Influence of Addition of Dried Maitake and Enoki Mushrooms on Antioxidant, Potentially Anti-Inflammatory, and Anti-Cancer Properties of Enriched Pasta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Pasta
2.2. Preparation of Extracts
2.2.1. Ethanolic Extracts
2.2.2. PBS Extracts
2.2.3. In Vitro Digestion
2.3. Content of Bioactive Compounds
2.3.1. Determination of Phenolic Compounds
Determination of Phenolic Acid Content (PAC)
Determination of Total Flavonoid Content (TFC)
Determination of Total Phenolic Content (TPC)
LC-MS/MS-Based Qualitative and Quantitative Analysis of Phenolic Compounds
2.3.2. Determination of Glucans
2.4. Antioxidant Activities
2.4.1. Free Radical Scavenging Assays
2.4.2. Ferric Reducing Antioxidant Power
2.4.3. Chelating Power
2.5. Determination of Anti-Inflammatory Properties
2.5.1. Lipoxygenase (LOX) Inhibitory Activity
2.5.2. COX2 Inhibitory Activity
2.6. Determination of Anti-Cancer Properties
2.7. Statistical Analysis
3. Results
3.1. Content of Bioactive Compounds
3.2. Antioxidant Activity
3.3. Anti-Cancer Properties
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rajewska, J.; Bałasińska, B. Związki Biologicznie Aktywne Zawarte w Grzybach Jadalnych i Ich Korzystny Wpływ Na Zdrowie Biologically Active Compounds of Edible Mushrooms and Their Benefi Cial Impact on Health. Post. Hig. Med. Dosw. 2004, 58, 352–357. [Google Scholar]
- Blagodatski, A.; Yatsunskaya, M.; Mikhailova, V.; Tiasto, V.; Kagansky, A.; Katanaev, V.L. Medicinal Mushrooms as an Attractive New Source of Natural Compounds for Future Cancer Therapy. Oncotarget 2018, 9, 29259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giavasis, I. Bioactive Fungal Polysaccharides as Potential Functional Ingredients in Food and Nutraceuticals. Curr. Opin. Biotechnol. 2014, 26, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Perera, C.; Hemar, Y. Antitumor Activity of Mushroom Polysaccharides: A Review. Food Funct. 2012, 3, 1118–1130. [Google Scholar] [CrossRef]
- Patel, S.; Goyal, A. Recent Developments in Mushrooms as Anti-Cancer Therapeutics: A Review. 3 Biotech 2012, 2, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Sissons, M. Development of Novel Pasta Products with Evidence Based Impacts on Health—A Review. Foods 2022, 11, 123. [Google Scholar] [CrossRef]
- Reis, F.S.; Martins, A.; Vasconcelos, M.H.; Morales, P.; Ferreira, I.C.F.R. Functional Foods Based on Extracts or Compounds Derived from Mushrooms. Trends Food Sci. Technol. 2017, 66, 48–62. [Google Scholar] [CrossRef]
- Banerjee, D.K.; Das, A.K.; Banerjee, R.; Pateiro, M.; Nanda, P.K.; Gadekar, Y.P.; Biswas, S.; McClements, D.J.; Lorenzo, J.M. Application of Enoki Mushroom (Flammulina Velutipes) Stem Wastes as Functional Ingredients in Goat Meat Nuggets. Foods 2020, 9, 432. [Google Scholar] [CrossRef] [Green Version]
- Rangel-Vargas, E.; Rodriguez, J.A.; Domínguez, R.; Lorenzo, J.M.; Sosa, M.E.; Andrés, S.C.; Rosmini, M.; Pérez-Alvarez, J.A.; Teixeira, A.; Santos, E.M. Edible Mushrooms as a Natural Source of Food Ingredient/Additive Replacer. Foods 2021, 10, 2687. [Google Scholar] [CrossRef]
- Sławińska, A.; Sołowiej, B.G.; Radzki, W.; Fornal, E. Wheat Bread Supplemented with Agaricus Bisporus Powder: Effect on Bioactive Substances Content and Technological Quality. Foods 2022, 11, 3786. [Google Scholar] [CrossRef]
- Szydłowska-Tutaj, M.; Złotek, U.; Wójtowicz, A.; Combrzyński, M. The Effect of the Addition of Various Species of Mushrooms on the Physicochemical and Sensory Properties of Semolina Pasta. Food Funct. 2022, 13, 8425–8435. [Google Scholar] [CrossRef] [PubMed]
