Recent Advances in the Antibacterial Activities of Citrullus lanatus (Watermelon) By-Products
Abstract
:1. Introduction
2. Antibacterial Activities
3. Extraction Methods
4. Antibacterial Activities of Citrullus lanatus By-Products
4.1. Rind and Peel
4.2. Seeds
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deshmukh, C.D.; Jain, A.; Tambe, M.S. Phytochemical and Pharmacological Profile of Citrullus lanatus (THUNB). Biolife 2015, 3, 483–488. [Google Scholar] [CrossRef]
- Zamuz, S.; Munekata, P.E.S.; Gullón, B.; Rocchetti, G.; Montesano, D.; Lorenzo, J.M. Citrullus lanatus as Source of Bioactive Components: An up-to-Date Review. Trends Food Sci. Technol. 2021, 111, 208–222. [Google Scholar] [CrossRef]
- Zia, S.; Khan, M.R.; Mousavi Khaneghah, A.; Aadil, R.M. Characterization, Bioactive Compounds, and Antioxidant Profiling of Edible and Waste Parts of Different Watermelon (Citrullus lanatus) Cultivars. Biomass Conv. Bioref. 2023, 1–13. [Google Scholar] [CrossRef]
- Brahmi, F.; Chennit, B.; Batrouni, H.; Benallaoua, K.; Madani, K.; Boulekbache-Makhlouf, L. Valorization of Apricot, Melon, and Watermelon by-Products by Extracting Vegetable Oils from Their Seeds and Formulating Margarine. OCL 2023, 30, 11. [Google Scholar] [CrossRef]
- Maoto, M.M.; Beswa, D.; Jideani, A.I.O. Watermelon as a Potential Fruit Snack. Int. J. Food Prop. 2019, 22, 355–370. [Google Scholar] [CrossRef]
- Benmeziane, F.; Derradji, M. Composition, Bioactive Potential and Food Applications of Watermelon (Citrullus lanatus) Seeds—A Review. J. Food Meas. Charact. 2023, 17, 5045–5061. [Google Scholar] [CrossRef]
- Jibril, M.M.; Abdul-Hamid, A.; Ghazali, H.M.; Dek, M.S.P.; Ramli, N.S.; Jaafar, A.H.; Karrupan, J.; Mohammed, A.S. Antidiabetic Antioxidant and Phytochemical Profile of Yellow-Fleshed Seeded Watermelon (Citrullus lanatus) Extracts. J. Food Nutr. Res. 2019, 7, 82–95. [Google Scholar] [CrossRef]
- Elsayed, D.A.; Yousof, S.M.; Khalil, I.A.; Kolieb, E.; Zayed, M.A. Citrullus lanatus (Watermelon) Wastes: Maximizing the Benefits and Saving the Environment. In Mediterranean Fruits Bio-wastes: Chemistry, Functionality and Technological Applications; Ramadan, M.F., Farag, M.A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 647–665. ISBN 978-3-030-84436-3. [Google Scholar]
- Neglo, D.; Tettey, C.O.; Essuman, E.K.; Kortei, N.K.; Boakye, A.A.; Hunkpe, G.; Amarh, F.; Kwashie, P.; Devi, W.S. Comparative Antioxidant and Antimicrobial Activities of the Peels, Rind, Pulp and Seeds of Watermelon (Citrullus lanatus) Fruit. Sci. Afr. 2021, 11, e00582. [Google Scholar] [CrossRef]
- Ouassor, I.; Aqil, Y.; Belmaghraoui, W.; Hajjaji, S.E. Characterization of Two Moroccan Watermelon Seeds Oil Varieties by Three Different Extraction Methods. OCL 2020, 27, 13. [Google Scholar] [CrossRef]
- Mushtaq, M.; Sultana, B.; Bhatti, H.N.; Asghar, M. RSM Based Optimized Enzyme-Assisted Extraction of Antioxidant Phenolics from Underutilized Watermelon (Citrullus lanatus Thunb.) Rind. J. Food Sci. Technol. 2015, 52, 5048–5056. [Google Scholar] [CrossRef]
- Gupta, R.; Kumar, G.; Singh, G.; Malik, J.; Siroliya, V.; Maurya, N. Ethnomedicinal Significance of Citrullus lanatus (Watermelon): A Pharmacological Review. Int. J. Pharm. Clin. Res. 2023, 5, 1–5. [Google Scholar] [CrossRef]
- Sultan, R.S.; Shawkat, M.S.; Hadi, S.M. Antimicrobial, Antibiofilm and Antiplasmid Activity of Fruit Peel Extracts on Bacterial Dental Caries. Curr. Res. Microbiol. Biotechnol. 2017, 5, 1266–1272. [Google Scholar]
- Zia, S.; Khan, M.R.; Shabbir, M.A.; Aadil, R.M. An Update on Functional, Nutraceutical and Industrial Applications of Watermelon by-Products: A Comprehensive Review. Trends Food Sci. Technol. 2021, 114, 275–291. [Google Scholar] [CrossRef]
- Hasanin, M.S.; Hashem, A.H.; Abd El-Sayed, E.S.; El-Saied, H. Green Ecofriendly Bio-Deinking of Mixed Office Waste Paper Using Various Enzymes from Rhizopus microsporus AH3: Efficiency and Characteristics. Cellulose 2020, 27, 4443–4453. [Google Scholar] [CrossRef]
- Efenberger-Szmechtyk, M.; Nowak, A.; Czyzowska, A. Plant Extracts Rich in Polyphenols: Antibacterial Agents and Natural Preservatives for Meat and Meat Products. Crit. Rev. Food Sci. Nutr. 2021, 61, 149–178. [Google Scholar] [CrossRef] [PubMed]
- Olmos, D.; González-Benito, J. Polymeric Materials with Antibacterial Activity: A Review. Polymers 2021, 13, 613. [Google Scholar] [CrossRef]
- Yuan, G.; Guan, Y.; Yi, H.; Lai, S.; Sun, Y.; Cao, S. Antibacterial Activity and Mechanism of Plant Flavonoids to Gram-Positive Bacteria Predicted from Their Lipophilicities. Sci. Rep. 2021, 11, 10471. [Google Scholar] [CrossRef]
- Yu, H.; Liu, Y.; Li, L.; Guo, Y.; Xie, Y.; Cheng, Y.; Yao, W. Ultrasound-Involved Emerging Strategies for Controlling Foodborne Microbial Biofilms. Trends Food Sci. Technol. 2020, 96, 91–101. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Q.; Zhang, H.; Wang, J.; Fu, Q.; Qiao, H.; Wang, Q. Insight into Antibacterial Mechanism of Polysaccharides: A Review. LWT 2021, 150, 111929. [Google Scholar] [CrossRef]
- Zheng, D.; Huang, C.; Huang, H.; Zhao, Y.; Khan, M.R.U.; Zhao, H.; Huang, L. Antibacterial Mechanism of Curcumin: A Review. Chem. Biodivers. 2020, 17, e2000171. [Google Scholar] [CrossRef]
