Ovicidal Effect on Haemonchus contortus of Extract Partitions Shrubby Plants of the Tropical Dry Forest and Potentially Active Compounds Identification by UHPLC-Q/Orbitrap/MS/MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material
2.3. Extraction and Isolation
2.4. Partition by Liquid-Liquid Extraction
2.5. Egg Hatch Test for Anthelmintic Activity
2.6. UHPLC–DAD–MS Instrument
LC Parameters and MS Parameters
2.7. Statistical Analysis
3. Results
3.1. Inhibition of Egg Hatching (IEH)
3.2. Morulated Eggs (ME)
3.3. Larvated Eggs (LE)
3.4. Inhibitory Concentration 50 (IC50)
3.5. Compounds with Tentative Identification and Report of Anthelmintic Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kakar, S.A.; Tareen, R.B.; Sandhu, Z.U.D.; Kakar, M.A.; Kakar, S.U.R.; Iqbal, Z.; Jabeen, H. In vitro and in vivo anthelmintic activity of Ferula costata (kor.) against gastrointestinal nematodes of sheep. Pak. J. Bot. 2013, 45, 263–268. [Google Scholar]
- Suleiman, M.; Simon, M.; Ajanusi, O.; Idris, A.; Abubakar, M. In vitro anthelmintic activity of the stem-bark of Combretum molle R. Br. x. G. Don (Combretaceae) against Haemonchus contortus. J. Med. Plants Res. 2013, 7, 952–956. [Google Scholar]
- Santos, F.O.; de Lima, H.G.; de Souza Santos, N.S.; Serra, T.M.; Uzeda, R.S.; Reis, I.M.A.; Botura, M.B.; Branco, A.; Batatinha, M.J.M. In vitro anthelmintic and cytotoxicity activities the Digitaria insularis (Poaceae). Vet. Parasitol. 2017, 245, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.C.S.; de Lima, G.C.; Laurentiz, A.C.; Féboli, A.; Dos Anjos, L.A.; de Paula Carlis, M.S.; da Silva Filardi, R.; de Laurentiz, R.D.S. In vitro anthelmintic activity of grape pomace extract against gastrointestinal nematodes of naturally infected sheep. Int. J. Vet. Sci. Med. 2018, 6, 243–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Husori, D.I.; Sumardi, H.T.; Gemasih, S.; Ningsih, S.R. In vitro Anthelmintic Activity of Acanthus ilicifolius Leaves Extracts on and Pheretima posthuma. J. Appl. Pharm. Sci. 2018, 8, 164–167. [Google Scholar]
- Koorse, K.G.; Samraj, S.; John, P.; Narayanan, P.M.; Devi, S.; Usha, P.; Sunilkumar, S.; Gleeja, V. Anthelmintic activity of fruit extract and fractions of Piper longum L. In vitro. Pharmacogn. J. 2018, 10, 333–340. [Google Scholar] [CrossRef] [Green Version]
- Castañeda-Ramírez, G.S.; de Jesús Torres-Acosta, J.F.; Sandoval-Castro, C.A.; Borges-Argáez, R.; Cáceres-Farfán, M.; Mancilla-Montelongo, G.; Mathieu, C. Bio-guided fractionation to identify Senegalia gaumeri leaf extract compounds with anthelmintic activity against Haemonchus contortus eggs and larvae. Vet. Parasitol. 2019, 270, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Castillo-Mitre, G.; Olmedo-Juárez, A.; Rojo-Rubio, R.; González-Cortázar, M.; Mendoza-de Gives, P.; Hernández-Beteta, E.; Reyes-Guerrero, D.; López-Arellano, M.; Vázquez-Armijo, J.; Ramírez-Vargas, G. Caffeoyl and coumaroyl derivatives from Acacia cochliacantha exhibit ovicidal activity against Haemonchus contortus. J. Ethnopharmacol. 2017, 204, 125–131. [Google Scholar] [CrossRef]
