Influence of Waste Filler on the Mechanical Properties and Microstructure of Epoxy Mortar
Abstract
:1. Introduction
- The improvement of the specimens’ strength due to the mixing of epoxy with steel slag and epoxy with marble dust.
- The enhancement of compressive and tensile strengths and durability of the epoxy steel slag and epoxy marble dust, and their lower absorption of water and lower porosity.
2. Materials and Methods
2.1. Epoxy
2.2. Hardener
2.3. Filler
- Sand particles typically range in size from 0.063 mm to 2 mm, with the majority falling within the range of 0.125 mm to 0.5 mm.
- Marble dust particles are generally smaller, with sizes ranging from a few microns to 0.125 mm.
- Steel slag particles typically range in size from a few microns to several millimeters, with the majority falling within the range of 0.1 mm to 10 mm.
- PVC particles are typically in the range of 0.1 mm to 1 mm, with some larger particles up to a few millimeters in size.
2.4. Preparation of Epoxy Mortar
- Epoxy steel slag (ESS) contains 25% resin and 75% steel slag.
- Epoxy sand (ES) contains 25% resin and 75% sand.
- Epoxy marble dust (EM) contains 25% resin and 75% marble dust.
- Epoxy polyvinyl chloride waste (EP) contains 25% resin and 75% polyvinyl chloride waste.
- Cement mortar (C) contains a 1:3 (w/w) ratio of cement and sand.
2.5. Mix Proportions
2.6. Test Procedure
2.6.1. Mechanical Test
- Briquettes (dumbbell-shaped specimens).
- Total length: 75 mm.
- Working length: 20 mm.
- Working width: 25 mm.
- Thickness: 25 mm.
2.6.2. Microstructural Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Scanning Electron Microscopy (SEM)
3.2. Compressive Strength
3.3. Tensile Strength
3.4. Density
3.5. Water Absorption
3.6. Fourier Transform Infrared Spectroscopy (FTIR)
3.7. X-ray Diffraction (XRD)
3.8. Scanning Electron Microscopy–Energy Dispersive X-ray Spectroscopy (SEM-EDX)
4. Conclusions
5. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.; Zhang, B.; Yan, P. Comparative study of effect of raw and densified silica fume in the paste, mortar and concrete. Constr. Build. Mater. 2016, 105, 82–93. [Google Scholar] [CrossRef]
- Rahman, M.; Akhtarul Islam, M. Application of epoxy resins in building materials: Progress and prospects. Polym. Bull. 2022, 79, 1949–1975. [Google Scholar] [CrossRef]
- Ferdous, W.; Manalo, A.; Van Erp, G.; Aravinthan, T.; Ghabraie, K. Evaluation of an innovative composite railway sleeper for a narrow-gauge track under static load. J. Compos. Constr. 2018, 22, 04017050. [Google Scholar] [CrossRef]
- Wang, J.; Dai, Q.; Guo, S.; Si, R. Mechanical and durability performance evaluation of crumb rubber-modified epoxy polymer concrete overlays. Constr. Build. Mater. 2019, 203, 469–480. [Google Scholar] [CrossRef]
- Maherzi, W.; Ennahal, I.; Benzerzour, M.; Mammindy-Pajany, Y.; Abriak, N.-E. Study of the polymer mortar based on dredged sediments and epoxy resin: Effect of the sediments on the behavior of the polymer mortar. Powder Technol. 2020, 361, 968–982. [Google Scholar] [CrossRef]
- Tofani, G.; de Nys, J.; Cornet, I.; Tavernier, S. Alternative filler recovery from paper waste stream. Waste Biomass Valorization 2021, 12, 503–514. [Google Scholar] [CrossRef]
- Wong, H.S.; Barakat, R.; Alhilali, A.; Saleh, M.; Cheeseman, C.R. Hydrophobic concrete using waste paper sludge ash. Cem. Concr. Res. 2015, 70, 9–20. [Google Scholar] [CrossRef]
- Yeon, J. Deformability of bisphenol A-type epoxy resin-based polymer concrete with different hardeners and fillers. Appl. Sci. 2020, 10, 1336. [Google Scholar] [CrossRef] [Green Version]
