Uncertainty Quantification of Ride Comfort Based on gPC Framework for a Fully Coupled Human–Vehicle Model
Abstract
:1. Introduction
2. Human–Vehicle Model and Road Profile for Stochastic Analysis
2.1. Model Description and Derivation of Equation of Motion
2.2. Random Road Profile and Human–Vehicle Model
2.3. Approximate Model Based on Generalized Polynomial Chaos
3. Stochastic Analysis of Ride Comfort Index
3.1. gPC Results for Human–Vehicle Model with Uncertain Parameters
3.2. Sensitivity Analysis of Ride Comfort
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Parameter | Symbol | Value | |
---|---|---|---|
Mass (kg) | m1 | 10.49 | |
m2 | 33.98 | ||
m3 | 6.67 | ||
Mass moment of inertia (kgm2) | J1 | 0.23 | |
J2 | 2.05 | ||
J3 | 0.03 | ||
Length (mm) | Ltr | 598.60 | |
Lth | 571.70 | ||
Lh | 217.10 | ||
l1 | 88.00 | ||
l2 | 459.80 | ||
l3 | 100.00 | ||
l4 | 478.90 | ||
Tth | 156.20 | ||
Ttr | 224.00 | ||
Stiffness (kN/m, kNm/rad) | k1, k2 | 66.60 | |
k3, k4 | 95.54 | ||
1.42 | |||
1.12 | |||
Damping coefficient (kNs/m, kNms/rad) | c1, c2 | 0.89 | |
c3, c4 | 0.94 | ||
0.30 | |||
0.20 |
Appendix B
References
- Loprencipe, G.; Bruno, S.; Cantisani, G.; D’Andrea, A.; Di Mascio, P.; Moretti, L. Methods for measuring and assessing irregularities of stone pavements—Part I. Sustainability 2023, 15, 1528. [Google Scholar] [CrossRef]
- Bruno, S.; Loprencipe, G.; Marchetti, V. Proposal for a low-cost monitoring system to assess the pavement deterioration in urban roads. Eur. Transp./Trasp. Eur. 2023, 91, 1–10. [Google Scholar] [CrossRef]
- Moghimi, H.; Ronagh, H.R. Development of a numerical model for bridge–vehicle interaction and human response to traffic-induced vibration. Eng. Struct. 2008, 30, 3808–3819. [Google Scholar] [CrossRef]
- Koç, M.A.; Esen, İ. Modelling and analysis of vehicle-structure-road coupled interaction considering structural flexibility, vehicle parameters and road roughness. J. Mech. Sci. Technol. 2017, 31, 2057–2074. [Google Scholar] [CrossRef]
- Koç, M.A. A new expert system for active vibration control (AVC) for high-speed train moving on a flexible structure and PID optimization using MOGA and NSGA-II algorithms. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 151. [Google Scholar] [CrossRef]
- Badiru, I.; Cwycyshyn, W.B. Customer focus in ride development. In SAE Technical Paper; SAE International: Warrendale, PA, USA, 2013. [Google Scholar] [CrossRef]
- Taluja, A.; Wilson, S.T.; Lalasure, S.; Rajakumar, K. Methodology to Quantitatively Evaluate the Secondary Ride Characteristics of a Vehicle. In SAE Technical Paper; SAE International: Warrendale, PA, USA, 2017. [Google Scholar] [CrossRef]
- Griffin, M.J. Discomfort from feeling vehicle vibration. Veh. Syst. Dyn. 2007, 45, 679–698. [Google Scholar] [CrossRef] [Green Version]
- Cantisani, G.; Loprencipe, G. Road roughness and whole body vibration: Evaluation tools and comfort limits. J. Transp. Eng. 2010, 136, 818–826. [Google Scholar] [CrossRef]
- Kumar, V.; Rastogi, V.; Pathak, P.M. Simulation for whole-body vibration to assess ride comfort of a low–medium speed railway vehicle. Simulation 2017, 93, 225–236. [Google Scholar] [CrossRef]
- Xu, K.; Feng, Z.; Wu, H.; Li, F.; Shao, C. Investigating the influence of rail grinding on stability, vibration, and ride comfort of high-speed EMUs using multi-body dynamics modelling. Veh. Syst Dyn. 2018, 57, 1621–1642. [Google Scholar] [CrossRef]
- Tamer, A.; Muscarello, V.; Masarati, P.; Quaranta, G. Evaluation of vibration reduction devices for helicopter ride quality improvement. Aerosp. Sci. Technol. 2019, 95, 105456. [Google Scholar] [CrossRef]
- Huang, H.; Huang, X.; Ding, W.; Yang, M.; Fan, D.; Pang, J. Uncertainty optimization of pure electric vehicle interior tire/road noise comfort based on data-driven. Mech. Syst. Signal Process. 2022, 165, 108300. [Google Scholar] [CrossRef]
- Brogioli, M.; Gobbi, M.; Mastinu, G.; Pennati, M. Parameter Sensitivity Analysis of a Passenger/Seat Model for Ride Comfort Assessment. Exp. Mech. 2011, 51, 1237–1249. [Google Scholar] [CrossRef]
- Mohajer, N.; Abdi, H.; Nahavandi, S.; Nelson, K. Directional and sectional ride comfort estimation using an integrated human biomechanical-seat foam model. J. Sound Vib. 2017, 403, 38–58. [Google Scholar] [CrossRef]