- von Son-de Fernex, E.; Alonso-Díaz, M.Á.; Valles-de la Mora, B.; Mendoza-de Gives, P.; González-Cortazar, M.; Zamilpa, A. Anthelmintic effect of 2H-chromen-2-one isolated from Gliricidia sepium against Cooperia punctata. Exp. Parasitol. 2017, 178, 1–6. [Google Scholar] [CrossRef]
- Jackson, F.S.; Barry, T.N.; Lascano, C.; Palmer, B. The extractable and bound condensed tannin content of leaves from tropical tree, shrub and forage legumes. J. Sci. Food Agric. 1996, 71, 103–110. [Google Scholar] [CrossRef]
- Kojima, K.; Zhu, X.-B.; Ogihara, Y. Saponins from Gliricidia sepium. Phytochemistry 1998, 48, 885–888. [Google Scholar] [CrossRef] [PubMed]
- Rastrelli, L.; Caceres, A.; De Simone, F.; Aquino, R. Studies on the Constituents of Gliricidia s epium (Leguminosae) Leaves and Roots: Isolation and Structure Elucidation of New Triterpenoid Saponins and Aromatic Compounds. J. Agric. Food Chem. 1999, 47, 1537–1540. [Google Scholar] [CrossRef] [PubMed]
- Reddy, L.; Jose, B. Chemical composition and antibacterial activity of the volatile oil from the bark of Gliricidia sepium. Int. J. Pharm. Pharm. Sci. 2010, 2, 177–179. [Google Scholar]
- Chaverri Chaverri, C.; Cicció Alberti, J.F. Leaf and flower essential oil compositions of Gliricidia sepium (Fabaceae) from Costa Rica. Am. J. Essent. Oils Nat. Prod. 2015, 2, 18–23. [Google Scholar]
- Chen, C.-Y.; Wang, Y.-D. Polyprenol from the whole plants of Leucaena leucocephala. J. Environ. Prot. 2010, 1, 70. [Google Scholar] [CrossRef] [Green Version]
- Hassan, R.A.; Tawfik, W.A.; Abou-Setta, L.M. The flavonoid constituents of Leucaena Leucocephala growning in Egypt, and their biological activity. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Zayed, M.Z.; Samling, B. Phytochemical constituents of the leaves of Leucaena leucocephala from Malaysia. Int. J. Pharm. Pharm. Sci. 2016, 8, 174–179. [Google Scholar] [CrossRef]
- Xu, Y.; Tao, Z.; Jin, Y.; Yuan, Y.; Dong, T.T.; Tsim, K.W.; Zhou, Z. Flavonoids, a potential new insight of leucaena leucocephala foliage in ruminant health. J. Agric. Food Chem. 2018, 66, 7616–7626. [Google Scholar] [CrossRef]
- Zarina, Z.; Ruzaidi, C.; Sam, S.; Al Bakri, A.M. Investigation on Antioxidants Compounds Composition Contains in Leucaena Leucocephala (Petai Belalang). In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 551, p. 012016. [Google Scholar]
- Khanzada, S.K.; Khanzada, A.K.; Shaikh, W.; Ali, S.A. Phytochemical studies on Pithecellobium dulce Benth. A medicinal plant of Sindh, Pakistan. Pak. J. Bot. 2013, 45, 557–561. [Google Scholar]
- Vanitha, V.; Manikandan, K. Bio-activity guided determination of active compounds in the leaves of pithecellobium dulce. Rasayan J. Chem. 2016, 9, 471–477. [Google Scholar]
- Katekhaye, S.; Laddha, K. Coumarins and a Triterpenoid from Pithecellobium dulce. Chem. Nat. Compd. 2015, 51, 956–958. [Google Scholar] [CrossRef]