- Szydłowska-Tutaj, M.; Szymanowska, U.; Tutaj, K.; Domagała, D.; Złotek, U. The Addition of Reishi and Lion’s Mane Mushroom Powder to Pasta Influences the Content of Bioactive Compounds and the Antioxidant, Potential Anti-Inflammatory, and Anticancer Properties of Pasta. Antioxidants 2023, 12, 738. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A Standardised Static In Vitro Digestion Method Suitable for Food-an International Consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sęczyk, Ł.; Sugier, D.; Świeca, M.; Gawlik-Dziki, U. The Effect of In Vitro Digestion, Food Matrix, and Hydrothermal Treatment on the Potential Bioaccessibility of Selected Phenolic Compounds. Food Chem. 2021, 344, 128581. [Google Scholar] [CrossRef] [PubMed]
- Cessak, G. Polish Pharmacopoeia, 12th ed.; Polish Pharmaceutical Society: Warsaw, Poland, 2020. [Google Scholar]
- Lamaison, J.L.; Carnet, A. Teneurs En Principaux Flavonoids Des Fleurs de Crataegeus Monogyna Jacq et de Crataegeus Laevigata (Poiret D. C) En Fonction de La Vegetation. Plantes Med. Phyther. 1990, 25, 315–320. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Żuchowski, J.; Kapusta, I.; Szajwaj, B.; Jończyk, K.; Oleszek, W. Phenolic Acid Content of Organic and Conventionally Grown Winter Wheat. Cereal Res. Commun. 2009, 37, 189–197. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on Products of Browning Reaction. Antioxidative Activities of Products of Browning Reaction Prepared from Glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Harnedy, P.A.; Li, B.; Hou, H.; Zhang, Z.; Zhao, X.; FitzGerald, R.J. Food Protein-Derived Chelating Peptides: Biofunctional Ingredients for Dietary Mineral Bioavailability Enhancement. Trends Food Sci. Technol. 2014, 37, 92–105. [Google Scholar] [CrossRef]
- Szymanowska, U.; Karaś, M.; Złotek, U.; Jakubczyk, A. Effect of Fortification with Raspberry Juice on the Antioxidant and Potentially Anti-Inflammatory Activity of Wafers Subjected to In Vitro Digestion. Foods 2021, 10, 791. [Google Scholar] [CrossRef]
- McCleary, B.V.; Draga, A. Measurement of β-Glucan in Mushrooms and Mycelial Products. J. AOAC Int. 2016, 99, 364–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, Y.J.; Lee, S.C. Antioxidant Activity and β-Glucan Contents of Hydrothermal Extracts from Maitake (Grifola frondosa). Food Sci. Biotechnol. 2014, 23, 277–282. [Google Scholar] [CrossRef]
- Mongkontanawat, N.; Wongekalak, L. Effect of Blanching on Β-Glucan Content of Native Mushrooms in Thailand. J. Agric. Technol. 2015, 11, 2227–2237. [Google Scholar]
- Nordiana, A.B.; Wan Rosli, W.I.; Wan Amir Nizam, W.A. The Effect of Oyster Mushroom (Pleurotus sajor-caju) Flour Incorporation on the Physicochemical Quality and Sensorial Acceptability of Pasta. Int. Food Res. J. 2019, 26, 1249–1257. [Google Scholar]
- Wu, X.; Boulos, S.; Syryamina, V.; Nyström, L.; Yulikov, M. Interaction of Barley β-Glucan with Food Dye Molecules—An Insight from Pulse Dipolar EPR Spectroscopy. Carbohydr. Polym. 2023, 309, 120698. [Google Scholar] [CrossRef]
- Boachie, R.T.; Commandeur, M.M.B.; Abioye, R.O.; Capuano, E.; Oliviero, T.; Fogliano, V.; Udenigwe, C.C. β-Glucan Interaction with Lentil (Lens culinaris) and Yellow Pea (Pisum sativum) Proteins Suppresses TheirIn VitroDigestibility. J. Agric. Food Chem. 2021, 69, 10630–10637. [Google Scholar] [CrossRef]