- Abou Baker, D.H. An Ethnopharmacological Review on the Therapeutical Properties of Flavonoids and Their Mechanisms of Actions: A Comprehensive Review Based on up to Date Knowledge. Toxicol. Rep. 2022, 9, 445–469. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Font, E.; Pérez-Capó, M.; Ramos, R.; Felipe, I.; Garcías, C.; Luna, P.; Terrasa, J.; Martín-Broto, J.; Vögler, O.; Alemany, R.; et al. Impact of Wnt/β-Catenin Inhibition on Cell Proliferation through CDC25A Downregulation in Soft Tissue Sarcomas. Cancers 2020, 12, 2556. [Google Scholar] [CrossRef] [PubMed]
- Buranrat, B.; Noiwetch, S.; Suksar, T.; Ta-ut, A. Inhibition of Cell Proliferation and Migration by Oroxylum indicum Extracts on Breast Cancer Cells via Rac1 Modulation. J. Pharm. Anal. 2020, 10, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zeng, J.; Sun, F.; Tong, X.; Meng, G.; Wu, C.; Ding, X.; Liu, L.; Han, M.; Lu, C.; et al. P27 Inhibits CDK6/CCND1 Complex Formation Resulting in Cell Cycle Arrest and Inhibition of Cell Proliferation. Cell Cycle 2018, 17, 2335–2348. [Google Scholar] [CrossRef] [PubMed]
- Pu, W.; Han, X.; He, L.; Li, Y.; Huang, X.; Zhang, M.; Lv, Z.; Yu, W.; Wang, Q.-D.; Cai, D.; et al. A Genetic System for Tissue-Specific Inhibition of Cell Proliferation. Development 2020, 147, dev183830. [Google Scholar] [CrossRef]
- Guo, W.; Chen, Z.; Chen, Z.; Yu, J.; Liu, H.; Li, T.; Lin, T.; Chen, H.; Zhao, M.; Li, G.; et al. Promotion of Cell Proliferation through Inhibition of Cell Autophagy Signalling Pathway by Rab3IP Is Restrained by MicroRNA-532-3p in Gastric Cancer. J. Cancer 2018, 9, 4363–4373. [Google Scholar] [CrossRef]
- Mo, M.; Liu, S.; Ma, X.; Tan, C.; Wei, L.; Sheng, Y.; Song, Y.; Zeng, X.; Huang, D.; Qiu, X. A Liver-Specific lncRNA, FAM99B, Suppresses Hepatocellular Carcinoma Progression through Inhibition of Cell Proliferation, Migration, and Invasion. J. Cancer Res. Clin. Oncol. 2019, 145, 2027–2038. [Google Scholar] [CrossRef]
- Bae, S.H.; Park, J.H.; Choi, H.G.; Kim, H.; Kim, S.H. Imidazole Antifungal Drugs Inhibit the Cell Proliferation and Invasion of Human Breast Cancer Cells. Biomol. Ther. 2018, 26, 494–502. [Google Scholar] [CrossRef]
- Yoshimura, H.; Yoshida, H.; Matsuda, S.; Ryoke, T.; Ohta, K.; Ohmori, M.; Yamamoto, S.; Kiyoshima, T.; Kobayashi, M.; Sano, K. The Therapeutic Potential of Epigallocatechin-3-gallate against Human Oral Squamous Cell Carcinoma through Inhibition of Cell Proliferation and Induction of Apoptosis: In Vitro and in Vivo Murine Xenograft Study. Mol. Med. Rep. 2019, 20, 1139–1148. [Google Scholar] [CrossRef]
- Danish, P.; Ali, Q.; Hafeez, M.M.; Malik, A. Antifungal and Antibacterial Activity of Aloe vera Plant Extract. Biol. Clin. Sci. Res. J. 2020, 2020, 1–8. [Google Scholar] [CrossRef]
- Uddin, T.M.; Chakraborty, A.J.; Khusro, A.; Zidan, B.R.M.; Mitra, S.; Emran, T.B.; Dhama, K.; Ripon, M.K.H.; Gajdács, M.; Sahibzada, M.U.K.; et al. Antibiotic Resistance in Microbes: History, Mechanisms, Therapeutic Strategies and Future Prospects. J. Infect. Public Health 2021, 14, 1750–1766. [Google Scholar] [CrossRef] [PubMed]
- Biharee, A.; Sharma, A.; Kumar, A.; Jaitak, V. Antimicrobial Flavonoids as a Potential Substitute for Overcoming Antimicrobial Resistance. Fitoterapia 2020, 146, 104720. [Google Scholar] [CrossRef] [PubMed]
- Mahdi, M.A.; Yousefi, S.R.; Jasim, L.S.; Salavati-Niasari, M. Green Synthesis of DyBa2Fe3O7.988/DyFeO3 Nanocomposites Using Almond Extract with Dual Eco-Friendly Applications: Photocatalytic and Antibacterial Activities. Int. J. Hydrogen Energy 2022, 47, 14319–14330. [Google Scholar] [CrossRef]
- Farhadi, F.; Khameneh, B.; Iranshahi, M.; Iranshahy, M. Antibacterial Activity of Flavonoids and Their Structure–Activity Relationship: An Update Review. Phytother. Res. 2019, 33, 13–40. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shen, Y.; Thakur, K.; Han, J.; Zhang, J.-G.; Hu, F.; Wei, Z.-J. Antibacterial Activity and Mechanism of Ginger Essential Oil against Escherichia coli and Staphylococcus aureus. Molecules 2020, 25, 3955. [Google Scholar] [CrossRef] [PubMed]
- Bédard, F.; Hammami, R.; Zirah, S.; Rebuffat, S.; Fliss, I.; Biron, E. Synthesis, Antimicrobial Activity and Conformational Analysis of the Class IIa Bacteriocin Pediocin PA-1 and Analogs Thereof. Sci. Rep. 2018, 8, 9029. [Google Scholar] [CrossRef]
- Simões, D.; Miguel, S.P.; Ribeiro, M.P.; Coutinho, P.; Mendonça, A.G.; Correia, I.J. Recent Advances on Antimicrobial Wound Dressing: A Review. Eur. J. Pharm. Biopharm. 2018, 127, 130–141. [Google Scholar] [CrossRef]
- Lee, B.S.; Kalia, N.P.; Jin, X.E.F.; Hasenoehrl, E.J.; Berney, M.; Pethe, K. Inhibitors of Energy Metabolism Interfere with Antibiotic-Induced Death in Mycobacteria. J. Biol. Chem. 2019, 294, 1936–1943. [Google Scholar] [CrossRef]
- Cui, H.; Zhang, C.; Li, C.; Lin, L. Antibacterial Mechanism of Oregano Essential Oil. Ind. Crops Prod. 2019, 139, 111498. [Google Scholar] [CrossRef]
- Yan, Y.; Li, X.; Zhang, C.; Lv, L.; Gao, B.; Li, M. Research Progress on Antibacterial Activities and Mechanisms of Natural Alkaloids: A Review. Antibiotics 2021, 10, 318. [Google Scholar] [CrossRef]