- Katekhaye, S.; Laddha, K. Microwave-assisted extraction and RP-HPLC quantification of bergapten from Pithecellobium dulce. Indian J. Pharm. Sci. 2017, 78, 673–679. [Google Scholar] [CrossRef] [Green Version]
- López-Rodríguez, M.; Cerón-García, M.; López-Rosales, L.; Navarro-López, E.; Mirón, A.S.; Molina-Miras, A.; Abreu, A.; Fernández, I.; García-Camacho, F. An integrated approach for the efficient separation of specialty compounds from biomass of the marine microalgae Amphidinium carterae. Bioresour. Technol. 2021, 342, 125922. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Magaña, J.; Torres-Acosta, J.; Aguilar-Caballero, A.; Sandoval-Castro, C.; Hoste, H.; Chan-Pérez, J. Anthelmintic activity of acetone–water extracts against Haemonchus contortus eggs: Interactions between tannins and other plant secondary compounds. Vet. Parasitol. 2014, 206, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Simirgiotis, M.J.; Quispe, C.; Bórquez, J.; Areche, C.; Sepúlveda, B. Fast detection of phenolic compounds in extracts of easter pears (Pyrus communis) from the Atacama Desert by ultrahigh-performance liquid chromatography and mass spectrometry (UHPLC–Q/Orbitrap/MS/MS). Molecules 2016, 21, 92. [Google Scholar] [CrossRef] [Green Version]
- Larrazábal-Fuentes, M.J.; Fernández-Galleguillos, C.; Palma-Ramírez, J.; Romero-Parra, J.; Sepúlveda, K.; Galetovic, A.; González, J.; Paredes, A.; Bórquez, J.; Simirgiotis, M.J.; et al. Chemical profiling, antioxidant, 617 anticholinesterase, and antiprotozoal potentials of Artemisia copa Phil.(Asteraceae). Front. Pharmacol. 2020, 11, 1911. [Google Scholar] [CrossRef] [PubMed]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; González, L.; Tablada, M.; Robledo, Y.C. InfoStat Versión 2011; Grupo InfoStat, FCA, Universidad Nacional de Córdoba: Córdoba, Argentina, 2008. [Google Scholar]
- Team, R. D. C. A Language and Environment for Statistical Computing. 2009. Available online: http://www.R-project.Org (accessed on 15 July 2019).
- Romero, N.; Areche, C.; Cubides-Cárdenas, J.; Escobar, N.; García-Beltrán, O.; Simirgiotis, M.J.; Céspedes, Á. In vitro anthelmintic evaluation of Gliricidia sepium, Leucaena leucocephala, and Pithecellobium dulce: Fingerprint analysis of extracts by UHPLC-orbitrap mass spectrometry. Molecules 2020, 25, 3002. [Google Scholar] [CrossRef]
- Tchetan, E.; Olounladé, P.A.; Azando, E.V.B.; Khaliq, H.A.; Ortiz, S.; Houngbeme, A.; Alowanou, G.G.; Koura, B.I.; Akouedegni, G.C.; Houinato, M.R.B.; et al. Anthelmintic Activity, Cytotoxicity, and Phytochemical Screening of Plants Used to Treat Digestive Parasitosis of Small Ruminants in Benin (West Africa). Animals 2022, 12, 2718. [Google Scholar] [CrossRef]
- Ademola, I.; Eloff, J.N. In vitro anthelmintic activity of Combretum molle (R. Br. ex G. Don) (Combretaceae) against Haemonchus contortus ova and larvae. Vet. Parasitol. 2010, 169, 198–203. [Google Scholar] [CrossRef] [Green Version]
- Ademola, I.; Eloff, J.N. Anthelmintic efficacy of cashew (Anarcadium occidentale L.) on in vitro susceptibility of the ova and larvae of Haemonchus contortus. Afr. J. Biotechnol. 2011, 10, 9700–9705. [Google Scholar]
