Edible Packaging: A Technological Update for the Sustainable Future of the Food Industry
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Edible Packaging
3.2. History of Edible Packaging
3.3. Production of Edible Films and Coatings
3.3.1. Wet Process
3.3.2. Dry Process
3.3.3. Production of Edible Coatings
3.4. Barrier Functions of Edible Packaging Materials
3.5. Categories of Edible Packaging Materials
3.5.1. Polysaccharide-Based Packaging Materials
Cellulose Films
Chitosan Films
Starch Films
Alginate Films
Category | Material | Food Product | Method | Properties | References |
---|---|---|---|---|---|
Polysaccharides | Cactus mucilage-agar blend | Low-moisture foods | Casting | Good water barrier properties and antioxidant activity. | [35] |
Tapioca starch | Fresh cut cauliflower | Dipping | Reduced the weight loss of the product. | [40] | |
Chitosan | Sliced mango fruit | Dipping | Effectively improves the quality attributes and extends shelf life. | [52] | |
Chitosan-beeswax blend | Fresh strawberries | Casting | Prolongs shelf life and decreases the senescence and weight loss of fruit. | [53] | |
Chitosan-poly-vinyl-pyrrolidine combined with salicylic acid blend | Guava | Dipping | Reduce browning on the fruit skin. | [54] | |
Mango kernel starch | Tomato | Dipping | Delayed ripening processes extend shelf life. | [55] | |
Sodium alginate-agar blend | Slices of meat and cheese | Casting | Extended shelf life from 3 to 5 months. | [27] | |
Sodium alginate-lemongrass essential oil blend | - | Casting | The sodium alginate/LEO films exhibited the highest inhibition against E. coli, B. subtilis, S. aureus, and P. aeruginosa, and the shelf life of the food can be enhanced with the films incorporated with LEO. | [51] | |
Pectin | Lime fruit | Dipping | Longer shelf life and improved product safety. | [56] | |
Plum fruit | Dipping | Increased antioxidative properties and shelf life and quality of plum fruit. | [57] | ||
Avocado fruit | Dipping | Extension of shelf life over a month at 10 °C, delaying changes in the texture and color of fruit. | [58] | ||
Proteins | Whey protein isolates-nano-emulsions of Grammosciadium ptrocarpum Bioss. essential oil blend | Meat products, nuts, fruit and vegetables | Casting | Improved mechanical properties and lower water vapor permeability promote the antimicrobial activity of films. | [59] |
Whey protein concentrate | Cheddar cheese | Casting | Possibly extending the shelf life of milk products. | [60] | |
Gelatin-hitosan-Ferulago Angulate essential oil blend | Turkey meat | Casting | Inhibits microbial growth and increases the shelf life of Turkey meat. | [61] | |
Whey protein isolate-oregano oil blend | Fresh beef cuts | Casting | Increases the shelf life and reduces color change. | [62] | |
Ultra-sound treated whey protein blend | Frozen Atlantic salmon | Dipping | Delayed lipid oxidation. | [63] | |
Gelatin-starch-ε-Polylysine hydrochloride blend | Fresh bread | Extrusion blow | Increased film flexibility, antimicrobial effect, and shelf life. | [64] | |
Lipids | Alginate-lipid blend | Ready-to-eat foods | Casting | Exhibits strong antioxidant and antiviral activities. | [65] |
Chitosan-beeswax-pollen grain blend | Le Conte pear fruits | Casting | Decrease in weight loss, maintain quality. | [66] | |
Cassava starch-beeswax-ethanolic propolis extract blend | Minimally processed foods | Casting | Decrease in moisture content and WVP; antifungal activity. | [67] |