- Barbosa, L.N.; Alves, F.C.B.; Andrade, B.F.M.T.; Albano, M.; Rall, V.L.M.; Fernandes, A.A.H.; Buzalaf, M.A.R.; Leite, A.D.L.; De Pontes, L.G.; Dos Santos, L.D.; et al. Proteomic Analysis and Antibacterial Resistance Mechanisms of Salmonella enteritidis Submitted to the Inhibitory Effect of Origanum vulgare Essential Oil, Thymol and Carvacrol. J. Proteom. 2020, 214, 103625. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, Y.; Zhang, Z.; Chen, M.; Zhang, D.; Tian, C.; Liu, M.; Jiang, G. The Antibacterial Activity and Mechanism of Action of Luteolin Against Trueperella pyogenes. Infect. Drug Resist. 2020, 13, 1697–1711. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhou, T.; Wei, C.; Lan, W.; Zhao, Y.; Pan, Y.; Wu, V.C.H. Antibacterial Effect and Mechanism of Anthocyanin Rich Chinese Wild Blueberry Extract on Various Foodborne Pathogens. Food Control 2018, 94, 155–161. [Google Scholar] [CrossRef]
- Doyle, A.A.; Stephens, J.C. A Review of Cinnamaldehyde and Its Derivatives as Antibacterial Agents. Fitoterapia 2019, 139, 104405. [Google Scholar] [CrossRef]
- Liu, M.; Feng, M.; Yang, K.; Cao, Y.; Zhang, J.; Xu, J.; Hernández, S.H.; Wei, X.; Fan, M. Transcriptomic and Metabolomic Analyses Reveal Antibacterial Mechanism of Astringent Persimmon Tannin against Methicillin-Resistant Staphylococcus aureus Isolated from Pork. Food Chem. 2020, 309, 125692. [Google Scholar] [CrossRef]
- Ben Lagha, A.; Andrian, E.; Grenier, D. Resveratrol Attenuates the Pathogenic and Inflammatory Properties of Porphyromonas gingivalis. Mol. Oral Microbiol. 2019, 34, 118–130. [Google Scholar] [CrossRef]
- Wang, W.; Huang, X.; Yang, H.; Niu, X.; Li, D.; Yang, C.; Li, L.; Zou, L.; Qiu, Z.; Wu, S.; et al. Antibacterial Activity and Anti-Quorum Sensing Mediated Phenotype in Response to Essential Oil from Melaleuca bracteata Leaves. Int. J. Mol. Sci. 2019, 20, 5696. [Google Scholar] [CrossRef]
- Jiang, L.; Yi, T.; Shen, Z.; Teng, Z.; Wang, J. Aloe-Emodin Attenuates Staphylococcus aureus Pathogenicity by Interfering With the Oligomerization of α-Toxin. Front. Cell. Infect. Microbiol. 2019, 9, 157. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Cao, J.; Jiang, H.; Yao, J.; Gong, G.; Chen, X.; Xu, W.; He, X. Antimicrobial Activity and Virulence Attenuation of Citral against the Fish Pathogen Vibrio alginolyticus. Aquaculture 2020, 515, 734578. [Google Scholar] [CrossRef]
- Abdolhosseini, M.; Zamani, H.; Salehzadeh, A. Synergistic Antimicrobial Potential of Ciprofloxacin with Silver Nanoparticles Conjugated to Thiosemicarbazide against Ciprofloxacin Resistant Pseudomonas aeruginosa by Attenuation of MexA-B Efflux Pump Genes. Biologia 2019, 74, 1191–1196. [Google Scholar] [CrossRef]
- LewisOscar, F.; Nithya, C.; Alharbi, S.A.; Alharbi, N.S.; Thajuddin, N. In Vitro and in Silico Attenuation of Quorum Sensing Mediated Pathogenicity in Pseudomonas aeruginosa Using Spirulina Platensis. Microb. Pathog. 2018, 116, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Parai, D.; Banerjee, M.; Dey, P.; Mukherjee, S.K. Reserpine Attenuates Biofilm Formation and Virulence of Staphylococcus aureus. Microb. Pathog. 2020, 138, 103790. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Loessner, M.J. Beyond Antibacterials—Exploring Bacteriophages as Antivirulence Agents. Curr. Opin. Biotechnol. 2021, 68, 166–173. [Google Scholar] [CrossRef]
- Barabadi, H.; Mojab, F.; Vahidi, H.; Marashi, B.; Talank, N.; Hosseini, O.; Saravanan, M. Green Synthesis, Characterization, Antibacterial and Biofilm Inhibitory Activity of Silver Nanoparticles Compared to Commercial Silver Nanoparticles. Inorg. Chem. Commun. 2021, 129, 108647. [Google Scholar] [CrossRef]
- Mi, G.; Shi, D.; Wang, M.; Webster, T.J. Reducing Bacterial Infections and Biofilm Formation Using Nanoparticles and Nanostructured Antibacterial Surfaces. Adv. Healthc. Mater. 2018, 7, 1800103. [Google Scholar] [CrossRef]
- Rather, M.A.; Gupta, K.; Mandal, M. Microbial Biofilm: Formation, Architecture, Antibiotic Resistance, and Control Strategies. Braz. J. Microbiol. 2021, 52, 1701–1718. [Google Scholar] [CrossRef] [PubMed]
- Wasfi, R.; Abd El-Rahman, O.A.; Zafer, M.M.; Ashour, H.M. Probiotic Lactobacillus Sp. Inhibit Growth, Biofilm Formation and Gene Expression of Caries-Inducing Streptococcus mutans. J. Cell. Mol. Med. 2018, 22, 1972–1983. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Cai, L.; Li, Y.; Xu, X.; Zhou, G. Biofilm Formation by Meat-Borne Pseudomonas Fluorescens on Stainless Steel and Its Resistance to Disinfectants. Food Control 2018, 91, 397–403. [Google Scholar] [CrossRef]
- Wasfi, R.; Hamed, S.M.; Amer, M.A.; Fahmy, L.I. Proteus Mirabilis Biofilm: Development and Therapeutic Strategies. Front. Cell. Infect. Microbiol. 2020, 10, 414. [Google Scholar] [CrossRef]
- Colquhoun, J.M.; Rather, P.N. Insights Into Mechanisms of Biofilm Formation in Acinetobacter baumannii and Implications for Uropathogenesis. Front. Cell. Infect. Microbiol. 2020, 10, 253. [Google Scholar] [CrossRef]
- Vazquez-Armenta, F.J.; Bernal-Mercado, A.T.; Tapia-Rodriguez, M.R.; Gonzalez-Aguilar, G.A.; Lopez-Zavala, A.A.; Martinez-Tellez, M.A.; Hernandez-Oñate, M.A.; Ayala-Zavala, J.F. Quercetin Reduces Adhesion and Inhibits Biofilm Development by Listeria monocytogenes by Reducing the Amount of Extracellular Proteins. Food Control 2018, 90, 266–273. [Google Scholar] [CrossRef]