- Ademola, I.; Eloff, J.N. In vitro anthelmintic effect of Anogeissus leiocarpus (DC.) Guill. & Perr. leaf extracts and fractions on developmental stages of Haemonchus contortus. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 134–139. [Google Scholar] [PubMed] [Green Version]
- von Son-de Fernex, E.; Alonso-Díaz, M.Á.; Mendoza-de Gives, P.; Valles-de la Mora, B.; González-Cortazar, M.; Zamilpa, A.; Gallegos, E.C. Elucidation of Leucaena leucocephala anthelmintic-like phytochemicals and the ultrastructural damage generated to eggs of Cooperia spp. Vet. Parasitol. 2015, 214, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Morais, S.M.D.; Beviláqua, C.M.L.; Souza, J.A.L.d.; Assis, L.M.D. Chemical investigation of Spigelia anthelmia Linn. used in Brazilian folk medicine as anthelmintic. Rev. Bras. De Farmacogn. 2002, 12, 81–82. [Google Scholar] [CrossRef]
- Azaizeh, H.; Halahleh, F.; Abbas, N.; Markovics, A.; Muklada, H.; Ungar, E.; Landau, S. Polyphenols from Pistacia lentiscus and Phillyrea latifolia impair the exsheathment of gastro-intestinal nematode larvae. Vet. Parasitol. 2013, 191, 44–50. [Google Scholar] [CrossRef]
- Desrues, O.; Fryganas, C.; Ropiak, H.M.; Mueller-Harvey, I.; Enemark, H.L.; Thamsborg, S.M. Impact of chemical structure of flavanol monomers and condensed tannins on in vitro anthelmintic activity against bovine nematodes. Parasitology 2016, 143, 444–454. [Google Scholar] [CrossRef] [Green Version]
- Klongsiriwet, C.; Quijada, J.; Williams, A.R.; Mueller-Harvey, I.; Williamson, E.M.; Hoste, H. Synergistic inhibition of Haemonchus contortus exsheathment by flavonoid monomers and condensed tannins. Int. J. Parasitol. Drugs Drug Resist. 2015, 5, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Núñez, E.J.; Zamilpa, A.; González-Cortazar, M.; Olmedo-Juárez, A.; Cardoso-Taketa, A.; Sánchez-Mendoza, E.; Tapia-Maruri, D.; Salinas-Sánchez, D.O.; Mendoza-de Gives, P. Isorhamnetin: A nematocidal flavonoid from Prosopis laevigata leaves against Haemonchus contortus eggs and larvae. Biomolecules 2020, 10, 773. [Google Scholar] [CrossRef]
- Lima, C.S.; Pereira, M.H.; Gainza, Y.A.; Hoste, H.; Regasini, L.O.; de Souza Chagas, A.C. Anthelmintic effect of Pterogyne nitens (Fabaceae) on eggs and larvae of Haemonchus contortus: Analyses of structure-activity relationships based on phenolic compounds. Ind. Crops Prod. 2021, 164, 113348. [Google Scholar]
- González-Cortazar, M.; Zamilpa, A.; López-Arellano, M.E.; Aguilar-Marcelino, L.; Reyes-Guerrero, D.E.; Olazarán-Jenkins, S.; Ramírez-Vargas, G.; Olmedo-Juárez, A.; Mendoza-de-Gives, P. Lysiloma acapulcensis leaves contain anthelmintic metabolites that reduce the gastrointestinal nematode egg population in sheep faeces. Comp. Clin. Pathol. 2018, 27, 189–197. [Google Scholar] [CrossRef]
- Brunet, S.; Jackson, F.; Hoste, H. Effects of sainfoin (Onobrychis viciifolia) extract and monomers of condensed tannins on the association of abomasal nematode larvae with fundic explants. Int. J. Parasitol. 2008, 38, 783–790. [Google Scholar] [CrossRef]