- Zhang, Z.; Jin, Q.; Lv, G.; Fan, L.; Pan, H.; Fan, L. Comparative Study on Antioxidant Activity of Four Varieties of Flammulina Velutipes with Different Colour. Int. J. Food Sci. Technol. 2013, 48, 1057–1064. [Google Scholar] [CrossRef]
- Krsmanovi’, N.; Rašeta, M.; Miškovi, J.; Bekvalac, K.; Bogovac, M.; Karaman, M.; Isikhuemhen, O.S. Effects of UV Stress in Promoting Antioxidant Activities in Fungal Species Trametes versicolor (L.) Lloyd and Flammulina velutipes (Curtis) Singer. Antioxidants 2023, 12, 302. [Google Scholar] [CrossRef]
- Bach, F.; Zielinski, A.A.F.; Helm, C.V.; Maciel, G.M.; Pedro, A.C.; Stafussa, A.P.; Ávila, S.; Haminiuk, C.W.I. Bio Compounds of Edible Mushrooms: In Vitro Antioxidant and Antimicrobial Activities. Lwt 2019, 107, 214–220. [Google Scholar] [CrossRef]
- Kim, J.H.; Lim, S.R.; Jung, D.H.; Kim, E.J.; Sung, J.; Kim, S.C.; Choi, C.H.; Kang, J.W.; Lee, S.J. Grifola Frondosa Extract Containing Bioactive Components Blocks Skin Fibroblastic Inflammation and Cytotoxicity Caused by Endocrine Disrupting Chemical, Bisphenol A. Nutrients 2022, 14, 3812. [Google Scholar] [CrossRef]
- Lee, J.S.; Park, S.Y.; Thapa, D.; Choi, M.K.; Chung, I.M.; Park, Y.J.; Yong, C.S.; Choi, H.G.; Kim, J.A. Grifola Frondosa Water Extract Alleviates Intestinal Inflammation by Suppressing TNF-α Production and Its Signaling. Exp. Mol. Med. 2010, 42, 143–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, X.; Brennan, M.A.; Guan, W.; Zhang, J.; Yuan, L.; Brennan, C.S. Enhancing the Nutritional Properties of Bread by Incorporating Mushroom Bioactive Compounds: The Manipulation of the Pre-Dictive Glycaemic Response and the Phenolic Properties. Foods 2021, 10, 731. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Brennan, M.A.; Serventi, L.; Liu, J.; Guan, W.; Brennan, C.S. Addition of Mushroom Powder to Pasta Enhances the Antioxidant Content and Modulates the Predictive Glycaemic Response of Pasta. Food Chem. 2018, 264, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhao, H.; Brennan, M.; Guan, W.; Liu, J.; Wang, M.; Wen, X.; He, J.; Brennan, C. In Vitro Gastric Digestion Antioxidant and Cellular Radical Scavenging Activities of Wheat-Shiitake Noodles. Food Chem. 2020, 330, 127214. [Google Scholar] [CrossRef]
- Wang, L.; Brennan, M.A.; Guan, W.; Liu, J.; Zhao, H.; Brennan, C.S. Edible Mushrooms Dietary Fibre and Antioxidants: Effects on Glycaemic Load Manipulation and Their Correlations Pre-and Post-Simulated In Vitro Digestion. Food Chem. 2021, 351, 129320. [Google Scholar] [CrossRef]
- Dissanayake, A.A.; Zhang, C.R.; Mills, G.L.; Nair, M.G. Cultivated Maitake Mushroom Demonstrated Functional Food Quality as Determined by In Vitro Bioassays. J. Funct. Foods 2018, 44, 79–85. [Google Scholar] [CrossRef]
- Gunawardena, D.; Bennett, L.; Shanmugam, K.; King, K.; Williams, R.; Zabaras, D.; Head, R.; Ooi, L.; Gyengesi, E.; Münch, G. Anti-Inflammatory Effects of Five Commercially Available Mushroom Species Determined in Lipopolysaccharide and Interferon-γ Activated Murine Macrophages. Food Chem. 2014, 148, 92–96. [Google Scholar] [CrossRef]
- Habza-Kowalska, E.; Gawlik-Dziki, U.; Dziki, D. Mechanism of Action and Interactions between Thyroid Peroxidase and Lipoxygenase Inhibitors Derived from Plant Sources. Biomolecules 2019, 9, 663. [Google Scholar] [CrossRef] [Green Version]
- Habza-Kowalska, E.; Kaczor, A.A.; Bartuzi, D.; Piłat, J.; Gawlik-Dziki, U. Some Dietary Phenolic Compounds Can Activate Thyroid Peroxidase and Inhibit Lipoxygenase-Preliminary Study in the Model Systems. Int. J. Mol. Sci. 2021, 22, 5108. [Google Scholar] [CrossRef] [PubMed]