- Ong, K.S.; Mawang, C.I.; Daniel-Jambun, D.; Lim, Y.Y.; Lee, S.M. Current Anti-Biofilm Strategies and Potential of Antioxidants in Biofilm Control. Expert Rev. Anti Infect. Ther. 2018, 16, 855–864. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.W.; Phillips, K.S.; Gu, H.; Kazemzadeh-Narbat, M.; Ren, D. How Microbes Read the Map: Effects of Implant Topography on Bacterial Adhesion and Biofilm Formation. Biomaterials 2021, 268, 120595. [Google Scholar] [CrossRef]
- Dunne, W.M. Bacterial Adhesion: Seen Any Good Biofilms Lately? Clin. Microbiol. Rev. 2002, 15, 155–166. [Google Scholar] [CrossRef]
- Singh, A.; Dubey, A.K. Various Biomaterials and Techniques for Improving Antibacterial Response. ACS Appl. Bio Mater. 2018, 1, 3–20. [Google Scholar] [CrossRef]
- Lim, H.-S.; Yeu, J.-E.; Hong, S.-P.; Kang, M.-S. Characterization of Antibacterial Cell-Free Supernatant from Oral Care Probiotic Weissella cibaria, CMU. Molecules 2018, 23, 1984. [Google Scholar] [CrossRef]
- Jones, I.A.; Joshi, L.T. Biocide Use in the Antimicrobial Era: A Review. Molecules 2021, 26, 2276. [Google Scholar] [CrossRef]
- Xiang, Q.; Kang, C.; Niu, L.; Zhao, D.; Li, K.; Bai, Y. Antibacterial Activity and a Membrane Damage Mechanism of Plasma-Activated Water against Pseudomonas deceptionensis CM2. LWT 2018, 96, 395–401. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, H.; Sun, B.; Du, S.; Cui, S.; Zhang, L.; Ding, N.; Yang, D. pH-Responsive Oxygen and Hydrogen Peroxide Self-Supplying Nanosystem for Photodynamic and Chemodynamic Therapy of Wound Infection. ACS Appl. Mater. Interfaces 2021, 13, 59720–59730. [Google Scholar] [CrossRef]
- Elgamouz, A.; Idriss, H.; Nassab, C.; Bihi, A.; Bajou, K.; Hasan, K.; Abu Haija, M.; Patole, S.P. Green Synthesis, Characterization, Antimicrobial, Anti-Cancer, and Optimization of Colorimetric Sensing of Hydrogen Peroxide of Algae Extract Capped Silver Nanoparticles. Nanomaterials 2020, 10, 1861. [Google Scholar] [CrossRef]
- Ijaz, M.; Zafar, M.; Islam, A.; Afsheen, S.; Iqbal, T. A Review on Antibacterial Properties of Biologically Synthesized Zinc Oxide Nanostructures. J. Inorg. Organomet. Polym. Mater. 2020, 30, 2815–2826. [Google Scholar] [CrossRef]
- Lam, P.-L.; Wong, R.S.-M.; Lam, K.-H.; Hung, L.-K.; Wong, M.-M.; Yung, L.-H.; Ho, Y.-W.; Wong, W.-Y.; Hau, D.K.-P.; Gambari, R.; et al. The Role of Reactive Oxygen Species in the Biological Activity of Antimicrobial Agents: An Updated Mini Review. Chem. Biol. Interact. 2020, 320, 109023. [Google Scholar] [CrossRef] [PubMed]
- Nolan, V.C.; Harrison, J.; Cox, J.A.G. Dissecting the Antimicrobial Composition of Honey. Antibiotics 2019, 8, 251. [Google Scholar] [CrossRef]
- Masoura, M.; Passaretti, P.; Overton, T.W.; Lund, P.A.; Gkatzionis, K. Use of a Model to Understand the Synergies Underlying the Antibacterial Mechanism of H2O2-Producing Honeys. Sci. Rep. 2020, 10, 17692. [Google Scholar] [CrossRef]
- Yan, L.-G.; He, L.; Xi, J. High Intensity Pulsed Electric Field as an Innovative Technique for Extraction of Bioactive Compounds—A Review. Crit. Rev. Food Sci. Nutr. 2017, 57, 2877–2888. [Google Scholar] [CrossRef]
- Lama-Muñoz, A.; Contreras, M.D.M.; Espínola, F.; Moya, M.; Romero, I.; Castro, E. Content of Phenolic Compounds and Mannitol in Olive Leaves Extracts from Six Spanish Cultivars: Extraction with the Soxhlet Method and Pressurized Liquids. Food Chem. 2020, 320, 126626. [Google Scholar] [CrossRef]
- Rifna, E.J.; Misra, N.N.; Dwivedi, M. Recent Advances in Extraction Technologies for Recovery of Bioactive Compounds Derived from Fruit and Vegetable Waste Peels: A Review. Crit. Rev. Food Sci. Nutr. 2023, 63, 719–752. [Google Scholar] [CrossRef] [PubMed]
- Luque de Castro, M.D.; Priego-Capote, F. Soxhlet Extraction: Past and Present Panacea. J. Chromatogr. A 2010, 1217, 2383–2389. [Google Scholar] [CrossRef]
- Nuralın, L.; Gürü, M. Berberis Vulgaris Fruit: Determination of Phenolic Compounds in Extracts Obtained by Supercritical CO2 and Soxhlet Methods Using HPLC. Food Anal. Methods 2022, 15, 877–889. [Google Scholar] [CrossRef]
- Kusuma, S.B.; Wulandari, S.; Nurfitriani, R.A.; Awaludin, A. The Potential Solvent for Tannin Extraction as a Feed Additive Made of Coffee Husk (Coffea canephora) Using Soxhlet Method. IOP Conf. Ser. Earth Environ. Sci. 2022, 980, 012024. [Google Scholar] [CrossRef]
- Sankeshwari, R.M.; Ankola, A.V.; Bhat, K.; Hullatti, K. Soxhlet versus Cold Maceration: Which Method Gives Better Antimicrobial Activity to Licorice Extract Against: Streptococcus Mutans? J. Sci. Soc. 2018, 45, 67. [Google Scholar] [CrossRef]
- Ćujić, N.; Šavikin, K.; Janković, T.; Pljevljakušić, D.; Zdunić, G.; Ibrić, S. Optimization of Polyphenols Extraction from Dried Chokeberry Using Maceration as Traditional Technique. Food Chem. 2016, 194, 135–142. [Google Scholar] [CrossRef]
- Gori, A.; Boucherle, B.; Rey, A.; Rome, M.; Fuzzati, N.; Peuchmaur, M. Development of an Innovative Maceration Technique to Optimize Extraction and Phase Partition of Natural Products. Fitoterapia 2021, 148, 104798. [Google Scholar] [CrossRef]
- Safdar, M.N.; Kausar, T.; Nadeem, M. Comparison of Ultrasound and Maceration Techniques for the Extraction of Polyphenols from the Mango Peel: The Potential of Ultrasound Against Maceration. J. Food Process. Preserv. 2017, 41, e13028. [Google Scholar] [CrossRef]