- Hodul, J.; Mészárosová, L.; Drochytka, R.; Struhárová, A. Polymer repair products containing fly ash contaminated by denitrification process. Constr. Build. Mater. 2021, 267, 120641. [Google Scholar] [CrossRef]
- Rajeshwar, B.; Yemam, D.M.; Jang, I.; Yi, C. The effects of sand washing waste and microwave curing on the dimensional stability of epoxy mortar. Constr. Build. Mater. 2020, 250, 118892. [Google Scholar] [CrossRef]
- Bărbuţă, M.; Harja, M.; Baran, I. Comparison of mechanical properties for polymer concrete with different types of filler. J. Mater. Civ. Eng. 2010, 22, 696–701. [Google Scholar] [CrossRef]
- Khalid, N.H.A.; Hussin, M.W.; Mirza, J.; Ariffin, N.F.; Ismail, M.A.; Lee, H.-S.; Mohamed, A.; Jaya, R.P. Palm oil fuel ash as potential green micro-filler in polymer concrete. Constr. Build. Mater. 2016, 102, 950–960. [Google Scholar] [CrossRef] [Green Version]
- Cholake, S.T.; Moran, G.; Joe, B.; Bai, Y.; Raman, R.S.; Zhao, X.; Rizkalla, S.; Bandyopadhyay, S. Improved Mode I fracture resistance of CFRP composites by reinforcing epoxy matrix with recycled short milled carbon fibre. Constr. Build. Mater. 2016, 111, 399–407. [Google Scholar] [CrossRef]
- Singh, G.; Kumar, H.; Singh, S. Performance evaluation-PET resin composite composed of red mud, fly ash and silica fume. Constr. Build. Mater. 2019, 214, 527–538. [Google Scholar] [CrossRef]
- Shen, Y.; Huang, J.; Ma, X.; Hao, F.; Lv, J. Experimental study on the free shrinkage of lightweight polymer concrete incorporating waste rubber powder and ceramsite. Compos. Struct. 2020, 242, 112152. [Google Scholar] [CrossRef]
- Lakhiar, M.T.; Bai, Y.; Wong, L.S.; Paul, S.C.; Anggraini, V.; Kong, S.Y. Mechanical and durability properties of epoxy mortar incorporating coal bottom ash as filler. Constr. Build. Mater. 2022, 315, 125677. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, G.; Wang, B.; Wu, M. Mechanical strengths and durability properties of pervious concretes with blended steel slag and natural aggregate. J. Clean. Prod. 2020, 271, 122590. [Google Scholar] [CrossRef]
- Li, L.; Huang, Z.; Tan, Y.; Kwan, A.; Chen, H. Recycling of marble dust as paste replacement for improving strength, microstructure and eco-friendliness of mortar. J. Clean. Prod. 2019, 210, 55–65. [Google Scholar] [CrossRef]
- Akovali, G. Plastic materials: Polyvinyl chloride (PVC). In Toxicity of Building Materials; Elsevier: Amsterdam, The Netherlands, 2012; pp. 23–53. [Google Scholar]
- Hossain, M.U.; Poon, C.S.; Lo, I.M.; Cheng, J.C. Comparative environmental evaluation of aggregate production from recycled waste materials and virgin sources by LCA. Resour. Conserv. Recycl. 2016, 109, 67–77. [Google Scholar] [CrossRef]
- Gobetti, A.; Cornacchia, G.; Ramorino, G.; Riboldi, A.; Depero, L.E. EAF slag as alternative filler for epoxy screeds, an example of green reuse. Sustain. Mater. Technol. 2021, 29, e00324. [Google Scholar] [CrossRef]
- Yemam, D.M.; Kim, B.-J.; Moon, J.-Y.; Yi, C. Mechanical properties of epoxy resin mortar with sand washing waste as filler. Materials 2017, 10, 246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodul, J.; Mészárosová, L.; Drochytka, R. Recovery of industrial wastes as fillers in the epoxy thermosets for building application. Materials 2021, 14, 3490. [Google Scholar] [CrossRef] [PubMed]
- ASTM, A. C642-13; Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International: West Conshohocken, PA, USA, 2013.