- Jakubczyk, A.; Świeca, M.; Gawlik-Dziki, U.; Dziki, D. Nutritional Potential and Inhibitory Activity of Bread Fortified with Green Coffee Beans against Enzymes Involved in Metabolic Syndrome Pathogenesis. Lwt 2018, 95, 78–84. [Google Scholar] [CrossRef]
- Świeca, M.; Sȩczyk, Ł.; Gawlik-Dziki, U.; Dziki, D. Bread Enriched with Quinoa Leaves—The Influence of Protein-Phenolics Interactions on the Nutritional and Antioxidant Quality. Food Chem. 2014, 162, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.Y.; Siu, K.C.; Geng, P. Bioactive Ingredients and Medicinal Values of Grifola Frondosa (Maitake). Foods 2021, 10, 95. [Google Scholar] [CrossRef]
- Ukaegbu, C.I.; Shah, S.R.; Hazrulrizawati, A.H.; Alara, O.R. Acetone Extract of Flammulina Velutipes Caps: A Promising Source of Antioxidant and Anticancer Agents. Beni.-Suef. Univ. J. Basic Appl. Sci. 2018, 7, 675–682. [Google Scholar] [CrossRef]
- Tang, C.; Hoo, P.C.X.; Tan, L.T.H.; Pusparajah, P.; Khan, T.M.; Lee, L.H.; Goh, B.H.; Chan, K.G. Golden Needle Mushroom: A Culinary Medicine with Evidenced-Based Biological Activities and Health Promoting Properties. Front. Pharmacol. 2016, 7, 474. [Google Scholar] [CrossRef]
- Sȩczyk, Ł.; Świeca, M.; Gawlik-Dziki, U.; Luty, M.; Czyz, J. Effect of Fortification with Parsley (Petroselinum crispum Mill.) Leaves on the Nutraceutical and Nutritional Quality of Wheat Pasta. Food Chem. 2016, 190, 419–428. [Google Scholar] [CrossRef]
Samples | PAC (µg Eq CAE/gDW) | TFC (mg Eq QE/g DW) | TPC (mg Eq GAE/g DW) | ||||||
---|---|---|---|---|---|---|---|---|---|
EtOH | PBS | GID | EtOH | PBS | GID | EtOH | PBS | GID | |
C | 0.17 ± 0.01 aA | 1.33 ± 0.02 bcAB | 3.11 ± 0.32 abB | 0.17 ± 0.12 aAB | 0.04 ± 0.04 aA | 4.45 ± 0.08 abcB | 0.60 ± 0.06 aAB | 0.55 ± 0.10 aA | 5.27 ± 0.30 aB |
E2.5 | 0.18 ± 0.01 aA | 1.28 ± 0.02 abcAB | 3.21 ± 0.08 abB | 0.45 ± 0.32 aAB | 0.16 ± 0.10 abA | 4.08 ± 0.27 abB | 0.58 ± 0.07 aA | 0.60 ± 0.02 abAB | 4.91 ± 0.43 aB |
E5 | 0.18 ± 0.01 aA | 1.31 ± 0.04 abcAB | 3.26 ± 0.07 abB | 0.32 ± 0.23 aAB | 0.12 ± 0.07 abA | 4.38 ± 0.34 abcB | 0.57 ± 0.04 aA | 0.65 ± 0.03 abcAB | 5.39 ± 0.22 aB |
E7.5 | 0.18 ± 0.02 aA | 1.34 ± 0.04 cAB | 2.86 ± 0.15 aB | 0.33 ± 0.06 aAB | 0.32 ± 0.23 abA | 3.85 ± 0.33 aB | 1.10 ± 0.23 abAB | 0.78 ± 0.08 deA | 4.74 ± 0.39 aB |
E10 | 0.17 ± 0.01 aA | 1.31 ± 0.02 abcAB | 3.05 ± 0.12 abB | 0.34 ± 0.09 a | 0.32 ± 0.02 b | 4.39 ± 0.31 abc | 1.15 ± 0.16 abAB | 0.91 ± 0.09 eA | 4.74 ± 0.36 aB |
M2.5 | 0.17 ± 0.01 aA | 1.25 ± 0.02 aAB | 3.09 ± 0.19 abB | 0.23 ± 0.14 aAB | 0.06 ± 0.06 aA | 4.87 ± 0.37 bcB | 1.66 ± 0.08 bAB | 0.64 ± 0.03 abcA | 4.73 ± 0.44 aB |
M5 | 0.17 ± 0.01 aA | 1.27 ± 0.03 abAB | 3.17 ± 0.08 abB | 0.22 ± 0.15 aAB | 0.12 ± 0.09 abA | 5.09 ± 0.71 cB | 1.47 ± 0.61 abAB | 0.62 ± 0.02 abcA | 4.64 ± 0.55 aB |
M7.5 | 0.18 ± 0.01 aA | 1.27 ± 0.03 abAB | 3.51 ± 0.11 bB | 0.37 ± 0.09 aAB | 0.19 ± 0.04 abA | 4.52 ± 0.31 abcB | 0.84 ± 0.31 abA | 0.84 ± 0.10 deAB | 4.93 ± 0.37 aB |
M10 | 0.18 ± 0.01 aA | 1.31 ± 0.03 abcAB | 3.46 ± 0.09 bB | 0.32 ± 0.05 aAB | 0.18 ± 0.10 abA | 4.13 ± 0.50 abB | 0.82 ± 0.24 abAB | 0.74 ± 0.06 bcdA | 4.53 ± 0.34 aB |
p-value | 0.1954 | 0.0005 | 0.0028 | 0.4779 | 0.0042 | 0.0036 | 0.0009 | 0.00000014 | 0.059 |
A | |||||||||||
Polyphenolic compound (×103 ng/g DW) | Name of polyphenolic compound | C | E2.5 | E5 | E7.5 | E10 | M2.5 | M5 | M7.5 | M10 | p-value |
3,4-Dihydroxybenzoic acid | <0.5 | 1.71 ± 0.24 aA | 1.99 ± 0.43 aA | 1.87 ± 0.13 aA | 2.13 ± 0.52 aA | 1.68 ± 0.29 aB | 1.87 ± 0.25 aA | 1.43 ± 0.25 aB | 1.57 ± 0.35 aB | 0.373 | |