- Akkari, H.; B'chir, F.; Hajaji, S.; Rekik, M.; Sebai, E.; Hamza, H.; Darghouth, M.; Gharbi, M. Potential anthelmintic effect of Capparis spinosa (Capparidaceae) as related to its polyphenolic content and antioxidant activity. Veterinární Med. 2016, 61, 308–316. [Google Scholar] [CrossRef] [Green Version]
- Kasali, F.M.; Tusiimire, J.; Kadima, J.N.; Agaba, A.G. Ethnomedical uses, chemical constituents, and evidence-based pharmacological properties of Chenopodium ambrosioides L.: Extensive overview. Future J. Pharm. Sci. 2021, 7, 1–36. [Google Scholar] [CrossRef]
- Akkari, H.; Rtibi, K.; B’chir, F.; Rekik, M.; Darghouth, M.A.; Gharbi, M. In vitro evidence that the pastoral Artemisia campestris species exerts an anthelmintic effect on Haemonchus contortus from sheep. Vet. Res. Commun. 2014, 38, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Kozan, E.; Anul, S.A.; Tatli, I.I. In vitro anthelmintic effect of Vicia pannonica var. purpurascens on trichostrongylosis in sheep. Exp. Parasitol. 2013, 134, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Kamaraj, C.; Rahuman, A.A.; Bagavan, A.; Mohamed, M.J.; Elango, G.; Rajakumar, G.; Zahir, A.A.; Santhoshkumar, T.; Marimuthu, S. Ovicidal and larvicidal activity of crude extracts of Melia azedarach against Haemonchus contortus (Strongylida). Parasitol. Res. 2010, 106, 1071–1077. [Google Scholar] [CrossRef]
- M’rabet, Y.; Rokbeni, N.; Cluzet, S.; Boulila, A.; Richard, T.; Krisa, S.; Marzouki, L.; Casabianca, H.; Hosni, K. Profiling of phenolic compounds and antioxidant activity of Melia azedarach L. leaves and fruits at two stages of maturity. Ind. Crops Prod. 2017, 107, 232–243. [Google Scholar] [CrossRef]
- Zangueu, C.B.; Olounlade, A.P.; Ossokomack, M.; Djouatsa, Y.N.N.; Alowanou, G.G.; Azebaze, A.G.B.; Llorent-Martínez, E.J.; de Córdova, M.L.F.; Dongmo, A.B.; Hounzangbe-Adote, M.S. In vitro effects of aqueous extract from Maytenus senegalensis (Lam.) Exell stem bark on egg hatching, larval migration and adult worms of Haemonchus contortus. BMC Vet. Res. 2018, 14, 1–11. [Google Scholar] [CrossRef] [Green Version]
- López-Cobo, A.; Gómez-Caravaca, A.M.; Pasini, F.; Caboni, M.F.; Segura-Carretero, A.; Fernández-Gutiérrez, A. HPLC-DAD-ESI-QTOF-MS and HPLC-FLD-MS as valuable tools for the determination of phenolic and other polar compounds in the edible part and by-products of avocado. LWT 2016, 73, 505–513. [Google Scholar] [CrossRef]
- Akande, A.; Aboaba, S.; Flamini, G. Constituents and Anthelmintic Activity Evaluation of Albizia Adiantifolia (Schumach) WF Wright Essential Oils FromNigeria. Int. J. Chem. 2018, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Mancilla-Montelongo, G.; Castañeda-Ramírez, G.S.; de Jesús Torres-Acosta, J.F.; Sandoval-Castro, C.A.; Borges-Argáez, R. Evaluation of cinnamic acid and six analogues against eggs and larvae of Haemonchus contortus. Vet. Parasitol. 2019, 270, 25–30. [Google Scholar] [CrossRef]