3.5.2. Protein-Based Packaging Materials
Milk Protein Films
Collagen Films
Gelatin Films
Zein Films
3.5.3. Lipid-Based Packaging Materials
3.5.4. Composite Films
3.6. Additives in Edible Films
3.6.1. Plasticizers
3.6.2. Emulsifiers
3.6.3. Antimicrobials
3.6.4. Plant Extracts
3.6.5. Antioxidants
3.7. Regulations
3.8. Market Examples
3.9. Advantages and Disadvantages of Edible Packaging
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suvarna, V.; Nair, A.; Mallya, R.; Khan, T.; Omri, A. Antimicrobial Nanomaterials for Food Packaging. Antibiotics 2022, 11, 729. [Google Scholar] [CrossRef]
- Chawla, R.; Sivakumar, S.; Kaur, H. Antimicrobial Edible Films in Food Packaging: Current Scenario and Recent Nanotechnological Advancements—A Review. Carbohydr. Polym. Technol. Appl. 2021, 2, 100024. [Google Scholar] [CrossRef]
- Trajkovska Petkoska, A.; Daniloski, D.; D’Cunha, N.M.; Naumovski, N.; Broach, A.T. Edible Packaging: Sustainable Solutions and Novel Trends in Food Packaging. Food Res. Int. 2021, 140, 109981. [Google Scholar] [CrossRef]
- Mahcene, Z.; Hasni, S.; Goudjil, M.B.; Khelil, A. Food Edible Coating Systems: A Review. Eur. Food Sci. Eng. 2021, 2, 26–33. [Google Scholar]
- Zhao, Y.; Li, B.; Li, C.; Xu, Y.; Luo, Y.; Liang, D.; Huang, C. Comprehensive Review of Polysaccharide-Based Materials in Edible Packaging: A Sustainable Approach. Foods 2021, 10, 1845. [Google Scholar] [CrossRef]
- Barbosa, C.H.; Andrade, M.A.; Vilarinho, F.; Fernando, A.L.; Silva, A.S. Active Edible Packaging. Encyclopedia 2021, 1, 360–370. [Google Scholar] [CrossRef]
- Yin, W.; Qiu, C.; Ji, H.; Li, X.; Sang, S.; McClements, D.J.; Jiao, A.; Wang, J.; Jin, Z. Recent Advances in Biomolecule-Based Films and Coatings for Active and Smart Food Packaging Applications. Food Biosci. 2023, 52, 102378. [Google Scholar] [CrossRef]
- Ribeiro, A.M.; Estevinho, B.N.; Rocha, F. Preparation and Incorporation of Functional Ingredients in Edible Films and Coatings. Food Bioprocess Technol. 2021, 14, 209–231. [Google Scholar] [CrossRef]
- Shahidi, F.; Hossain, A. Preservation of Aquatic Food Using Edible Films and Coatings Containing Essential Oils: A Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 66–105. [Google Scholar] [CrossRef]
- Mohanty, B.; Hauzoukim; Swain, S. Functionality of Protein-Based Edible Coating—Review. J. Entomol. Zool. Stud. 2020, 8, 1432–1440. [Google Scholar]
- Moura-Alves, M.; Esteves, A.; Ciríaco, M.; Silva, J.A.; Saraiva, C. Antimicrobial and Antioxidant Edible Films and Coatings in the Shelf-Life Improvement of Chicken Meat. Foods 2023, 12, 2308. [Google Scholar] [CrossRef]
- García-Anaya, M.C.; Sepulveda, D.R.; Zamudio-Flores, P.B.; Acosta-Muñiz, C.H. Bacteriophages as Additives in Edible Films and Coatings. Trends Food Sci. Technol. 2023, 132, 150–161. [Google Scholar] [CrossRef]
- Suhag, R.; Kumar, N.; Petkoska, A.T.; Upadhyay, A. Film Formation and Deposition Methods of Edible Coating on Food Products: A Review. Food Res. Int. 2020, 136, 109582. [Google Scholar] [CrossRef]
- Ajesh Kumar, V.; Hasan, M.; Mangaraj, S.; Pravitha, M.; Verma, D.K.; Srivastav, P.P. Trends in Edible Packaging Films and Its Prospective Future in Food: A Review. Appl. Food Res. 2022, 2, 100118. [Google Scholar] [CrossRef]