- Mohajer, N.; Abdi, H.; Nelson, K.; Nahavandi, S. On the simulation-based objective estimation of road vehicle ride comfort. In Proceedings of the 2017 IEEE International Conference on Mechatronics (ICM), Churchill, Australia, 13–15 February 2017; pp. 159–165. [Google Scholar]
- Anandan, A.; Kandavel, A. Investigation and performance comparison of ride comfort on the created human vehicle road integrated model adopting genetic algorithm optimized proportional integral derivative control technique. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2020, 234, 288–305. [Google Scholar] [CrossRef]
- Wu, J.; Qiu, Y. Analysis of ride comfort of high-speed train based on a train-seat-human model in the vertical direction. Veh. Syst Dyn. 2021, 59, 1867–1893. [Google Scholar] [CrossRef]
- Wu, J.; Qiu, Y. Modelling and ride comfort analysis of a coupled track-train-seat-human model with lateral, vertical and roll vibrations. Veh. Syst Dyn. 2021, 60, 2988–3023. [Google Scholar] [CrossRef]
- Fernandes, R.; Armada-da-Silva, P.; Pool-Goudaazward, A.; Moniz-Pereira, V.; Veloso, A.P. Three dimensional multi-segmental trunk kinematics and kinetics during gait: Test-retest reliability and minimal detectable change. Gait Posture 2016, 46, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Furlong, L.-A.M.; Voukelatos, D.; Kong, P.W.; Pain, M.T. Changes in inertial parameters of the lower limb during the impact phase of dynamic tasks. J. Biomech. 2020, 99, 109488. [Google Scholar] [CrossRef]
- Rubinstein, R.Y.; Kroese, D.P. Simulation and the Monte Carlo Method; John Wiley & Sons: Hoboken, NJ, USA, 2016; Volume 10. [Google Scholar]
- Binder, K.; Heermann, D.; Roelofs, L.; Mallinckrodt, A.J.; McKay, S. Monte Carlo simulation in statistical physics. Comput. Phys. 1993, 7, 156–157. [Google Scholar] [CrossRef] [Green Version]
- Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al. Mastering the game of go without human knowledge. Nature 2017, 550, 354–359. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Bi, F.; Du, H. Reduction of low frequency vibration of truck driver and seating system through system parameter identification, sensitivity analysis and active control. Mech. Syst. Signal Process. 2018, 105, 16–35. [Google Scholar] [CrossRef]
- Tubino, F. Probabilistic assessment of the dynamic interaction between multiple pedestrians and vertical vibrations of footbridges. J. Sound Vib. 2018, 417, 80–96. [Google Scholar] [CrossRef]
- Niederreiter, H. Random Number Generation and Quasi-Monte Carlo Methods; SIAM: Philadelphia, PA, USA, 1992. [Google Scholar]
- Morokoff, W.J.; Caflisch, R.E. Quasi-monte carlo integration. J. Comput. Phys. 1995, 122, 218–230. [Google Scholar] [CrossRef] [Green Version]
- Xiu, D.B.; Karniadakis, G.E. The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 2002, 24, 619–644. [Google Scholar] [CrossRef]
- Xiu, D.B.; Karniadakis, G.E. Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 2003, 187, 137–167. [Google Scholar] [CrossRef]
- Wiener, N. The homogeneous chaos. Am. J. Math. 1938, 60, 897–936. [Google Scholar] [CrossRef]
- Sandu, A.; Sandu, C.; Ahmadian, M. Modeling multibody systems with uncertainties. Part I: Theoretical and computational aspects. Multibody Syst. Dyn. 2006, 15, 373–395. [Google Scholar] [CrossRef]
- Sandu, C.; Sandu, A.; Ahmadian, M. Modeling multibody systems with uncertainties. Part II: Numerical applications. Multibody Syst. Dyn. 2006, 15, 241–262. [Google Scholar] [CrossRef]
- Blanchard, E.D.; Sandu, A.; Sandu, C. Polynomial chaos-based parameter estimation methods applied to a vehicle system. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2010, 224, 59–81. [Google Scholar] [CrossRef]
- Kewlani, G.; Crawford, J.; Iagnemma, K.A. Polynomial chaos approach to the analysis of vehicle dynamics under uncertainty. Veh. Syst. Dyn. 2012, 50, 749–774. [Google Scholar] [CrossRef]
- Wu, J.L.; Luo, Z.; Zhang, N.; Zhang, Y. A new uncertain analysis method and its application in vehicle dynamics. Mech. Syst. Signal Process. 2015, 50, 659–675. [Google Scholar] [CrossRef]
- BS 6841:1987; Measurement and Evaluation of Human Exposure to Whole-Body Mechanical Vibration and Repeated Shock. British Standards Institution: London, UK, 1987.