- Guzel, G.; Sivrikaya, O.; Deveci, H. The use of colemanite and ulexite as novel fillers in epoxy composites: Influences on thermal and physico-mechanical properties. Compos. Part B Eng. 2016, 100, 1–9. [Google Scholar] [CrossRef]
- Dębska, B.; Lichołai, L. The effect of the type of curing agent on selected properties of epoxy mortar modified with PET glycolisate. Constr. Build. Mater. 2016, 124, 11–19. [Google Scholar] [CrossRef]
- Bano, H.; Khan, M.I.; Kazmi, S.A. Structure and microstructure studies of epoxy coating after natural exposure testing. J. Chem. Soc. Pak. 2011, 33, 454. [Google Scholar]
- Ding, T.; Xiao, J.; Zou, S.; Wang, Y. Hardened properties of layered 3D printed concrete with recycled sand. Cem. Concr. Compos. 2020, 113, 103724. [Google Scholar] [CrossRef]
- Hwang, E.-H.; Ko, Y.S.; Kim, J.-M.; Hwang, T.-S. Mechanical/physical characteristics of polymer mortar recycled from rapid-chilled steel slag. J. Ind. Eng. Chem. 2009, 15, 628–634. [Google Scholar] [CrossRef]
- Dai, S.; Zhu, H.; Zhai, M.; Wu, Q.; Yin, Z.; Qian, H.; Hua, S. Stability of steel slag as fine aggregate and its application in 3D printing materials. Constr. Build. Mater. 2021, 299, 123938. [Google Scholar] [CrossRef]
- Alakbari, F.S.; Mohyaldinn, M.E.; Muhsan, A.S.; Hasan, N.; Ganat, T. Chemical sand consolidation: From polymers to nanoparticles. Polymers 2020, 12, 1069. [Google Scholar] [CrossRef]
- Farouk Ghazy, M. Optimization of recycled concrete aggregate geopolymer bricks by Taguchi Method. Rev. Construcción 2020, 19, 244–254. [Google Scholar] [CrossRef]
- Senhadji, Y.; Escadeillas, G.; Benosman, A.; Mouli, M.; Khelafi, H.; Ould Kaci, S. Effect of incorporating PVC waste as aggregate on the physical, mechanical, and chloride ion penetration behavior of concrete. J. Adhes. Sci. Technol. 2015, 29, 625–640. [Google Scholar] [CrossRef]
- Ouda, A.S.; Abdel-Gawwad, H.A. The effect of replacing sand by iron slag on physical, mechanical and radiological properties of cement mortar. HBRC J. 2017, 13, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Barczewski, M.; Matykiewicz, D.; Sałasińska, K.; Kozicki, D.; Piasecki, A.; Skórczewska, K.; Lewandowski, K. Poly (vinyl chloride) powder as a low-cost flame retardant modifier for epoxy composites. Int. J. Polym. Anal. Charact. 2019, 24, 447–456. [Google Scholar] [CrossRef]
- Junak, J.; Sicakova, A. Concrete containing recycled concrete aggregate with modified surface. Procedia Eng. 2017, 180, 1284–1291. [Google Scholar] [CrossRef]
- Danish, A.; Mosaberpanah, M.A. Influence of cenospheres and fly ash on the mechanical and durability properties of high-performance cement mortar under different curing regimes. Constr. Build. Mater. 2021, 279, 122458. [Google Scholar] [CrossRef]
- Elsalamawy, M.; Mohamed, A.R.; Kamal, E.M. The role of relative humidity and cement type on carbonation resistance of concrete. Alex. Eng. J. 2019, 58, 1257–1264. [Google Scholar] [CrossRef]
- Abousnina, R.; Manalo, A.; Lokuge, W.; Zhang, Z. Effects of light crude oil contamination on the physical and mechanical properties of geopolymer cement mortar. Cem. Concr. Compos. 2018, 90, 136–149. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, S.; Liu, Z.; Wang, F. Utilization of steel slag in ultra-high performance concrete with enhanced eco-friendliness. Constr. Build. Mater. 2019, 214, 28–36. [Google Scholar] [CrossRef]
- Ul-Hamid, A.; Soufi, K.Y.; Al-Hadhrami, L.M.; Shemsi, A.M. Failure investigation of an underground low voltage XLPE insulated cable. Anti Corros. Methods Mater. 2015, 62, 281–287. [Google Scholar] [CrossRef]
- Hossiney, N.; Das, P.; Mohan, M.K.; George, J. In-plant production of bricks containing waste foundry sand—A study with Belgaum foundry industry. Case Stud. Constr. Mater. 2018, 9, e00170. [Google Scholar] [CrossRef]
