Predictive Vehicle Safety—Validation Strategy of a Perception-Based Crash Severity Prediction Function
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pre-Crash Systems in Compliance with International Safety Standards
2.2. Machine Learning Methods for Scenario Extraction
- : the sum over all clusters k
- : the sum over all data points i within cluster k
- : a data point within cluster k
- : the cluster center of cluster k
- : the sum over all clusters k
- : the number of data points in cluster k
- : the cluster center of cluster k
- : the overall centroid or mean of all data points
- the data points within the cluster
- : the average intra-cluster distance
- the smallest inter-cluster distance
- : the number of all data points in the dataset
3. Crash Prediction Testing Methodology
3.1. Item Definition
3.1.1. Definition of the Intended Functionality
3.1.2. Definition “Area of Action” or Operational Design Domain (ODD)
- Road and traffic conditions
- Weather and lighting conditions
- Static (e.g., shape) and dynamic (e.g., velocity) conditions of the host vehicle and other road participants
- Host occupant configuration
- Concrete collision configuration at
- Safety systems configuration
- Passengers Pre-Crash and In-Crash configuration
3.2. Hazard Analysis and Risk Assessment
- Reversibility
- Distraction
- Fallback level
- Risk of injury by the PCS for host vehicle occupants
- Risk of injury by the PCS for opponents
3.3. Test Scenario Requirements
- Collision
- Critical situation
- Regular driving
3.4. Data Acquisition
3.5. Test Scenario Catalog Development
3.5.1. Machine Learning Scenario Extraction
3.5.2. Scenario Relevance Assessment
3.6. Validation Tests
3.7. Safety and Effectiveness Assessment
3.8. Functional Modification
4. Discussion of Limitations
4.1. Crash Severity Validation
4.2. Prospective Test Scenarios
4.3. Global Traffic Data
4.4. Pre-Crash Phase Clustering
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Autonomous Driving |
ADAS | Advanced Driver Assistance Systems |
AEB | Autonomous Emergency Braking |
ASIL | Automotive Safety Integrity Level |
ASIL A+ | ASIL of at least A or higher |
BSS | Between-Cluster Sum of Squares |
CP | Crash Prediction |
CSP | Crash Severity Prediction |
DoE | Degree of Efficiency |
E/E | Electrical and Electronic |
EDR | Event Data Recorder |
EES | Energy Equivalent Speed |
EuroNCAP | European New Car Assessment Programme |
FEM | Finite Element Method |
FN | False Negative |
FP | False Positive |
GIDAS | German In-Depth Accident Study |
HARA | Hazard Analysis and Risk Assessment |
iGLAD | Initiative for the Harmonization of Global in-Depth Traffic Accident Data |
k-NN | K-Nearest-Neighbor |
ODD | Operational Design Domain |
OLC | Occupant Load Criterion |
PCM | Pre-Crash Matrix |
PCS | Pre-Crash Systems |
PPT | Pre-Pretensioning |
QM | Quality Management |
SOTIF | Safety of the Intended Functionality |
TN | True Negative |
TP | True Positive |
TTB | Time to Brake |
TTC | Time to Collision |
TTD | Time to Distance |
TTS | Time to Steer |
V&V | Verification and Validation |
WCSS | Within-Cluster Sum of Squares |
WHO | World Health Organization |
References
- World Health Organization. Global Status Report on Road Safety 2018; World Health Organization: Geneva, Switzerland, 2019; Available online: https://www.who.int/publications/i/item/9789241565684 (accessed on 11 November 2022).
- United Nations General Assembly. Resolution A/RES/74/299 Improving Global Road Safety. 2020. Available online: https://frsc.gov.ng/wp-content/uploads/2021/02/UNGA-Resolution-2020.pdf (accessed on 24 May 2023).