Caffeic acid | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 0.52 ± 0.13 a | 0.61 ± 0.09 aA | 0.80 ± 0.08 aA | 0.83 ± 0.14 aA | 0.957 | |
Syringic acid | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 0.93 ± 0.11 aB | 1.24 ± 0.11 abB | 1.46 ± 0.13 abB | 1.70 ± 0.24 bB | 0.0241 | |
Daidzin | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | - | |
Rutin | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | - | |
Ellagic acid | n.d. | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 1.03 ± 0.43 a | 0.94 ± 0.09 a | 1.22 ± 0.09 aA | 0.2851 | |
p-Coumaric acid | 1.67 ± 0.03 aB | 3.31 ± 0.50 aB | 3.23 ± 0.46 aB | 3.23 ± 0.42 aB | 3.31 ± 0.44 aB | 2.99 ± 0.26 aB | 3.08 ± 0.29 aB | 2.98 ± 0.29 aB | 2.98 ± 0.52 aB | 0.2393 | |
Salicylic acid | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | - | |
Vanillin | 0.56 ± 0.11 aB | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 0.54 ± 0.04 aB | 0.58 ± 0.02 aB | 0.67 ± 0.09 aA | 0.3385 | |
Ferulic acid | 154.13 ± 13.21 aB | 209.93 ± 38.75 aB | 204.14 ± 34.11 a | 205.99 ± 26.59 aB | 213.88 ± 26.67 aB | 192.70 ± 22.67 aB | 196.09 ± 17.85 aA | 197.38 ± 16.76 aB | 182.34 ± 30.57 aB | 0.3091 | |
Sinapic acid | 27.59 ± 1.24 aB | 31.80 ± 5.73 aB | 32.38 ± 4.46 aB | 31.98 ± 5.18 aB | 33.23 ± 3.66 aB | 28.53 ± 3.55 aB | 29.00 ± 2.15 aAB | 29.06 ± 1.54 aB | 26.50 ± 3.50 aB | 0.5544 | |
Rosmarinic acid | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | - | |
t-Cinnamic acid | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | - | |
Genistein | n.d. | n.d. | n.d. | n.d. | n.d. | <0.5 | <0.5 | <0.5 | <0.5 | - | |
Naringenin | n.d. | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | - | |
B (Ethanolic extracts) | |||||||||||
Polyphenolic compound (ng/g) DW) | Name of polyphenolic compound | Cs | E2.5 | E5 | E7.5 | E10 | M2.5 | M5 | M7.5 | M10 | p-value |
3,4-Dihydroxybenzoic acid | 13.73 ± 0.12 aA | 15.77 ± 1.46 aA | 20.33 ± 2.22 abA | 21.27 ± 2.71 abA | 41.13 ± 3.00 abA | 34.83 ± 1.65 abAB | 83.87 ± 4.03 abA | 84.80 ± 17.93 abA | 148.37 ± 3.67 bAB | 0.0014 | |
Caffeic acid | <1 | <1 | <1 | <1 | 17.60 ± 1.51 a | <1 | 22.87 ± 0.78 abA | 21.13 ± 4.20 abA | 39.27 ± 3.45 bA | 0.0268 | |
Syringic acid | 153.03 ± 2.37 abA | 84.00 ± 4.46 abA | 71.30 ± 0.66 abA | 67.83 ± 3.76 aA | 63.80 ± 3.82 aA | 196.87 ± 6.01 abAB | 305.83 ± 10.15 abAB | 297.90 ± 60.34 abAB | 426.10 ± 6.32 bAB | 0.0013 | |
Daidzin | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | - | |
Rutin | <1 | 15.67 ± 3.76 ab | 9.47 ± 1.12 a | 12.50 ± 2.34 ab | 65.20 ± 9.64 ab | 25.10 ± 1.73 ab | 42.20 ± 2.30 ab | 41.80 ± 12.17 abA | 74.10 ± 1.20 bA | 0.0024 | |
Ellagic acid | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 70.87 ± 6.06 a | 121.90 ± 9.03 bA | 0.0022 | |
p-Coumaric acid | 314.90 ± 6.06 abA | 317.20 ± 4.83 abAB | 271.50 ± 4.12 abAB | 205.47 ± 8. 15 aAB | 208.17 ± 10.45 abAB | 361.37 ± 7.06 bAB | 335.87 ± 11.59 abAB | 220.93 ± 41.31 abAB | 239.80 ± 10.21 abAB | 0.0023 | |
Salicylic acid | <1 | <1 | <1 | <1 | <1 | 12.13 ± 2.01 a | 12.37 ± 2.85 a | 13.03 ± 2.48 a | 16.03 ± 1.56 a | 0.2228 | |
Vanillin | 112.17 ± 13.05 abAB | 123.37 ± 7.45 abA | 100.73 ± 5.25 abA | 98.50 ± 7.77 aA | 126.70 ± 10.64 abA | 108.53 ± 1.62 abA | 161.33 ± 12.29 abAB | 145.23 ± 9.61 abAB | 166.43 ± 8.81 bA | 0.0032 | |
Ferulic acid | 1587.57 ± 85.27 abAB | 1778.40 ± 90.51 aAB | 1479.43 ± 32.90 abA | 1311.27 ± 56.67 abAB | 1141.60 ± 36.97 abAB | 1633.33 ± 34.07 abAB | 1504.43 ± 51.32 abA | 1014.70 ± 194.25 bAB | 1054.60 ± 15.38 bAB | 0.002 | |