- Saxena, N.; Kumar, S.; Mandal, A. Adsorption characteristics and kinetics of synthesized anionic surfactant and polymeric surfactant on sand surface for application in enhanced oil recovery. Asia Pac. J. Chem. Eng. 2018, 13, e2211. [Google Scholar] [CrossRef]
- Awad, A.; Abdellatif, M.H. Assessment of mechanical and physical properties of LDPE reinforced with marble dust. Compos. Part B Eng. 2019, 173, 106948. [Google Scholar] [CrossRef]
- Wu, Q.S.; Gu, H.X.; Yang, T.; Zhang, C.S.; Min, Z.A.; Wu, Y. Analysis of mechanical performance and microstructure of steel slag processed with accelerated carbonation. In Materials Science Forum; Trans Tech Publ.: Baech, Switzerland, 2019; pp. 1240–1251. [Google Scholar]
- Kamseu, E.; Kaze, C.R.; Fekoua, J.N.N.; Melo, U.C.; Rossignol, S.; Leonelli, C. Ferrisilicates formation during the geopolymerization of natural Fe-rich aluminosilicate precursors. Mater. Chem. Phys. 2020, 240, 122062. [Google Scholar] [CrossRef]
- Liu, M.; Hong, S.; Wang, Y.; Zhang, J.; Hou, D.; Dong, B. Compositions and microstructures of hardened cement paste with carbonation curing and further water curing. Constr. Build. Mater. 2021, 267, 121724. [Google Scholar] [CrossRef]
- Saedi, S.; Shokri, M.; Priyadarshi, R.; Rhim, J.-W. Silver ion loaded 3-aminopropyl trimethoxysilane-modified Fe3O4 nanoparticles for the fabrication of carrageenan-based active packaging films. Colloids Surf. B Biointerfaces 2021, 208, 112085. [Google Scholar] [CrossRef] [PubMed]
- Aboshia, A.M.A.; Rahmat, R.A.; Zain, M.F.M.; Ismail, A. Enhancing mortar strengths by ternary geopolymer binder of metakaolin, slag, and palm ash. Int. J. Build. Pathol. Adapt. 2017, 35, 438–455. [Google Scholar] [CrossRef]
- Ismail, H.; Munusamy, Y. Polyvinyl chloride/organoclay nanocomposites: Effects of filler loading and maleic anhydride. J. Reinf. Plast. Compos. 2007, 26, 1681–1694. [Google Scholar] [CrossRef]
- Varadharajan, S.; Jaiswal, A.; Verma, S. Assessment of mechanical properties and environmental benefits of using rice husk ash and marble dust in concrete. In Structures; Elsevier: Amsterdam, The Netherlands, 2020; pp. 389–406. [Google Scholar]
- Ruiz-Sánchez, A.; Sánchez-Polo, M.; Rozalen, M. Waste marble dust: An interesting residue to produce cement. Constr. Build. Mater. 2019, 224, 99–108. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Y.; Zhang, L.; Cang, D. Effects of CaO and Fe2O3 on the microstructure and mechanical properties of SiO2–CaO–MgO–Fe2O3 ceramics from steel slag. ISIJ Int. 2017, 57, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Meftah, N.; Mahboub, M.S. Spectroscopic characterizations of sand dunes minerals of El-Oued (Northeast Algerian Sahara) by FTIR, XRF and XRD analyses. Silicon 2020, 12, 147–153. [Google Scholar] [CrossRef]
- Yucel, H.E. Frost resistance of layered concrete systems incorporating ECC as overlay materials. Adv. Concr. Constr. 2021, 12, 227–241. [Google Scholar]
- Zhao, Z.; Wang, J.; Wang, J.; Chen, K.; Zhang, B.; Chen, Q.; Guo, P.; Wang, X.; Liu, F.; Huo, S. Facile fabrication of single-component flame-retardant epoxy resin with rapid curing capacity and satisfied thermal resistance. React. Funct. Polym. 2022, 170, 105103. [Google Scholar] [CrossRef]
- Garg, R.; Garg, R.; Bansal, M.; Aggarwal, Y. Experimental study on strength and microstructure of mortar in presence of micro and nano-silica. Mater. Today Proc. 2021, 43, 769–777. [Google Scholar] [CrossRef]
- Raju, M.K.; Rao, R.P.; Vijayan, N.; Azeem, P.A. A novel orange-red Sm3+-doped CaSiO3 nanostructured phosphor derived from agro food waste materials for white light applications. Ceram. Int. 2021, 47, 26704–26711. [Google Scholar] [CrossRef]