- Moritz, R. Precrash Sensing Its Functional Evolution Based on a Platform Radar Sensor; Society Automotive Engineers Int.: Detroit, MI, USA, 2000. [Google Scholar]
- Amersbach, C.; Winner, H. Functional decomposition—A contribution to overcome the parameter space explosion during validation of highly automated driving. Traffic Inj. Prev. 2019, 20, S52–S57. [Google Scholar] [CrossRef] [PubMed]
- Gietelink, O.; Verburg, D.; Labibes, K.; Oostendorp, A. Pre-Crash System Validation with PRESCAN and VEHIL. In IEEE Intelligent Vehicles Symposium; IEEE: New York, NY, USA, 2004; pp. 913–918. [Google Scholar]
- Müller, M.; Botsch, M.; Böhmländer, D.; Utschick, W. Machine Learning Based Prediction of Crash Severity Distributions for Mitigation Strategies. J. Adv. Inf. Technol. 2018, 9, 15–24. [Google Scholar] [CrossRef]
- Moon, J.; Bae, I.; Kim, S. A pre-crash safety system for an occupant sitting on a backward facing seat for fully automated vehicles in frontal crashes. In Proceedings of the 2017 IEEE International Conference on Vehicular Electronics and Safety (ICVES), Vienna, Austria, 27–28 June 2017; pp. 168–171. [Google Scholar]
- Müller, M.; Long, X.; Botsch, M.; Böhmländer, D.; Utschick, W. Real-Time Crash Severity Estimation with Machine Learning and 2D Mass-Spring-Damper Model. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 2036–2043. [Google Scholar]
- Mages, M.; Seyffert, M.; Class, U. Analysis of the Pre-Crash Benefit of Reversible Belt Pre-Pretensioning in Different Accident Scenarios. In Proceedings of the the 22nd ESV Conference, Washington, DC, USA, 13–16 June 2011. [Google Scholar]
- Ekant, M.; Mroz, K.; Pipkorn, B.; Lubbe, N. Effects of Automated Emergency Braking and Seatbelt Pre-Pretensioning on Occupant Injury Risks in High-Severity Frontal Crashes. Front. Future Transp. 2022, 3, 883951. [Google Scholar]
- Putter, R. Poster: Preventive Identification of Accident Black Spots on the Basis of Crash Severity Estimation. In Proceedings of the 2023 IEEE Vehicular Networking Conference (VNC), Istanbul, Turkey, 26–28 April 2023; pp. 155–156. [Google Scholar]
- Grotz, B.; Straßburger, P.; Huf, A.; Roig, L. Prädiktive Sicherheit-Wahrnehmungsbasierte Aktivierung von Pre-Crash-Systemen. ATZ-Automob. Z. 2021, 123, 18–25. [Google Scholar] [CrossRef]
- ISO 26262-1:2018(en) Road Vehicles—Functional Safety. Available online: https://www.iso.org/standard/68383.html/ (accessed on 3 January 2023).
- ISO/PAS 21448:2019 Road Vehicles—Safety of the Intended Functionality. Available online: https://www.iso.org/obp/ui#iso:std:iso:pas:21448:ed-1:v1:en/ (accessed on 3 January 2023).
- Goodall, N. Ethical decision making during automated vehicle crashes. Transp. Res. Rec. 2014, 2424, 58–65. [Google Scholar] [CrossRef]
- Jeong, H.; Jang, Y.; Bowman, P.; Masoud, N. Classification of motor vehicle crash injury severity: A hybrid approach for imbalanced data. Accid. Anal. Prev. 2018, 120, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Assi, K.; Rahman, S.M.; Mansoor, U.; Ratrout, N. Predicting Crash Injury Severity with Machine Learning Algorithm Synergized with Clustering Technique: A Promising Protocol. Int. J. Environ. Res. Public Health 2020, 17, 5497. [Google Scholar] [CrossRef] [PubMed]
- Halkidi, M.; Batistakis, Y.; Vazirgiannis, M. On Clustering Validation Techniques. J. Intell. Inf. Syst. 2001, 17, 107–145. [Google Scholar] [CrossRef]
- Rousseeuw, P. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef]
- Menzel, T.; Bagschik, G.; Maurer, M. Scenarios for development, test and validation of automated vehicles. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Suzhou, China, 26–30 June 2018; pp. 1821–1827. [Google Scholar]
- Society of Automotive Engineers. Taxonomy and Definitions for Terms Related to Driving Automation Systems for on-Road Motor Vehicles; Society of Automotive Engineers: Warrendale, PA, USA, 2021. [Google Scholar]
- Infineon: Reversible Seatbelt Pretensioner. Available online: https://www.infineon.com/cms/en/applications/automotive/chassis-safety-and-adas/reversible-seatbelt-pretensioner/ (accessed on 20 December 2022).
- Bagschik, G.; Menzel, T.; Maurer, M. Ontology based Scene Creation for the Development of Automated Vehicles. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Suzhou, China, 26–30 June 2018; pp. 1813–1820. [Google Scholar]
- Scholtes, M.; Westhofen, L.; Turner, L.R.; Lotto, K.; Schuldes, M.; Weber, H.; Wagener, N.; Neurohr, C.; Bollmann, M.; Körtke, F.; et al. 6-layer model for a structured description and categorization of urban traffic and environment. arXiv 2020, arXiv:2012.06319. [Google Scholar] [CrossRef]
- Hruschka, C.M.; Töpfer, D.; Zug, S. Risk assessment for integral safety in automated driving. In Proceedings of the 2019 2nd International Conference on Intelligent Autonomous Systems (ICoIAS), Singapore, 28 February–2 March 2019; pp. 102–109. [Google Scholar]
- Mai, M.; Baeumler, M.; Lehmann, M.; Siebke, C.; Blenz, K.; Prokop, G.; Bönninger, J.; Höpping, K. Die Dresdner Methode—Ein Baukasten zur ganzheitlichen Bewertung aktiver Sicherheits- und automatisierter Fahrfunktionen. VDI Ber. 2022, 13, 419–434. [Google Scholar]
- Schubert, A.; Erbsmehl, C.; Hannawald, L. Standardized Pre-Crash-Scenarios in Digital Format on the Basis of the VUFO Simulation. 2013. Available online: https://bast.opus.hbz-nrw.de/opus45-bast/frontdoor/index/index/docId/630 (accessed on 31 March 2023).