- Bae, J.J.; Kang, N. Development of a Five-Degree-of-Freedom Seated Human Model and Parametric Studies for Its Vibrational Characteristics. Shock Vib. 2018, 2018, 1649180. [Google Scholar] [CrossRef]
- Yazdi, S.J.M.; Cho, K.S.; Kang, N. Characterization of the viscoelastic model of in vivo human posterior thigh skin using ramp-relaxation indentation test. Korea-Aust. Rheol. J. 2018, 30, 293–307. [Google Scholar] [CrossRef]
- ISO 8608; Mechanical Vibration, Road Surface Profiles-Reporting of Measured Data. International Organization for Standardization: Geneva, Switzerland, 1995.
- Hać, A. Suspension optimization of a 2-DOF vehicle model using a stochastic optimal control technique. J. Sound Vib. 1985, 100, 343–357. [Google Scholar] [CrossRef]
- Tyan, F.; Hong, Y.-F.; Tu, S.-H.; Jeng, W.S. Generation of random road profiles. J. Adv. Eng. 2009, 4, 1373–1378. [Google Scholar]
- CarSim User Manual, version 9.0; Mechanical Simulation Corporation: Ann Arbor, MI, USA, 2014.
- Huang, S.P.; Mahadevan, S.; Rebba, R. Collocation-based stochastic finite element analysis for random field problems. Probabilistic Eng. Mech. 2007, 22, 194–205. [Google Scholar] [CrossRef]
- Isukapalli, S.S. Uncertainty Analysis of Transport-Transformation Models; Rutgers The State University of New Jersey-New Brunswick: New Brunswick, NJ, USA, 1999. [Google Scholar]
- Griffin, M.J.; Erdreich, J. Handbook of human vibration. Acoust. Soc. Am. 1991, 90, 2213. [Google Scholar] [CrossRef]
Road Class | σ (10−3 m) | Φ (Ω0) (10−6 m3) | α (rad/m) |
---|---|---|---|
A (very good) | 2 | 1 | 0.127 |
B (good) | 4 | 4 | 0.127 |
C (average) | 8 | 16 | 0.127 |
D (poor) | 16 | 64 | 0.127 |
E (very poor) | 32 | 256 | 0.127 |
Distribution | Polynomial Function | Support |
---|---|---|
Gaussian | Hermite | (−∞, +∞) |
Gamma | Laguerre | [0, +∞) |
Beta | Jacobi | [a, b] |
Uniform | Legendre | [a, b] |
Stiffness | ||||
---|---|---|---|---|
Mean | 0.4306 | 0.4304 | 0.4312 | 0.4312 |
Std | 0.85 × 10−3 | 1.36 × 10−2 | 1.45 × 10−5 | 2.27 × 10−6 |
Damping | ||||
Mean | 0.4311 | 0.4311 | 0.4312 | 0.4312 |
Std | 0.62 × 10−2 | 0.52 × 10−2 | 0.97 × 10−5 | 2.39 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, B.-G.; Bae, J.-J.; Kang, N. Uncertainty Quantification of Ride Comfort Based on gPC Framework for a Fully Coupled Human–Vehicle Model. Appl. Sci. 2023, 13, 6785. https://doi.org/10.3390/app13116785
Song B-G, Bae J-J, Kang N. Uncertainty Quantification of Ride Comfort Based on gPC Framework for a Fully Coupled Human–Vehicle Model. Applied Sciences. 2023; 13(11):6785. https://doi.org/10.3390/app13116785
Chicago/Turabian StyleSong, Byoung-Gyu, Jong-Jin Bae, and Namcheol Kang. 2023. "Uncertainty Quantification of Ride Comfort Based on gPC Framework for a Fully Coupled Human–Vehicle Model" Applied Sciences 13, no. 11: 6785. https://doi.org/10.3390/app13116785
APA StyleSong, B. -G., Bae, J. -J., & Kang, N. (2023). Uncertainty Quantification of Ride Comfort Based on gPC Framework for a Fully Coupled Human–Vehicle Model. Applied Sciences, 13(11), 6785. https://doi.org/10.3390/app13116785