- Aleixandre-Tudo, J.L.; Du Toit, W. Cold Maceration Application in Red Wine Production and Its Effects on Phenolic Compounds: A Review. LWT 2018, 95, 200–208. [Google Scholar] [CrossRef]
- Wojdyło, A.; Samoticha, J.; Chmielewska, J. Effect of Different Pre-Treatment Maceration Techniques on the Content of Phenolic Compounds and Color of Dornfelder Wines Elaborated in Cold Climate. Food Chem. 2021, 339, 127888. [Google Scholar] [CrossRef] [PubMed]
- Lucena, R. Extraction and Stirring Integrated Techniques: Examples and Recent Advances. Anal. Bioanal. Chem. 2012, 403, 2213–2223. [Google Scholar] [CrossRef] [PubMed]
- Dehghan, A.; Gholizadeh, A.; Navidbakhsh, M.; Sadeghi, H.; Pishbin, E. Integrated Microfluidic System for Efficient DNA Extraction Using On-Disk Magnetic Stirrer Micromixer. Sens. Actuators B Chem. 2022, 351, 130919. [Google Scholar] [CrossRef]
- Ranjbari, E.; Hadjmohammadi, M.R. Optimization of Magnetic Stirring Assisted Dispersive Liquid–Liquid Microextraction of Rhodamine B and Rhodamine 6G by Response Surface Methodology: Application in Water Samples, Soft Drink, and Cosmetic Products. Talanta 2015, 139, 216–225. [Google Scholar] [CrossRef]
- Sun, T.; Beiyuan, J.; Gielen, G.; Mao, X.; Song, Z.; Xu, S.; Ok, Y.S.; Rinklebe, J.; Liu, D.; Hou, D.; et al. Optimizing Extraction Procedures for Better Removal of Potentially Toxic Elements during EDTA-Assisted Soil Washing. J. Soils Sediments 2020, 20, 3417–3426. [Google Scholar] [CrossRef]
- Hamidi, Y.; Ataei, S.A.; Sarrafi, A. A Simple, Fast and Low-Cost Method for the Efficient Separation of Hydrocarbons from Oily Sludge. J. Hazard. Mater. 2021, 413, 125328. [Google Scholar] [CrossRef] [PubMed]
- Othman, N.; Azhar, N.; Megat Abdul Rani, P.S.; Mohamed Zaini, H. Metal Removal and Antimicrobial Properties of Watermelon Rind Modified with Clove. MATEC Web Conf. 2016, 78, 01028. [Google Scholar] [CrossRef]
- Harith, S.S. Studies on Phytochemical Constituents and Antimicrobial Properties of Citrullus lanatus Peels. Malays. J. Anal. Sci. 2018, 22, 151–156. [Google Scholar] [CrossRef]
- Rai, P. Fruit’s and Vegetable’s Peels: Antimicrobial Activity. World J. Pharm. Res. 2019, 8, 1141–1153. [Google Scholar] [CrossRef]
- Osinubi, A.D.; Banjoko, O.O.; Anselm, O.H.; Akinrinola, O.M.; Osofodunrin, A. Comparative Effects of Drying Methods on Phytochemical Contents and Anti-Microbial Activities of Watermelon (Citrullus lanatus) Seed and Rind. J. Chem. Soc. Niger. 2020, 45, 70–78. [Google Scholar]
- Ashok Patil, T.; Jain, L. Natural Preservatives from Fruit Peels. Acta Sci. Microbiol. 2020, 3, 152–157. [Google Scholar] [CrossRef]
- Zahid, A.; Mahmood, K.; Sajjad, A.; Khalid, N.; Raziq, S.A.; Zaman, S. Characterization and Antimicrobial Activity of Different Varieties of Citrullus lanatus Rind of Balochistan. Eur. Acad. Res. 2021, 9, 5055–5066. [Google Scholar]
- Govindaraj, A.; Paulpandian, S.S.; Shanmugam, R. Comparative Evaluation of The Effect of Rind and Pulp Extract of Citrullus lanatus on Streptococcus mutans. Ann. Dent. Spec. 2022, 10, 34–39. [Google Scholar] [CrossRef]
- Toupal, S.; Coşansu, S. Antioxidant and Antimicrobial Properties of Freeze-Dried Banana and Watermelon Peel Powders. Food Humanit. 2023, 1, 607–613. [Google Scholar] [CrossRef]
- Rezagholizade-shirvan, A.; Shokri, S.; Dadpour, S.M.; Amiryousefi, M.R. Evaluation of Physicochemical, Antioxidant, Antibacterial Activity, and Sensory Properties of Watermelon Rind Candy. Heliyon 2023, 9, e17300. [Google Scholar] [CrossRef]
- Sekar, M.; Sutharesan, N.; Mashi, D.; Hisham, M.; Shazni, M.; Meng, K.; Istiazzul, M.; Abdullah, M. Comparative Evaluation of Antimicrobial Properties of Red and Yellow Watermelon Seeds. Int. J. Curr. Pharm. Res. 2014, 6, 2014. [Google Scholar]
- Adunola, A.T.; Chidimma, A.L.; Olatunde, D.S.; Peter, O.A. Antibacterial Activity of Watermelon (Citrullus lanatus) Seed against Selected Microorganisms. Afr. J. Biotechnol. 2015, 14, 1224–1229. [Google Scholar] [CrossRef]
- Bello, H.S.; Ismail, H.Y.; Goje, M.H.; Mangga, H.K. Antimicrobial Activity of Citrullus lanatus (Watermelon) Seeds on Some Selected Bacteria. J. Biotechnol. Res. 2016, 2, 39–43. [Google Scholar]
- Babaiwa, U.F.; Erharuyi, O.; Falodun, A.; Akerele, J.O. Antimicrobial Activity of Ethyl Acetate Extract of Citrullus lanatus Seeds. Trop. J. Pharm. Res. 2017, 16, 1631–1636. [Google Scholar] [CrossRef]
- Marchwińska, K.; Michocka, K. The Antimicrobial Properties of Selected Oils Used as Cosmetics Compounds. Stud. Oeconomica Posnaniensia 2017, 5, 35–44. [Google Scholar] [CrossRef]
- Łopusiewicz, Ł. Antioxidant, Antibacterial Properties and the Light Barrier Assessment of Raw and Purified Melanins Isolated from Citrullus lanatus (Watermelon) Seeds. Herba Pol. 2018, 64, 25–36. [Google Scholar] [CrossRef]
- Sola, A.O.; Temitayo, O.O.; Olufunke, A.; Shittu, F. Chemical Composition, Nutritional Values and Antibacterial Activities of Watermelon Seed (Citrullus lanatus). Int. J. Biochem. Res. Rev. 2019, 27, 1–9. [Google Scholar] [CrossRef]
- Babaiwa, U.F.; Eraga, S.O.; Akerele, J.O. Antimicrobial and Time-Kill Kinetics of the Aqueous Extract of Citrullus lanatus (Thunb.) Seeds. Bio-Research 2020, 18, 1103–1110. [Google Scholar] [CrossRef]
- Jebir, R.; Mustafa, Y. Novel Coumarins Isolated from the Seeds of Citrullus lanatus as Potential Antimicrobial Agents. Eurasian Chem. Commun. 2022, 4, 692–708. [Google Scholar] [CrossRef]