- Kothari, A.; Rajczakowska, M.; Buasiri, T.; Habermehl-Cwirzen, K.; Cwirzen, A. Eco-UHPC as Repair Material—Bond Strength, Interfacial Transition Zone and Effects of Formwork Type. Materials 2020, 13, 5778. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Madan, S. An Experimental investigation on utilizations of Marble Dust as partial replacement of Cement in Concrete. Micron 2018, 40, 59-7. [Google Scholar]
- Liu, J.; Wang, D. Influence of steel slag-silica fume composite mineral admixture on the properties of concrete. Powder Technol. 2017, 320, 230–238. [Google Scholar] [CrossRef]
- Dai, S.; Zhu, H.; Zhang, D.; Liu, Z.; Cheng, S.; Zhao, J. Insights to compressive strength, impermeability and microstructure of micro-expansion steel slag cement under constraint conditions. Constr. Build. Mater. 2022, 326, 126540. [Google Scholar] [CrossRef]
Type | Epoxy (%) | Hardener (%) | Filler (%) |
---|---|---|---|
Epoxy sand (ES) | 6.5 | 18.5 | 75 |
Epoxy marble dust (EM) | 6.5 | 18.5 | 75 |
Epoxy steel slag (ESS) | 6.5 | 18.5 | 75 |
Epoxy polyvinyl waste (EP) | 6.5 | 18.5 | 75 |
Imp. Peaks/ Materials | OH | C-H str./ C-H Rock. | C-C | C-Cl | Si-O | Al-O | Ca-O | Fe-O |
---|---|---|---|---|---|---|---|---|
7(B) C (, cm−1) | 3426 | - | 1663 | - | 952 | 1090 | 1416 | 583 |
7(C) EP (, cm−1) | 3250 | 2922, 2851/ 1247/828 | 1608, 1509 | 630, 840 | - | - | - | 585 |
7(D) ES (, cm−1) | 3251 | 2922, 2852/828 | 1607, 1509 | - | 1050, 970 | 1080 | 1459 | 581 |
7(E) EM (, cm−1) | - | 2924, 2852/828 | 1646 | - | 1038 | - | 1411 | - |
7(F) ESS (, cm−1) | - | 2922, 2851 | 1608, 1508 | - | 989 | 1072 | 1467 | 582 |
ESS | ES | C | EM | EP | |
---|---|---|---|---|---|
Element | C | C | C | C | C |
O | O | O | O | O | |
Na | Na | Ca | Ca | Ca | |
Mg | Mg | Mg | Fe | Mg | |
Al | Al | Fe | Si | Fe | |
Si | Si | Si | Al | - | |
K | S | Al | Cl | - | |
Ca | Cl | K | - | - | |
Ti | K | Na | - | - | |
Cr | Ca | S | - | - | |
Mn | Fe | - | - | - | |
Fe | - | - | - | - | |
Weight % | 39.93 | 58.9 | 11.93 | 75.24 | 40.22 |
25.56 | 25.78 | 46.96 | 16.33 | 32.72 | |
0.35 | 0.57 | 25.9 | 2.44 | 25.9 | |
0.27 | 0.4 | 1.63 | 0.35 | 0.85 | |
3.49 | 1.62 | 1.32 | 0.53 | 0.31 | |
7.73 | 5.75 | 9.19 | 0.38 | - | |
0.25 | 0.35 | 3.34 | 4.73 | - | |
4.54 | 0.34 | 0.97 | - | - | |
0.73 | 0.39 | 0.25 | - | - | |
0.93 | 4.5 | 0.65 | - | - | |
3.98 | 1.42 | - | - | - | |
12.24 | - | - | - | - | |
Total | 100 | 100 | 100 | 100 | 100 |
Atomic % | 57.34 | 70.17 | 19.4 | 83.32 | 55.03 |
27.55 | 23.06 | 57.34 | 13.58 | 33.6 | |
0.26 | 0.35 | 10.62 | 0.81 | 10.62 | |
0.19 | 0.23 | 1.31 | 0.08 | 0.58 | |
2.23 | 0.86 | 0.46 | 0.25 | 0.18 | |
4.75 | 2.93 | 6.39 | 0.19 | - | |
0.11 | 0.15 | 2.42 | 1.78 | - | |
1.96 | 0.14 | 0.49 | - | - | |
0.26 | 0.14 | 0.21 | - | - | |
0.31 | 1.6 | 0.39 | - | - | |
1.25 | - | - | - | - | |
3.78 | - | - | - | - | |
Total | 100 | 100 | 100 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.U.; Li, J. Influence of Waste Filler on the Mechanical Properties and Microstructure of Epoxy Mortar. Appl. Sci. 2023, 13, 6857. https://doi.org/10.3390/app13116857
Rahman MU, Li J. Influence of Waste Filler on the Mechanical Properties and Microstructure of Epoxy Mortar. Applied Sciences. 2023; 13(11):6857. https://doi.org/10.3390/app13116857
Chicago/Turabian StyleRahman, Masood Ur, and Jing Li. 2023. "Influence of Waste Filler on the Mechanical Properties and Microstructure of Epoxy Mortar" Applied Sciences 13, no. 11: 6857. https://doi.org/10.3390/app13116857
APA StyleRahman, M. U., & Li, J. (2023). Influence of Waste Filler on the Mechanical Properties and Microstructure of Epoxy Mortar. Applied Sciences, 13(11), 6857. https://doi.org/10.3390/app13116857