- Rodrigues, C.I.; da Costa, D.M.; Santos, A.C.V.; Batatinha, M.J.M.; Souza, F.V.D.; de Souza, E.H.; Botura, M.B.; Alves, C.Q.; Soares, T.L.; Brandão, H.N. Assessment of in vitro anthelmintic activity and bio-guided chemical analysis of BRS Boyrá pineapple leaf extracts. Vet. Parasitol. 2020, 285, 109219. [Google Scholar] [CrossRef] [PubMed]
- Mengistu, G.; Hoste, H.; Karonen, M.; Salminen, J.-P.; Hendriks, W.; Pellikaan, W. The in vitro anthelmintic properties of browse plant species against Haemonchus contortus is determined by the polyphenol content and composition. Vet. Parasitol. 2017, 237, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Lima, C.S.; Ketavong, S.; Llorent-Martínez, E.J.; Hoste, H.; Custódio, L. Disclosing the bioactive metabolites involved in the in vitro anthelmintic effects of salt-tolerant plants through a combined approach using PVPP and HPLC-ESI-MSn. Sci. Rep. 2021, 11, 24303. [Google Scholar] [CrossRef]
- Zarza-Albarrán, M.; Olmedo-Juárez, A.; Rojo-Rubio, R.; Mendoza-de Gives, P.; González-Cortazar, M.; Tapia-Maruri, D.; Mondragón-Ancelmo, J.; García-Hernández, C.; Blé-González, E.A.; Zamilpa, A. Galloyl flavonoids from Acacia farnesiana pods possess potent anthelmintic activity against Haemonchus contortus eggs and infective larvae. J. Ethnopharmacol. 2020, 249, 112402. [Google Scholar] [CrossRef] [PubMed]
- Mravčáková, D.; Váradyová, Z.; Kopčáková, A.; Čobanová, K.; Grešáková, Ľ.; Kišidayová, S.; Babják, M.; Dolinská, M.U.; Dvorožňáková, E.; Königová, A. Natural chemotherapeutic alternatives for controlling of haemonchosis in sheep. BMC Vet. Res. 2019, 15, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, Z.; Lateef, M.; Akhtar, M.S.; Ghayur, M.N.; Gilani, A.H. In vivo anthelmintic activity of ginger against gastrointestinal nematodes of sheep. J. Ethnopharmacol. 2006, 106, 285–287. [Google Scholar] [CrossRef] [PubMed]
- Amri, M.; Touil-Boukoffa, C. In vitro anti-hydatic and immunomodulatory effects of ginger and [6]-gingerol. Asian Pac. J. Trop. Med. 2016, 9, 749–756. [Google Scholar] [CrossRef] [Green Version]
- Goto, C.; Kasuya, S.; Koga, K.; Ohtomo, H.; Kagei, N. Lethal efficacy of extract fromZingiber officinale (traditional Chinese medicine) or [6]-shogaol and [6]-gingerol inAnisakis larvae in vitro. Parasitol. Res. 1990, 76, 653–656. [Google Scholar] [CrossRef]
Extract Partition/Plant | IC50 (mg/mL) | Lower Limit Confidence Level 95.0% | Upper Limit Confidence Level 95.0% | Deviation Percentage |
---|---|---|---|---|
Hex.-G. sepium | 3.0035 | 2.7373 | 3.3089 | 98.2763 |
Hex.-L. leucocephala | 4.1588 | 3.7695 | 4.6122 | 95.9333 |
Hex.-P. dulce | 3.2018 | 2.8553 | 3.6007 | 98.0727 |
DCM-G. sepium | 0.3999 | 0.3409 | 0.4575 | 98.0256 |
DCM-L. leucocephala | 0.9718 | 0.7134 | 1.2070 | 94.2904 |
DCM-P. dulce | 1.6127 | 1.1881 | 2.0115 | 89.5321 |
EtOAc-G. sepium | 0.5176 | 0.4058 | 0.6207 | 96.7224 |
EtOAc-L. leucocephala | 0.8691 | 0.7769 | 0.9653 | 98.9037 |
EtOAc-P. dulce | 0.8779 | 0.7769 | 0.9826 | 97.0992 |
W-EtOH-G. sepium | 1.8259 | 1.4138 | 2.2260 | 93.8585 |