- Olude, O.; Paul, A.; Oluwatobi, A.; Patrick, I. Comparative Activities of Phytochemical, Antioxidant and Antimicrobial Properties of Leaf Extracts of Bryophyllum pinnatum (Lam.), Alchornea Cordifolia (Schumach. & Thonn.), Acalypha Wilkesiana (Muell. Arg) and Seed Extract of Citrullus lanatus (Thunb.). Covenant J. Phys. Life Sci. 2022, 10, 1–9. [Google Scholar]
- Smajovic, A.; Deumic, S.; Crncevic, N.; Hadzic, S.; Alagic, S.; Music Elma, N.; Salihovic, M.; Pazalja, M.; Omeragic, E.; Dedic, M. Comparative Analysis of Chemical Composition and Antimicrobial Activity of Watermelon Seed Extracts (Citrullus lanatus). PONTE Int. Sci. Res. J. 2023, 79, 59–69. [Google Scholar] [CrossRef]
- Mighan, N.M.; Ariaii, P.; Soltani, M.S.; Jafarian, S. Investigating the Possibility of Increasing the Microbial and Oxidative Stability of Silver Carp Burgers Using Hydrolyzed Protein of Watermelon Seeds. Food Sci. Biotechnol. 2023, 1–14. [Google Scholar] [CrossRef]
- Microbiological Specifications For, I.C.O. Microorganisms in Foods 8: Use of Data for Assessing Process Control and Product Acceptance; Springer: Boston, MA, USA, 2011; ISBN 978-1-4419-9373-1. [Google Scholar]
- Kumar, P.; Kizhakkedathu, J.N.; Straus, S.K. Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo. Biomolecules 2018, 8, 4. [Google Scholar] [CrossRef] [PubMed]
Gram | Strain of Bacteria | By-Product | Solvent | Extraction Conditions | MIC Value (mg/mL) | Zone of Inhibition (mm) | Ref. |
---|---|---|---|---|---|---|---|
+ | Bacillus cereus | Peel | 80% Methanol | Stirring for 24 h at 22 °C | n.a. | 18 | [100] |
Peel | 80% Acetone | Stirring for 24 h at 22 °C | n.a. | 13 | [100] | ||
Peel | 80% Ethanol | Stirring for 24 h at 22 °C | n.a. | 14 | [100] | ||
Peel | Water | Stirring for 24 h at 22 °C | n.a. | 10 | [100] | ||
Rind | Methanol | Maceration for 48 h at RT | 25 | 4.81 | [96] | ||
Rind | 80% Ethanol | Stirring for 24 h at 60 °C | n.a. | 11.38 | [101] | ||
+ | Bacillus spp. | Peel | Ethanol | Soxhlet extraction for 15 h at 65 °C | n.a. | 13 | [97] |
Peel | Ethanol | Cold percolation overnight at RT | n.a. | 11 | [97] | ||
+ | B. subtilis | Peel | Methanol | Mechanical shaking for 24 h at RT | 2 | 16 | [9] |
Rind | Methanol | Mechanical shaking for 24 h at RT | 8 | 13.5 | [9] | ||
+ | Corynebacterium diphtheriae | Peel | Ethanol | Soxhlet extraction for 15 h at 65 °C | n.a. | 13 | [97] |
Peel | Ethanol | Cold percolation overnight at RT | n.a. | 0 | [97] | ||
+ | Enterococcus faecalis | Peel | Methanol | Mechanical shaking for 24 h at RT | 8 | 16 | [9] |
Rind | Methanol | Mechanical shaking for 24 h at RT | 64 | 0 | [9] | ||
− | Escherichia coli | Peel | 80% Methanol | Stirring for 24 h at 22 °C | n.a. | 23 | [100] |
Peel | 80% Acetone | Stirring for 24 h at 22 °C | n.a. | 7 | [100] | ||
Peel | 80% Ethanol | Stirring for 24 h at 22 °C | n.a. | 0 | [100] | ||
Peel | Water | Stirring for 24 h at 22 °C | n.a. | 10 | [100] | ||
Peel | Methanol | Mechanical shaking for 24 h at RT | 2 | 12 | [9] | ||
Rind | Methanol | Mechanical shaking for 24 h at RT | 128 | 0 | [9] | ||
Rind | Methanol | Maceration for 48 h at RT | 25 | 6.81 | [96] | ||
Rind | Hexane | Soxhlet extraction for 6 h | n.a. | 5 | [98] | ||
Rind | 80% Ethanol | Stirring for 24 h at 60 °C | n.a. | 13.64 | [101] | ||
Rind | Wastewater | Mechanical shaking for 24 h at RT | n.a. | n.a. | [93] | ||
Peel | Ethanol | Soxhlet extraction for 15 h at 65 °C | n.a. | 14 | [97] | ||
Peel | Ethanol | Cold percolation overnight at RT | n.a. | 12 | [97] | ||
Peel | − | − | n.a. | 11 | [95] | ||
− | E. coli O157:H7 | Peel | 80% Methanol | Stirring for 24 h at 22 °C | n.a. | 19 | [100] |
Peel | 80% Acetone | Stirring for 24 h at 22 °C | n.a. | 0 | [100] | ||
Peel | 80% Ethanol | Stirring for 24 h at 22 °C | n.a. | 19 | [100] | ||
Peel | Water | Stirring for 24 h at 22 °C | n.a. | 0 | [100] | ||
− | Klebsiella oxytoca | Peel | Methanol | Mechanical shaking for 24 h at RT | 4 | 13 | [9] |
Rind | Methanol | Mechanical shaking for 24 h at RT | 8 | 10.5 | [9] | ||
+ | Lactobacillus spp. | Peel | − | − | n.a. | 10 | [95] |
+ | L. innocua | Peel | Methanol | Mechanical shaking for 24 h at RT | 8 | 9.3 | [9] |
Rind | Methanol | Mechanical shaking for 24 h at RT | 8 | 6.5 | [9] | ||
− | L. monocytogenes | Peel | 80% Methanol | Stirring for 24 h at 22 °C | n.a. | 0 | [100] |
Peel | 80% Acetone | Stirring for 24 h at 22 °C | n.a. | 13 | [100] | ||
Peel | 80% Ethanol | Stirring for 24 h at 22 °C | n.a. | 19 | [100] | ||
Peel | Water | Stirring for 24 h at 22 °C | n.a. | 0 | [100] | ||
+ | Micrococcus luteus | Peel | Methanol | Mechanical shaking for 24 h at RT | 8 | 11 | [9] |
Rind | Methanol | Mechanical shaking for 24 h at RT | 16 | 15.5 | [9] | ||
− | Proteus spp. | Peel | Ethanol | Soxhlet extraction for 15 h at 65 °C | n.a. | 0 | [97] |
Peel | Ethanol | Cold percolation overnight at RT | n.a. | 0 | [97] | ||
− | P. vulgaris | Peel | − | − | n.a. | 26 | [95] |
− | Pseudomonas aeruginosa | Peel | 80% Methanol | Stirring for 24 h at 22 °C | n.a. | 15 | [100] |
Peel | 80% Acetone | Stirring for 24 h at 22 °C | n.a. | 0 | [100] | ||
Peel | 80% Ethanol | Stirring for 24 h at 22 °C | n.a. | 17 | [100] | ||
Peel | Water | Stirring for 24 h at 22 °C | n.a. | 0 | [100] | ||