- Punia Bangar, S.; Chaudhary, V.; Thakur, N.; Kajla, P.; Kumar, M.; Trif, M. Natural Antimicrobials as Additives for Edible Food Packaging Applications: A Review. Foods 2021, 10, 2282. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chen, W.; Zhu, W.; McClements, D.; Xuebo, L.; Liu, F. A Review of Multilayer and Composite Films and Coatings for Active Biodegradable Packaging. npj Sci. Food 2022, 6, 18. [Google Scholar] [CrossRef]
- Ceballos, R.L.; Ochoa-Yepes, O.; Goyanes, S.; Bernal, C.; Famá, L. Effect of Yerba Mate Extract on the Performance of Starch Films Obtained by Extrusion and Compression Molding as Active and Smart Packaging. Carbohydr. Polym. 2020, 244, 116495. [Google Scholar] [CrossRef] [PubMed]
- Lisitsyn, A.; Semenova, A.; Nasonova, V.; Polishchuk, E.; Revutskaya, N.; Kozyrev, I.; Kotenkova, E. Approaches in Animal Proteins and Natural Polysaccharides Application for Food Packaging: Edible Film Production and Quality Estimation. Polymers 2021, 13, 1592. [Google Scholar] [CrossRef] [PubMed]
- Tufan, E.G.; Borazan, A.A.; Koçkar, Ö.M. A Review on Edible Film and Coating Applications for Fresh and Dried Fruits and Vegetables. Bilecik Şeyh Edebali Üniv. Fen Bilim. Derg. 2021, 8, 1073–1085. [Google Scholar] [CrossRef]
- Kaur, J.; Gunjal, M.; Rasane, P.; Singh, J.; Kaur, S.; Poonia, A.; Gupta, P. Edible Packaging: An Overview. In Edible Food Packaging; Poonia, A., Dhewa, T., Eds.; Springer Nature: Singapore, 2022; pp. 3–25. ISBN 9789811623820. [Google Scholar]
- Azeredo, H.M.C.; Otoni, C.G.; Mattoso, L.H.C. Edible Films and Coatings—Not Just Packaging Materials. Curr. Res. Food Sci. 2022, 5, 1590–1595. [Google Scholar] [CrossRef]
- Cazón, P.; Morales-Sanchez, E.; Velazquez, G.; Vázquez, M. Measurement of the Water Vapor Permeability of Chitosan Films: A Laboratory Experiment on Food Packaging Materials. J. Chem. Educ. 2022, 99, 2403–2408. [Google Scholar] [CrossRef]
- Kandasamy, S.; Yoo, J.; Yun, J.; Kang, H.-B.; Seol, K.-H.; Kim, H.-W.; Ham, J.-S. Application of Whey Protein-Based Edible Films and Coatings in Food Industries: An Updated Overview. Coatings 2021, 11, 1056. [Google Scholar] [CrossRef]
- Liu, X.; Xu, Y.; Liao, W.; Guo, C.; Gan, M.; Wang, Q. Preparation and Characterization of Chitosan/Bacterial Cellulose Composite Biodegradable Films Combined with Curcumin and Its Application on Preservation of Strawberries. Food Packag. Shelf Life 2023, 35, 101006. [Google Scholar] [CrossRef]
- Singh, G.P.; Bangar, S.P.; Yang, T.; Trif, M.; Kumar, V.; Kumar, D. Effect on the Properties of Edible Starch-Based Films by the Incorporation of Additives: A Review. Polymers 2022, 14, 1987. [Google Scholar] [CrossRef]
- Nešić, A.; Cabrera-Barjas, G.; Dimitrijević-Branković, S.; Davidović, S.; Radovanović, N.; Delattre, C. Prospect of Polysaccharide-Based Materials as Advanced Food Packaging. Molecules 2019, 25, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gheorghita, R.; Amariei, S.; Norocel, L.; Gutt, G. New Edible Packaging Material with Function in Shelf Life Extension: Applications for the Meat and Cheese Industries. Foods 2020, 9, 562. [Google Scholar] [CrossRef] [PubMed]
- García, M.; Bifani, V.; Campos, C.; Martino, M.N.; Sobral, P.; Flores, S.; Ferrero, C.; Bertola, N.; Zaritzky, N.E.; Gerschenson, L.; et al. Edible Coating as an Oil Barrier or Active System. In Food Engineering: Integrated Approaches; Food Engineering Series; Springer: New York, NY, USA, 2008; pp. 225–241. [Google Scholar] [CrossRef]
