16 | 0 | 0 | 0 | 5.3 | 5.0 | 4.9 | 1.3 | 1.1 | 1.0 |
17 | 0 | 0 | 0 | 5.4 | 5.3 | 5.1 | 1.4 | 1.1 | 1.2 |
18 | 0 | 0 | 0 | 5.3 | 4.9 | 4.9 | 1.3 | 1.2 | 1.2 |
19 | 0 | 0 | 0 | 5.2 | 5.1 | 4.8 | 1.3 | 1.1 | 1.1 |
20 | 0 | 0 | 0 | 5.1 | 5.1 | 5.0 | 1.0 | 1.0 | 1.0 |
Parameter | Low Level | High Level |
---|---|---|
X1 | Run 5 | Run 6 |
X2 | Run 2 | Run 4 |
X3 | Run 2 | Run 6 |
Source | DF | Adj. SS | Adj. MS | F | p |
---|---|---|---|---|---|
Regression | 5 | 71.40 | 14.28 | 173.37 | 0.00 |
Linear | 3 | 68.18 | 22.73 | 275.91 | 0.00 |
X1 | 1 | 3.07 | 3.07 | 37.26 | 0.00 |
X2 | 1 | 27.12 | 27.12 | 329.31 | 0.00 |
X3 | 1 | 37.96 | 37.96 | 461.17 | 0.00 |
Square | 2 | 3.22 | 1.61 | 19.56 | 0.00 |
X1 × X1 | 1 | 0.80 | 0.80 | 9.66 | 0.00 |
X2 × X2 | 1 | 2.66 | 2.66 | 32.33 | 0.00 |
Residual error | 54 | 4.45 | 0.08 | - | - |
Lack of fit | 39 | 4.14 | 0.11 | 5.22 | 0.06 |
Pure error | 15 | 0.31 | 0.02 | - | - |
R2 = 0.9414 | - | - | - | - | - |
Adj R2 = 0.9359 | - | - | - | - | - |
Source | DF | Adj. SS | Adj. MS | F | p |
---|---|---|---|---|---|
Regression | 9 | 121.08 | 13.45 | 722.24 | 0.00 |
Linear | 3 | 108.28 | 36.09 | 1937.66 | 0.00 |
X1 | 1 | 2.61 | 2.61 | 140.24 | 0.00 |
X2 | 1 | 53.10 | 53.10 | 2850.50 | 0.00 |
X3 | 1 | 52.57 | 52.57 | 2822.24 | 0.00 |
Square | 3 | 8.11 | 2.70 | 145.16 | 0.00 |
X1 × X1 | 1 | 0.57 | 0.57 | 30.46 | 0.00 |
X2 × X2 | 1 | 4.78 | 4.78 | 256.74 | 0.00 |
X3 × X3 | 1 | 3.97 | 3.97 | 213.27 | 0.00 |
Interaction | 3 | 4.69 | 1.56 | 83.89 | 0.00 |
X1 × X2 | 1 | 0.09 | 0.09 | 5.03 | 0.03 |
X1 × X3 | 1 | 0.51 | 0.51 | 27.40 | 0.00 |
X2 × X3 | 1 | 4.08 | 4.08 | 219.24 | 0.00 |
Residual error | 48 | 0.93 | 0.02 | - | - |
Lack of fit | 33 | 0.77 | 0.02 | 2.02 | 0.07 |
Pure error | 15 | 0.16 | 0.01 | - | - |
R2 = 0.9924 | - | - | - | - | - |
Adj R2 = 0.9910 | - | - | - | - | - |
Welding Condition | X2 (m/min) | X3 (m/min) | X2 (m/min) | X3 (m/min) |
---|---|---|---|---|
9.5 | 5.0 | 5.0 | 9.5 | |
High-speed camera images | ||||
Cross-section | ||||
Yleg (mm) | 7.6 | 8.0 | ||
Ypen (mm) | 3.0 | 2.4 |
Point | Welding Parameter | Item | Value | Deviation | Cross-Section | ||
---|---|---|---|---|---|---|---|
Yleg (mm) | Ypen (mm) | Yleg (mm) | Ypen (mm) | ||||
1 | (X1) 140 cm/min; (X2) 6.6 m/min; (X3) 5.8 m/min | Predicted values | 5.9 | 1.2 | |||
Actual value 1 | 6.0 | 1.4 | 0.1 | 0.2 | |||
Actual value 2 | 6.1 | 1.3 | 0.2 | 0.1 | |||
Actual value 3 | 6.1 | 1.3 | 0.2 | 0.1 | |||
2 | (X1): 140 cm/min, (X2): 8.7 m/min, (X3): 4.1 m/min | Predicted values | 6.0 | 1.9 | |||
Actual value 1 | 5.6 | 1.5 | 0.4 | 0.4 | |||
Actual value 2 | 5.6 | 1.5 | 0.4 | 0.4 | |||
Actual value 3 | 5.7 | 1.6 | 0.3 | 0.3 | |||
3 | (X1): 145 cm/min, (X2): 9.0 m/min, (X3): 3.0 m/min | Predicted values | 5.5 | 1.5 | |||
Actual value 1 | 5.2 | 1.1 | 0.3 | 0.1 | |||
Actual value 2 | 5.2 | 1.2 | 0.3 | 0.3 | |||
Actual value 3 | 5.1 | 1.2 | 0.4 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, G.-G.; Kang, T.; Kim, D.-Y.; Kim, Y.-M.; Yu, J.; Park, J. Effects of Process Parameters on the Bead Shape in the Tandem Gas Metal Arc Welding of Aluminum 5083-O Alloy. Appl. Sci. 2023, 13, 6653. https://doi.org/10.3390/app13116653
Kim G-G, Kang T, Kim D-Y, Kim Y-M, Yu J, Park J. Effects of Process Parameters on the Bead Shape in the Tandem Gas Metal Arc Welding of Aluminum 5083-O Alloy. Applied Sciences. 2023; 13(11):6653. https://doi.org/10.3390/app13116653
Chicago/Turabian StyleKim, Gwang-Gook, Taehoon Kang, Dong-Yoon Kim, Young-Min Kim, Jiyoung Yu, and Junhong Park. 2023. "Effects of Process Parameters on the Bead Shape in the Tandem Gas Metal Arc Welding of Aluminum 5083-O Alloy" Applied Sciences 13, no. 11: 6653. https://doi.org/10.3390/app13116653
APA StyleKim, G. -G., Kang, T., Kim, D. -Y., Kim, Y. -M., Yu, J., & Park, J. (2023). Effects of Process Parameters on the Bead Shape in the Tandem Gas Metal Arc Welding of Aluminum 5083-O Alloy. Applied Sciences, 13(11), 6653. https://doi.org/10.3390/app13116653