Rind | Methanol | Maceration for 48 h at RT | 25 | 4.9 | [96] | ||
Peel | Ethanol | Soxhlet extraction for 15 h at 65 °C | n.a. | 0 | [97] | ||
Peel | Ethanol | Cold percolation overnight at RT | n.a. | 0 | [97] | ||
− | P. fluorescens | Peel | Methanol | Mechanical shaking for 24 h at RT | 16 | 8 | [9] |
Rind | Methanol | Mechanical shaking for 24 h at RT | 32 | 7 | [9] | ||
Rind | Methanol | Maceration for 48 h at RT | 25 | 6.4 | [96] | ||
− | Salmonella enterica | Peel | Methanol | Mechanical shaking for 24 h at RT | 8 | 11 | [9] |
Rind | Methanol | Mechanical shaking for 24 h at RT | 8 | 11.5 | [9] | ||
− | S. enteritidis | Peel | 80% Methanol | Stirring for 24 h at 22 °C | n.a. | 0 | [100] |
Peel | 80% Acetone | Stirring for 24 h at 22 °C | n.a. | 0 | [100] | ||
Peel | 80% Ethanol | Stirring for 24 h at 22 °C | n.a. | 0 | [100] | ||
Peel | Water | Stirring for 24 h at 22 °C | n.a. | 0 | [100] | ||
− | S. typhimurium | Peel | Methanol | Mechanical shaking for 24 h at RT | 8 | 9.3 | [9] |
Rind | Methanol | Mechanical shaking for 24 h at RT | 128 | 0 | [9] | ||
Rind | Methanol | Maceration for 48 h at RT | 25 | 6.41 | [96] | ||
Peel | 80% Methanol | Stirring for 24 h at 22 °C | n.a. | 0 | [100] | ||
Peel | 80% Acetone | Stirring for 24 h at 22 °C | n.a. | 0 | [100] | ||
Peel | 80% Ethanol | Stirring for 24 h at 22 °C | n.a. | 0 | [100] | ||
Peel | Water | Stirring for 24 h at 22 °C | n.a. | 0 | [100] | ||
− | Shigella sonnei | Peel | Methanol | Mechanical shaking for 24 h at RT | 2 | 16 | [9] |
Rind | Methanol | Mechanical shaking for 24 h at RT | 16 | 12 | [9] | ||
+ | Staphylococcus albus | Peel | Methanol | Mechanical shaking for 24 h at RT | 16 | 10 | [9] |
Rind | Methanol | Mechanical shaking for 24 h at RT | 128 | 7.6 | [9] | ||
+ | S. aureus | Peel | − | − | n.a. | 10 | [95] |
Peel | Methanol | Mechanical shaking for 24 h at RT | 8 | 20 | [9] | ||
Rind | Methanol | Mechanical shaking for 24 h at RT | 4 | 13 | [9] | ||
Rind | Methanol | Maceration for 48 h at RT | 25 | 5.81 | [96] | ||
Rind | Hexane | Soxhlet extraction for 6 h | n.a. | 10 | [98] | ||
Peel | 80% Methanol | Stirring for 24 h at 22 °C | n.a. | 0 | [100] | ||
Peel | 80% Acetone | Stirring for 24 h at 22 °C | n.a. | 0 | [100] | ||
Peel | 80% Ethanol | Stirring for 24 h at 22 °C | n.a. | 15 | [100] | ||
Peel | Water | Stirring for 24 h at 22 °C | n.a. | 0 | [100] | ||
Peel | Ethanol | Soxhlet extraction for 15 h at 65 °C | n.a. | 12 | [97] | ||
Peel | Ethanol | Cold percolation overnight at RT | n.a. | 0 | [97] | ||
Rind | 80% Ethanol | Stirring for 24 h at 60 °C | n.a. | 10.84 | [101] | ||
+ | S. epidermidis | Peel | Methanol | Maceration | 20 | 10 | [94] |
Peel | Hexane | Maceration | 60 | 5 | [94] | ||
+ | Streptococcus mutans | Rind | Water | Maceration at RT | n.a. | 35 | [99] |
+ | S. thermophilus | Peel | Methanol | Mechanical shaking for 24 h at RT | 16 | 13 | [9] |
Rind | Methanol | Mechanical shaking for 24 h at RT | 64 | 10 | [9] |
Gram | Strain of Bacteria | Solvent | Extraction Conditions | MIC (mg/mL) | Zone of Inhibition (mm) | Ref. |
---|---|---|---|---|---|---|
+ | B. cereus | 1 M NaOH | Precipitation | n.a. | 0 | [107] |
Methanol | Maceration for 48 h at RT | 25 | 3.91 | [96] | ||
+ | B. subtilis | Ethyl acetate | Maceration for 72 h | 2.5 | 26 | [105] |
Methanol | Mechanical shaking for 24 h at RT | 8 | 14.5 | [9] | ||
Methanol | Maceration for 24 h at RT | 250 | 0 | [112] | ||
Water | Maceration for 48 h | 25 | 16 | [109] | ||
− | Bacteroides fragilis | 1 M NaOH | Precipitation | 6 | n.a. | [110] |
+ | C. perfringens | 1 M NaOH | Precipitation | 2.5 | n.a. | [110] |
+ | E. faecalis | 1 M NaOH | Precipitation | n.a. | 11 | [107] |
Methanol | Mechanical shaking for 24 h at RT | 8 | 12 | [9] | ||
Methanol | Maceration for 24 h at RT | 250 | 9 | [112] | ||
− | E. coli | Chloroform | Cold extraction for 72 h | n.a. | 2 | [103] |
Methanol | Cold extraction for 72 h | n.a. | 1 | [103] | ||
Water | Cold extraction for 72 h | n.a. | 6 | [103] | ||
Chloroform | Soxhlet for 6 h | n.a. | 0.5 | [103] | ||
Methanol | Soxhlet for 6 h | n.a. | 5 | [103] | ||
Water | Maceration for 24 h at RT | 12.5 | 5 | [104] | ||
Ethanol | Maceration for 24 h at RT | 12.5 | 7 | [104] | ||
Ethyl acetate | Maceration for 72 h | 0.31 | 25 | [105] | ||
− | Cold press | n.a. | 0 | [106] | ||
Methanol | Mechanical shaking for 24 h at RT | 4 | 11 | [9] | ||
1 M NaOH | Precipitation | 0.7 | n.a. | [110] | ||
Methanol | Maceration for 24 h at RT | 125 | 8.67 | [112] | ||
Methanol | Maceration for 7 d at RT | 0.25 | 0 | [102] | ||
1 M NaOH | Precipitation | n.a. | 0 | [107] | ||
Water | Maceration for 48 h | 25 | 16 | [109] | ||
Methanol | Maceration for 48 h at RT | 25 | 5.81 | [96] | ||
− | E. coli(non-pathogenic) | 1 M NaOH | Precipitation | 1.8 | n.a. | [110] |
− | Fusobacterium necrophorum | 1 M NaOH | Precipitation | 2 | n.a. | [110] |
− | Haemophilus influenzae | 1 M NaOH | Precipitation | 0.75 | n.a. | [110] |
− | K. oxytoca | Methanol | Mechanical shaking for 24 h at RT | 16 | 9.3 | [9] |
− | Klebsiella pneumoniae | 1 M NaOH | Precipitation | 0.85 | n.a. | [110] |
Water | Maceration for 24 h at RT | 6.25 | 4 | [104] | ||
Ethanol | Maceration for 24 h at RT | >50 | 0 | [104] | ||