W-EtOH-L. leucocephala | 1.9520 | 1.5251 | 2.3702 | 90.9928 |
W-EtOH-P. dulce | 0.2707 | −0.0677 | 0.5217 | 98.0653 |
Extract Partition/Plant | IC50 (mg/mL) | Lower Limit Confidence Level 95% | Upper Limit Confidence Level 95% | Deviation Percentage |
---|---|---|---|---|
Hex.-G. sepium | 7.30878 | 6.60072 | 8.14911 | 98.6588 |
Hex.-L. leucocephala | 5.96673 | 5.4279 | 6.59859 | 91.0438 |
Hex.-P. dulce | 10.1507 | 9.05509 | 11.4483 | 81.8336 |
DCM-G. sepium | 2.90612 | 1.76068 | 3.94854 | 77.4965 |
DCM-L. leucocephala | 4.55119 | 3.62921 | 5.50145 | 80.0234 |
DCM-P. dulce | 7.25476 | 6.02709 | 8.5945 | 94.2082 |
EtOAc-G. sepium | 4.04261 | 3.48328 | 4.66536 | 95.8418 |
EtOAc-L. leucocephala | 4.02541 | 3.52976 | 4.58456 | 97.1486 |
EtOAc-P. dulce | 3.14843 | 2.58971 | 3.73258 | 88.648 |
W-EtOH-G. sepium | 5.36945 | 4.46193 | 6.34401 | 82.771 |
W-EtOH-L. leucocephala | 6.13693 | 5.06958 | 7.2879 | 97.1486 |
W-EtOH-P. dulce | 2,68233 | 1.84522 | 3.46783 | 77.096 |
Metabolites | G. sepium | L. leucocephala | P. dulce |
---|---|---|---|
Flavonoids | Dihydroxy-methoxiflavanone | Catechin Gallocatechin gallate Isorhamnetin-O-glucoside Rutin Myricetin 3-O-rhamnoside Epicatechin gallate Luteolin Quercetin | Quercetin-3-glucoside Luteolin 7-O-glucoside Kaempferol-3-O-rhamnoside Phloretin-di-C-hexoside Rutin |
Fatty acid esters | Phenethyl butyrate | ||
Hydroxycinnamic acids | Caffeic acid p-coumáric acid | ||
Organooxygenated compounds | Quinic acid Caffeoylquinic acid | Coumaroylquinic acid | |
Benzene and substituted derivatives | Gallic acid | ||
Phenolic glycosides | Protocatechuic acid 4-hexoside | ||
Phenols | Gingerol |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero-Jola, N.J.; Cubides-Cárdenas, J.A.; Escobar, N.; Simirgiotis, M.J. Ovicidal Effect on Haemonchus contortus of Extract Partitions Shrubby Plants of the Tropical Dry Forest and Potentially Active Compounds Identification by UHPLC-Q/Orbitrap/MS/MS. Appl. Sci. 2023, 13, 7147. https://doi.org/10.3390/app13127147
Romero-Jola NJ, Cubides-Cárdenas JA, Escobar N, Simirgiotis MJ. Ovicidal Effect on Haemonchus contortus of Extract Partitions Shrubby Plants of the Tropical Dry Forest and Potentially Active Compounds Identification by UHPLC-Q/Orbitrap/MS/MS. Applied Sciences. 2023; 13(12):7147. https://doi.org/10.3390/app13127147
Chicago/Turabian StyleRomero-Jola, Néstor Jaime, Jaime Andrés Cubides-Cárdenas, Natalia Escobar, and Mario J. Simirgiotis. 2023. "Ovicidal Effect on Haemonchus contortus of Extract Partitions Shrubby Plants of the Tropical Dry Forest and Potentially Active Compounds Identification by UHPLC-Q/Orbitrap/MS/MS" Applied Sciences 13, no. 12: 7147. https://doi.org/10.3390/app13127147
APA StyleRomero-Jola, N. J., Cubides-Cárdenas, J. A., Escobar, N., & Simirgiotis, M. J. (2023). Ovicidal Effect on Haemonchus contortus of Extract Partitions Shrubby Plants of the Tropical Dry Forest and Potentially Active Compounds Identification by UHPLC-Q/Orbitrap/MS/MS. Applied Sciences, 13(12), 7147. https://doi.org/10.3390/app13127147