Sinapic acid | 177.77 ± 4.56 abAB | 293.23 ± 8.04 abAB | 279.07 ± 5.52 abAB | 279.27 ± 10.49 abAB | 334.27 ± 29.03 aAB | 130.80 ± 12.47 bAB | 300.47 ± 16.51 abAB | 212.70 ± 34.09 abAB | 270.97 ± 16.13 abAB | 0.0025 | |
Rosmarinic acid | n.d. | n.d. | n.d. | n.d. | 17.63 ± 0.61 | n.d. | n.d. | n.d. | n.d. | - | |
t-Cinnamic acid | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | - | |
Genistein | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | - | |
Naringenin | n.d. | n.d. | n.d. | n.d. | n.d. | 97.47 ± 2.14 aA | 200.17 ± 6.73 abA | 242.47 ± 47.13 abA | 376.00 ± 9.28 bA | 0.0156 | |
C (PBS extracts) | |||||||||||
Polyphenolic compound (ng/g DW) | Name of polyphenolic compound | C | E2.5 | E5 | E7.5 | E10 | M2.5 | M5 | M7.5 | M10 | p-value |
3,4-Dihydroxybenzoic acid | 26.33 ± 5.08 abA | n.d. | n.d. | n.d. | n.d. | 12.50 ± 0.62 aA | 83.93 ± 6.87 abA | 125.70 ± 3.12 abAB | 181.50 ± 13.25 bAB | 0.009 | |
Caffeic acid | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | - | |
Syringic acid | 140.13 ± 16.86 abA | 93.80 ± 24.98 abA | 64.17 ± 16.68 aA | 69.63 ± 0.40 aA | 106.40 ± 25.81 abB | 248.50 ± 22.70 abAB | 304.10 ± 6.39 abAB | 428.17 ± 19.17 abAB | 533.13 ± 52.14 bAB | 0.002 | |
Daidzin | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | - | |
Rutin | <1 | n.d. | n.d. | n.d. | n.d. | n.d. | <1 | 16.00 ± 2.86 aA | 24.03 ± 3.84 b | 0.0483 | |
Ellagic acid | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | - | |
p-Coumaric acid | 209.10 ± 16.45 aAB | 441.07 ± 86.44 aAB | 402.27 ± 64.14 aAB | 301.53 ± 25.52 aAB | 247.30 ± 47.43 aAB | 330.90 ± 28.92 aAB | 238.20 ± 3.58 aAB | 220.23 ± 3.75 aAB | 208.27 ± 13.30 aAB | 0.0613 | |
Salicylic acid | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | - | |
Vanillin | 69.90 ± 11.78 aA | 256.20 ± 40.81 abB | 306.13 ± 48.33 bB | 255.80 ± 16.97 abB | 164.13 ± 32.31 abAB | 107.50 ± 9.82 abA | 113.67 ± 9.17 abA | 126.80 ± 18.14 bAB | 162.17 ± 39.25 abA | 0.0024 | |
Ferulic acid | 1247.77 ± 150.46 abAB | 1273.23 ± 24.31 abAB | 1241.20 ± 76.04 abA | 754.00 ± 84.10 abA | 1470.97 ± 386.88 aAB | 1141.80 ± 42.40 abA | 1129.40 ± 60.79 abA | 634.60 ± 29.44 bA | 716.30 ± 51.60 abAB | 0.0045 | |
Sinapic acid | 48.57 ± 10.33 aA | n.d. | n.d. | n.d. | n.d. | n.d. | 27.87 ± 3.76 aA | n.d. | 28.83 ± 9.33 aA | 0.065 | |
Rosmarinic acid | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | - | |
t-Cinnamic acid | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | - | |
Genistein | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | - | |
Naringenin | n.d. | n.d. | n.d. | n.d. | n.d. | 92.90 ± 6.97 aA | 132.70 ± 2.00 abAB | 237.30 ± 9.68 abA | 312.40 ± 27.29 bAB | 0.0156 | |
D (GID samples) | |||||||||||
Polyphenolic compound (ng/g DW) | Name of polyphenolic compound | C | E2.5 | E5 | E7.5 | E10 | M2.5 | M5 | M7.5 | M10 | p-value |
3,4-Dihydroxybenzoic acid | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 16.23 ± 7.88 A | - | |
Caffeic acid | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | - | |
Syringic acid | 124.85 ± 0.52 aA | 73.28 ± 5.23 aA | 94.29 ± 78.91 aA | 81.72 ± 7.17 aA | 73.23 ± 3. 11 aAB | 157.58 ± 8.57 aA | 210.35 ± 7.96 aA | 176.31 ± 68.65 aA | 271.06 ± 101.67 aA | 0.0613 | |
Daidzin | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | - | |
Rutin | <1 | n.d. | n.d. | <1 | <1 | <1 | <1 | <1 | <1 | - | |
Ellagic acid | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | - | |
p-Coumaric acid | 143.08 ± 2.19 abAB | 132.63 ± 5.99 abA | 172.32 ± 5.08 abA | 136.77 ± 7.56 abA | 109.80 ± 5.31 aA | 203.23 ± 7.35 bA | 182.78 ± 5.52 abA | 113.28 ± 43.78 abA | 150.40 ± 58.90 abA | 0.0172 | |
Salicylic acid | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | - | |
Vanillin | 179.85 ± 7.09 abAB | 203.84 ± 49.72 abAB | 231.01 ± 42.13 abAB | 218.79 ± 17.14 abAB | 194.09 ± 22.38 abB | 220.15 ± 11.77 abA | 233.59 ± 5.30 abAB | 123.28 ± 3.66 aA | 261.36 ± 17.57 bA | 0.0186 | |
Ferulic acid | 936.87 ± 43.13 abA | 1008.18 ± 61.96 abA | 1263.84 ± 102.86 aA | 1095.45 ± 36.04 abAB | 796.62 ± 39.24 abA | 1282.98 ± 29.02 aAB | 1087.47 ± 40.70 abA | 972.58 ± 28.42 abAB | 445.05 ± 47.74 bA | 0.0019 | |
Sinapic acid | 68.28 ± 0.09 abAB | 78.03 ± 5.10 abA | 129.39 ± 10.87 aA | 79.29 ± 3.92 abA | 116.31 ± 3.95 abA | 50.71 ± 4.67 bA | 86.31 ± 7. 12 abAB | 51.46 ± 21.41 abA | 75.15 ± 25.46 abAB | 0.0068 | |
Rosmarinic acid | <1 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | - | |
t-Cinnamic acid | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | - | |
Genistein | <1 | 154.70 ± 8.52 a | 219.39 ± 112.63 a | 193.43 ± 4.52 a | 174.34 ± 9.37 a | 184.29 ± 10.35 a | 170.51 ± 7.79 a | 151.57 ± 36.14 a | 151.31 ± 51.32 a | 0.2215 | |
Naringenin | n.d. | n.d. | n.d. | n.d. | n.d. | 36.21 ± 1.84 aA | 62.68 ± 0.49 abB | 81.01 ± 27.38 abA | 122.98 ± 31.83 bB | 0.0373 |
Sample | Total Glucan (g/100 g) | α-Glucan (g/100 g) | β-Glucan (g/100 g) |
---|---|---|---|
C | 0.26 ± 0.02 a | 0.05 ± 0.01 a | 0.21 ± 0.02 ac |
E2.5 | 0.28 ± 0.01 a | 0.09 ± 0.01 e | 0.18 ± 0.01 ab |
E5 | 0.25 ± 0.01 a | 0.07 ± 0.01 d | 0.18 ± 0.01 ab |
E7.5 | 0.24 ± 0.01 a | 0.07 ± 0.01 cd | 0.16 ± 0.02 b |
E10 | 0.25 ± 0.01 a | 0.06 ± 0.01 bcd | 0.19 ± 0.01 abc |
M2.5 | 0.25 ± 0.01 a | 0.06 ± 0.01 abc | 0.19 ± 0.01 abc |
M5 | 0.26 ± 0.02 a | 0.06 ± 0.01 abc | 0.20 ± 0.02 abc |
M7.5 | 0.28 ± 0.01 a | 0.06 ± 0.01 ab | 0.22 ± 0.01 c |
M10 | 0.26 ± 0.02 a | 0.05 ± 0.01 ab | 0.21 ± 0.02 ac |
p-value | 0.0516 | 0.000025 | 0.000312 |
Samples | ABTS (mg TE/gDW) | DPPH (mg TE/gDW) | CHP (mg EDTA/gDW) | RP [mgTE/gDW] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ETOH | PBS | GID | ETOH | PBS | GID | ETOH | PBS | GID | ETOH | PBS | GID | |
C | 0.68 ± 0.04 aA | 1.15 ± 0.11 aAB | 12.47 ± 1.34 aB | n.a. | 0.25 ± 0.01 aA | 4.05 ± 0.08 aB | 0.26 ± 0.16 aA | n.a. | 217.42 ± 8.46 bB | 0.20 ± 0.02 cAB | 0.20 ± 0.08 aA | 1.13 ± 0.06 bB |
E2.5 | 0.86 ± 0.18 aA | 0.88 ± 0.37 abAB | 12.10 ± 0.82 aB | 0.04 ± 0.03 aA | 0.29 ± 0.01 aAB | 3.49 ± 0.29 aB | 0.44 ± 0.10 abA | n.a. | 177.22 ± 15.96 aB | 0.27 ± 0.04 acAB | 0.19 ± 0.08 aA | 1.13 ± 0.05 bB |
E5 | 0.84 ± 0.15 aA | 1.04 ± 0.05 abAB | 13.14 ± 0.40 aB | n.a | 0.26 ± 0.19 a | 2.65 ± 1.59 a | 1.15 ± 0.20 abA | n.a. | 184.82 ± 4.33 aB | 0.36 ± 0.08 abAB | 0.20 ± 0.13 aA | 1.18 ± 0.02 bdB |
E7.5 | 0.87 ± 0.03 aA | 0.83 ± 0.52 abAB | 13.04 ± 0.15 aB | 0.05 ± 0.01 aA | 0.22 ± 0.01 aAB | 3.67 ± 0.30 aB | 2.08 ± 1.01 abA | n.a. | 178.13 ± 3.41 aB | 0.41 ± 0.06 bdeAB | 0.37 ± 0.05 aA | 1.34 ± 0.06 cB |
E10 | 0.88 ± 0.06 aAB | 0.82 ± 0.05 bA | 12.66 ± 0.27 aB | 0.08 ± 0.01 aA | 0.14 ± 0.08 aAB | 3.81 ± 0.27 aB | 3.54 ± 0.94 bA | n.a. | 268.82 ± 14.69 cB | 0.49 ± 0.04 deAB | 0.43 ± 0.23 aA | 1.29 ± 0.02 cdB |
M2.5 | 0.70 ± 0.05 aA | 0.89 ± 0.02 abAB | 11.36 ± 1.63 aB | n.a. | 0.22 ± 0.05 aA | 3.66 ± 0.34 aB | 0.88 ± 0.79 abA | n.a. | 245.25 ± 6.19 bB | 0.27 ± 0.03 acAB | 0.21 ± 0.10 aA | 0.98 ± 0.03 aB |
M5 | 0.82 ± 0.06 aA | 0.96 ± 0.02 abAB | 12.60 ± 0.16 aB | n.a. | 0.17 ± 0.06 aA | 3.86 ± 0.09 aB | 1.23 ± 0.86 abA | n.a. | 227.60 ± 12.19 bB | 0.35 ± 0.03 abAB | 0.16 ± 0.04 aA | 1.13 ± 0.06 bB |