− | Klebsiella spp. | Chloroform | Cold extraction for 72 h | n.a. | 1 | [103] |
Methanol | Cold extraction for 72 h | n.a. | 0 | [103] | ||
Water | Cold extraction for 72 h | n.a. | 2.67 | [103] | ||
Chloroform | Soxhlet for 6 h | n.a. | 2.67 | [103] | ||
Methanol | Soxhlet for 6 h | n.a. | 1.5 | [103] | ||
+ | Lactobacillus spp. | Methanol | Maceration for 24 h at RT | 300 | 12 | [108] |
+ | L. innocua | Methanol | Mechanical shaking for 24 h at RT | 4 | 10.5 | [9] |
+ | M. luteus | Methanol | Mechanical shaking | 4 | 10 | [9] |
− | Necropsobacter rosorum | Methanol | Maceration for 24 h at RT | 100 | 13 | [108] |
− | Neisseria subflava | Methanol | Maceration for 24 h at RT | 200 | 18 | [108] |
− | N. sicca | Methanol | Maceration for 24 h at RT | 200 | 17 | [108] |
− | Prevotella melaninogenica | 1 M NaOH | Precipitation | 3.5 | n.a. | [110] |
− | Proteus spp. | Chloroform | Cold extraction for 72 h | n.a. | 0 | [103] |
Methanol | Cold extraction for 72 h | n.a. | 0 | [103] | ||
Water | Cold extraction for 72 h | n.a. | 2 | [103] | ||
Chloroform | Soxhlet for 6 h | n.a. | 0 | [103] | ||
Methanol | Soxhlet for 6 h | n.a. | 1.33 | [103] | ||
− | Pseudomonas aeruginosa | Methanol | Maceration for 7 d at RT | 0.25 | 0 | [102] |
Chloroform | Cold extraction for 72 h | n.a. | 0 | [103] | ||
Methanol | Cold extraction for 72 h | n.a. | 0 | [103] | ||
Water | Cold extraction for 72 h | n.a. | 4 | [103] | ||
Chloroform | Soxhlet for 6 h | n.a. | 8 | [103] | ||
Methanol | Soxhlet for 6 h | n.a. | 8.67 | [103] | ||
Water | Maceration for 24 h at RT | 6.25 | 8 | [104] | ||
Ethanol | Maceration for 24 h at RT | 6.25 | 5 | [104] | ||
Ethyl acetate | Maceration for 72 h | 1.5 | 24 | [105] | ||
− | Cold press | n.a. | 0 | [106] | ||
1 M NaOH | Precipitation | n.a. | 13 | [107] | ||
Water | Maceration for 48 h | 20 | 17 | [109] | ||
Methanol | Maceration for 48 h at RT | 25 | 3.81 | [96] | ||
1 M NaOH | Precipitation | 1.05 | n.a. | [110] | ||
70% Ethanol | Orbital shaking for 24 h | >400 | 0 | [111] | ||
Methanol | Maceration for 24 h at RT | 250 | 10 | [112] | ||
− | P. florescens | Methanol | Maceration for 48 h at RT | 25 | 3.71 | [96] |
Methanol | Mechanical shaking for 24 h at RT | 32 | 12 | [9] | ||
− | P. oryzihabitans | Methanol | Maceration for 24 h at RT | 300 | 16 | [108] |
− | S. enterica | Methanol | Mechanical shaking for 24 h at RT | 32 | 9.3 | [9] |
Ethanol | Soxhlet extraction for 24 h | 250 | 11.67 | [112] | ||
− | S. typhimurium | Methanol | Mechanical shaking for 24 h at RT | 4 | 10.5 | [9] |
1 M NaOH | Precipitation | 0.85 | n.a. | [110] | ||
Methanol | Maceration for 48 h at RT | 25 | 6.53 | [96] | ||
− | S. dysenteriae | 1 M NaOH | Precipitation | 0.95 | n.a. | [110] |
− | S. sonnei | Methanol | Mechanical shaking for 24 h at RT | 2 | 18 | [9] |
+ | S. albus | Methanol | Mechanical shaking for 24 h at RT | 32 | 9 | [9] |
+ | S. aureus | Methanol | Maceration | 0.25 | 10 | [102] |
Ethyl acetate | Maceration for 72 h | 2.5 | 24 | [105] | ||
− | Cold press | n.a. | 0 | [106] | ||
Methanol | Maceration for 48 h at RT | 25 | 4.81 | [96] | ||
Methanol | Mechanical shaking for 24 h at RT | 16 | 14 | [9] | ||
Water | Maceration for 24 h at RT | 6.25 | 6 | [104] | ||
Ethanol | Maceration for 24 h at RT | 6.25 | 6 | [104] | ||
1 M NaOH | Precipitation | n.a. | 0 | [107] | ||
Water | Maceration for 48 h | 20 | 15 | [109] | ||
Methanol | Maceration for 24 h at RT | 125 | 11.33 | [112] | ||
+ | S. epidermidis | − | Cold press | n.a. | 0 | [106] |
+ | Staphylococcus spp. | Chloroform | Cold extraction for 72 h | n.a. | 0 | [103] |
Methanol | Cold extraction for 72 h | n.a. | 9.3 | [103] | ||
Water | Cold extraction for 72 h | n.a. | 0.5 | [103] | ||
Chloroform | Soxhlet for 6 h | n.a. | 5.33 | [103] | ||
Methanol | Soxhlet for 6 h | n.a. | 6 | [103] | ||
+ | Enterococcus faecalis | 70% Ethanol | Orbital shaking for 24 h | >400 | 0 | [111] |
+ | Streptococcus pyogenes | Methanol | Maceration for 7 d at RT | 0.25 | 20 | [102] |
+ | S. thermophilus | Methanol | Mechanical shaking for 24 h at RT | 4 | 8 | [9] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Athanasiadis, V.; Chatzimitakos, T.; Kalompatsios, D.; Kotsou, K.; Mantiniotou, M.; Bozinou, E.; Lalas, S.I. Recent Advances in the Antibacterial Activities of Citrullus lanatus (Watermelon) By-Products. Appl. Sci. 2023, 13, 11063. https://doi.org/10.3390/app131911063
Athanasiadis V, Chatzimitakos T, Kalompatsios D, Kotsou K, Mantiniotou M, Bozinou E, Lalas SI. Recent Advances in the Antibacterial Activities of Citrullus lanatus (Watermelon) By-Products. Applied Sciences. 2023; 13(19):11063. https://doi.org/10.3390/app131911063
Chicago/Turabian StyleAthanasiadis, Vassilis, Theodoros Chatzimitakos, Dimitrios Kalompatsios, Konstantina Kotsou, Martha Mantiniotou, Eleni Bozinou, and Stavros I. Lalas. 2023. "Recent Advances in the Antibacterial Activities of Citrullus lanatus (Watermelon) By-Products" Applied Sciences 13, no. 19: 11063. https://doi.org/10.3390/app131911063
APA StyleAthanasiadis, V., Chatzimitakos, T., Kalompatsios, D., Kotsou, K., Mantiniotou, M., Bozinou, E., & Lalas, S. I. (2023). Recent Advances in the Antibacterial Activities of Citrullus lanatus (Watermelon) By-Products. Applied Sciences, 13(19), 11063. https://doi.org/10.3390/app131911063