- Liu, D.; Duan, Y.; Wang, S.; Gong, M.; Dai, H. Improvement of Oil and Water Barrier Properties of Food Packaging Paper by Coating with Microcrystalline Wax Emulsion. Polymers 2022, 14, 1786. [Google Scholar] [CrossRef] [PubMed]
- Olivas, G.I.I.; Barbosa-Cánovas, G. Edible Films and Coatings for Fruits and Vegetables. In Edible Films and Coatings for Food Applications; Huber, K.C., Embuscado, M.E., Eds.; Springer: New York, NY, USA, 2009; pp. 211–244. ISBN 978-0-387-92823-4. [Google Scholar]
- Gontard, N.; Guilbert, S. Bio-Packaging: Technology and Properties of Edible and/or Biodegradable Material of Agricultural Origin; Mathlouthi, M., Ed.; Springer US: Boston, MA, USA, 1994; pp. 159–181. [Google Scholar]
- Aguirre-Joya, J.A.; De Leon-Zapata, M.A.; Alvarez-Perez, O.B.; Torres-León, C.; Nieto-Oropeza, D.E.; Ventura-Sobrevilla, J.M.; Aguilar, M.A.; Ruelas-Chacón, X.; Rojas, R.; Ramos-Aguiñaga, M.E.; et al. Chapter 1—Basic and Applied Concepts of Edible Packaging for Foods. In Food Packaging and Preservation; Grumezescu, A.M., Holban, A.M., Eds.; Handbook of Food Bioengineering; Academic Press: Cambridge, MA, USA, 2018; pp. 1–61. ISBN 978-0-12-811516-9. [Google Scholar]
- Armghan Khalid, M.; Niaz, B.; Saeed, F.; Afzaal, M.; Islam, F.; Hussain, M.; Mahwish; Muhammad Salman Khalid, H.; Siddeeg, A.; Al-Farga, A. Edible Coatings for Enhancing Safety and Quality Attributes of Fresh Produce: A Comprehensive Review. Int. J. Food Prop. 2022, 25, 1817–1847. [Google Scholar] [CrossRef]
- Ganiari, S.; Choulitoudi, E.; Oreopoulou, V. Edible and Active Films and Coatings as Carriers of Natural Antioxidants for Lipid Food. Trends Food Sci. Technol. 2017, 68, 70–82. [Google Scholar] [CrossRef]
- Makhloufi, N.; Chougui, N.; Rezgui, F.; Benramdane, E.; Silvestre, A.J.D.; Freire, C.S.R.; Vilela, C. Polysaccharide-Based Films of Cactus Mucilage and Agar with Antioxidant Properties for Active Food Packaging. Polym. Bull. 2022, 79, 11369–11388. [Google Scholar] [CrossRef]
- Mihalca, V.; Kerezsi, A.D.; Weber, A.; Gruber-Traub, C.; Schmucker, J.; Vodnar, D.C.; Dulf, F.V.; Socaci, S.A.; Fărcaș, A.; Mureșan, C.I.; et al. Protein-Based Films and Coatings for Food Industry Applications. Polymers 2021, 13, 769. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.A.A.; El-Sakhawy, M.; El-Sakhawy, M.A.-M. Polysaccharides, Protein and Lipid -Based Natural Edible Films in Food Packaging: A Review. Carbohydr. Polym. 2020, 238, 116178. [Google Scholar] [CrossRef] [PubMed]
- Senturk Parreidt, T.; Müller, K.; Schmid, M. Alginate-Based Edible Films and Coatings for Food Packaging Applications. Foods 2018, 7, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salgado, P.R.; Ortiz, C.M.; Musso, Y.S.; Di Giorgio, L.; Mauri, A.N. Edible Films and Coatings Containing Bioactives. Curr. Opin. Food Sci. 2015, 5, 86–92. [Google Scholar] [CrossRef]
- Kasim, R.; Kasim, M.U. The Effect of Tapioca-Starch Edible Coating on Quality of Fresh-Cut Cauliflower during Storage. J. Agric. Food Environ. Sci. 2018, 72, 21–28. [Google Scholar] [CrossRef]
- Popyrina, T.N.; Demina, T.S.; Akopova, T.A. Polysaccharide-Based Films: From Packaging Materials to Functional Food. J. Food Sci. Technol. 2022. [Google Scholar] [CrossRef]
- Maurizzi, E.; Bigi, F.; Quartieri, A.; De Leo, R.; Volpelli, L.A.; Pulvirenti, A. The Green Era of Food Packaging: General Considerations and New Trends. Polymers 2022, 14, 4257. [Google Scholar] [CrossRef]