- GIDAS-PCM. Available online: https://www.vufo.de/gidas-pcm/ (accessed on 3 January 2023).
- Stark, L.; Düring, M.; Schoenawa, S.; Maschke, J.E.; Do, C.M. ‘Quantifying vision zero: Crash avoidance in rural and motorway accident scenarios by combination of ACC, AEB, and LKS projected to German accident occurrence. Traffic Inj. Prev. 2019, 20, S126–S132. [Google Scholar] [CrossRef] [PubMed]
- SHRP 2 Naturalistic Driving Study. Available online: https://insight.shrp2nds.us/ (accessed on 3 January 2023).
- Arthur, D.; Vassilvitskii, S. K-Means++: The Advantages of Careful Seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete Algorithms; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2007; Volume 8, pp. 1027–1035. [Google Scholar]
- Winkle, T.; der Unfallforschung; Maurer, E.A.I.M.; Gerdes, C.; Lenz, B.; Winner, H. (Eds.) Autonomes Fahren—Technische, Rechtliche und Gesellschaftliche Aspekte; Springer: Berlin/Heidelberg, Germany, 2015; pp. 351–376. [Google Scholar]
- Nutzung Der Erkenntnisse Aus Dem Unfallforschungsprojekt GIDAS Für Unfallgutachter Und Versicherer. Available online: https://www.gidas.org/pdf/Liers_Nutzung_der_Erkenntnisse_aus_GIDAS_print.pdf (accessed on 3 January 2023).
- Leledakis, A.; Lindman, M.; Östh, J.; Wågström, L.; Davidsson, J.; Jakobsson, L. A method for predicting crash configurations using counterfactual simulations and real-world data. Accid. Anal. Prev. 2021, 150, 105932. [Google Scholar] [CrossRef] [PubMed]
- Initiative for the Global Harmonisation of Accident Data. Available online: http://www.iglad.net/ (accessed on 10 December 2022).
- Spitzhüttl, F.; Liers, H.; Petzold, M. Creation of pre-crash simulations in global traffic accident scenarios based on the iglad database. In Proceedings of the FAST-Zero’15: 3rd International Symposium on Future Active Safety Technology toward Zero Traffic Accidents, Gothenburg, Sweden, 9–11 September 2015. [Google Scholar]
PCS | Irreversible | Distracting | Fallback Level | Risk of Injury Host | Risk of Injury Opponent | ASIL Class |
---|---|---|---|---|---|---|
Predictive eCall | No | May | Yes | No | No | QM |
Reversible seat belt (low-force) | No | May | Yes | No | No | QM |
Reversible seat belt (high-force) | No | Yes | May | Yes | May | ASIL B |
Pre-Crash airbag activation | Yes | Yes | No (for FP) Yes (for FN) | Yes | May | ASIL D |
Collision constellation optimization | Yes | Yes | No | Yes | Yes | ASIL D |
Prediction Time | Simulation Nominal Velocity | Simulation Predicted Velocity | Prediction Error |
---|---|---|---|
… | … | … | … |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Putter, R.; Neubohn, A.; Leschke, A.; Lachmayer, R. Predictive Vehicle Safety—Validation Strategy of a Perception-Based Crash Severity Prediction Function. Appl. Sci. 2023, 13, 6750. https://doi.org/10.3390/app13116750
Putter R, Neubohn A, Leschke A, Lachmayer R. Predictive Vehicle Safety—Validation Strategy of a Perception-Based Crash Severity Prediction Function. Applied Sciences. 2023; 13(11):6750. https://doi.org/10.3390/app13116750
Chicago/Turabian StylePutter, Roman, Andre Neubohn, Andre Leschke, and Roland Lachmayer. 2023. "Predictive Vehicle Safety—Validation Strategy of a Perception-Based Crash Severity Prediction Function" Applied Sciences 13, no. 11: 6750. https://doi.org/10.3390/app13116750
APA StylePutter, R., Neubohn, A., Leschke, A., & Lachmayer, R. (2023). Predictive Vehicle Safety—Validation Strategy of a Perception-Based Crash Severity Prediction Function. Applied Sciences, 13(11), 6750. https://doi.org/10.3390/app13116750