M7.5 | 0.90 ± 0.14 aA | 0.98 ± 0.12 abAB | 14.15 ± 1.54 aB | 0.43 ± 0.15 a | 0.34 ± 0.27 a | 3.74 ± 0.30 a | 0.70 ± 0.58 abA | n.a. | 302.30 ± 11.82 dB | 0.39 ± 0.07 abdAB | 0.19 ± 0.08 aA | 1.14 ± 0.04 bB |
M10 | 0.88 ± 0.06 aA | 0.98 ± 0.12 abAB | 12.99 ± 0.63 aB | 0.31 ± 0.23 aA | 0.33 ± 0.09 aAB | 4.06 ± 0.57 aB | 0.85 ± 0.76 abA | n.a. | 282.79 ± 10.73 cdB | 0.53 ± 0.08 eAB | 0.50 ± 0.22 aA | 1.38 ± 0.07 cB |
p-value | 0.2889 | 0.0342 | 0.1332 | 0.0944 | 0.3874 | 0.1678 | 0.0052 | - | 0.0001 | 0.000000032 | 0.3349 | 0.0000000001 |
Samples | LOXI (EC50 mg/mL) | COX2I (EC50 mg/mL) | ||||
---|---|---|---|---|---|---|
ETOH | PBS | GID | ETOH | PBS | GID | |
C | 0.523 ± 0.127 a | n.a. | 0.104 ± 0.003 a | 0.245 ± 0.055 a | n.a. | 0.221 ± 0.027 ab |
E2.5 | 0.169 ± 0.026 bAB | 0.424 ± 0.108 aA | 0.103 ± 0.006 abB | 0.279 ± 0.058 a | n.a. | 0.180 ± 0.015 a |
E5 | 0.166 ± 0.027 bAB | 0.583 ± 0.380 aA | 0.099 ± 0.003 abcB | 0.221 ± 0.020 a | n.a. | 0.201 ± 0.009 ab |
E7.5 | 0.238 ± 0.023 abAB | 0.830 ± 0.273 aA | 0.095 ± 0.001 bcB | 0.192 ± 0.009 a | n.a. | 0.246 ± 0.010 b |
E10 | 0.244 ± 0.039 ab | 0.371 ± 0.154 a | 0.093 ± 0.001 c | 0.210 ± 0.010 a | n.a. | 0.209 ± 0.023 ab |
M2.5 | 0.235 ± 0.025 abAB | 0.507 ± 0.065 aA | 0.095 ± 0.002 bcB | 0.255 ± 0.027 a | n.a. | 0.215 ± 0.021 ab |
M5 | 0.236 ± 0.015 abAB | 0.498 ± 0.211 aA | 0.096 ± 0.003 abcB | 0.276 ± 0.066 a | n.a. | 0.204 ± 0.017 ab |
M7.5 | 0.212 ± 0.019 abAB | 0.491 ± 0.011 aA | 0.096. ± 0.003 abcB | 0.339 ± 0.174 a | n.a. | 0.232 ± 0.022 b |
M10 | 0.236 ± 0.011 abAB | 0.329 ± 0.083 aA | 0.095 ± 0.001 bcB | 0.201 ± 0.031 a | n.a. | 0.225 ± 0.007 ab |
p-value | 0.0016 | 0.1392 | 0.0035 | 0.0919 | - | 0.0147 |
Samples | Anti-Cancer Properties EC50 mg/mL | |
---|---|---|
GD (Against AGS) | GID (Against HT29) | |
C | 0.18 ± 0.01 ab | 0.07 ± 0.01 a |
E2.5 | 0.24 ± 0.04 c | 0.07 ± 0.01 a |
E5 | 0.19 ± 0.02 abc | 0.07 ± 0.01 a |
E7.5 | 0.20 ± 0.01 abc | 0.08 ± 0.01 a |
E10 | 0.21 ± 0.01 bc | 0.08 ± 0.01 a |
M2.5 | 0.16 ± 0.02 a | 0.08 ± 0.01 a |
M5 | 0.20 ± 0.01 abc | 0.07 ± 0.01 a |
M7.5 | 0.18 ± 0.01 ab | 0.07 ± 0.01 a |
M10 | 0.19 ± 0.02 ab | 0.07 ± 0.01 a |
p-value | 0.0031 | 0.6849 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szydłowska-Tutaj, M.; Szymanowska, U.; Tutaj, K.; Domagała, D.; Złotek, U. Influence of Addition of Dried Maitake and Enoki Mushrooms on Antioxidant, Potentially Anti-Inflammatory, and Anti-Cancer Properties of Enriched Pasta. Appl. Sci. 2023, 13, 8183. https://doi.org/10.3390/app13148183
Szydłowska-Tutaj M, Szymanowska U, Tutaj K, Domagała D, Złotek U. Influence of Addition of Dried Maitake and Enoki Mushrooms on Antioxidant, Potentially Anti-Inflammatory, and Anti-Cancer Properties of Enriched Pasta. Applied Sciences. 2023; 13(14):8183. https://doi.org/10.3390/app13148183
Chicago/Turabian StyleSzydłowska-Tutaj, Magdalena, Urszula Szymanowska, Krzysztof Tutaj, Dorota Domagała, and Urszula Złotek. 2023. "Influence of Addition of Dried Maitake and Enoki Mushrooms on Antioxidant, Potentially Anti-Inflammatory, and Anti-Cancer Properties of Enriched Pasta" Applied Sciences 13, no. 14: 8183. https://doi.org/10.3390/app13148183
APA StyleSzydłowska-Tutaj, M., Szymanowska, U., Tutaj, K., Domagała, D., & Złotek, U. (2023). Influence of Addition of Dried Maitake and Enoki Mushrooms on Antioxidant, Potentially Anti-Inflammatory, and Anti-Cancer Properties of Enriched Pasta. Applied Sciences, 13(14), 8183. https://doi.org/10.3390/app13148183