- Gómez-Estaca, J.; Montero, P.; Giménez, B.; Gómez-Guillén, M.C. Effect of Functional Edible Films and High Pressure Processing on Microbial and Oxidative Spoilage in Cold-Smoked Sardine (Sardina pilchardus). Food Chem. 2007, 105, 511–520. [Google Scholar] [CrossRef]
- Cazón, P.; Velazquez, G.; Ramírez, J.A.; Vázquez, M. Polysaccharide-Based Films and Coatings for Food Packaging: A Review. Food Hydrocoll. 2017, 68, 136–148. [Google Scholar] [CrossRef]
- Xie, Q.; Liu, G.; Zhang, Y.; Yu, J.; Wang, Y.; Ma, X. Active Edible Films with Plant Extracts: A Updated Review of Their Types, Preparations, Reinforcing Properties, and Applications in Muscle Foods Packaging and Preservation. Crit. Rev. Food Sci. Nutr. 2022, 1–23. [Google Scholar] [CrossRef]
- Molavi, H.; Behfar, S.; Shariati, M.A.; Kaviani, M.; Atarod, S. A Review on Biodegradable Starch Based Film. J. Microbiol. Biotechnol. Food Sci. 2015, 4, 456–461. [Google Scholar] [CrossRef] [Green Version]
- Mollah, M.Z.I.; Zahid, H.M.; Mahal, Z.; Faruque, M.R.I.; Khandaker, M.U. The Usages and Potential Uses of Alginate for Healthcare Applications. Front. Mol. Biosci. 2021, 8, 719972. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food & Drug Administration Code for Federal Regulations Title 21 Part 184—Direct Food Substances Affirmed as Generally Recognized as Safe. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=184 (accessed on 25 May 2023).
- Gheorghita, R.; Gutt, G.; Amariei, S. The Use of Edible Films Based on Sodium Alginate in Meat Product Packaging: An Eco-Friendly Alternative to Conventional Plastic Materials. Coatings 2020, 10, 166. [Google Scholar] [CrossRef] [Green Version]
- Puscaselu, R.G.; Anchidin-Norocel, L.; Petraru, A.; Ursachi, F. Strategies and Challenges for Successful Implementation of Green Economy Concept: Edible Materials for Meat Products Packaging. Foods 2021, 10, 3035. [Google Scholar] [CrossRef] [PubMed]
- Othman, F.; Idris, S.N.; Ahmad Nasir, N.A.H.; Nawawi, M.A. Preparation and Characterization of Sodium Alginate-Based Edible Film with Antibacterial Additive Using Lemongrass Oil. Sains Malays. 2022, 51, 485–494. [Google Scholar] [CrossRef]
- Chien, P.-J.; Sheu, F.; Yang, F.-H. Effects of Edible Chitosan Coating on Quality and Shelf Life of Sliced Mango Fruit. J. Food Eng. 2007, 78, 225–229. [Google Scholar] [CrossRef]
- Velickova, E.; Winkelhausen, E.; Kuzmanova, S.; Alves, V.D.; Moldão-Martins, M. Impact of Chitosan-Beeswax Edible Coatings on the Quality of Fresh Strawberries (Fragaria Ananassa Cv Camarosa) under Commercial Storage Conditions. LWT Food Sci. Technol. 2013, 52, 80–92. [Google Scholar] [CrossRef]
- Lo’ay, A.A.; Taher, M.A. Influence of Edible Coatings Chitosan/PVP Blending with Salicylic Acid on Biochemical Fruit Skin Browning Incidence and Shelf Life of Guava Fruits Cv. ‘Banati’. Sci. Hortic. 2018, 235, 424–436. [Google Scholar] [CrossRef]
- Nawab, A.; Alam, F.; Hasnain, A. Mango Kernel Starch as a Novel Edible Coating for Enhancing Shelf- Life of Tomato (Solanum lycopersicum) Fruit. Int. J. Biol. Macromol. 2017, 103, 581–586. [Google Scholar] [CrossRef]
- Maftoonazad, N.; Ramaswamy, H.S. Application and Evaluation of a Pectin-Based Edible Coating Process for Quality Change Kinetics and Shelf-Life Extension of Lime Fruit (Citrus aurantifolium). Coatings 2019, 9, 285. [Google Scholar] [CrossRef] [Green Version]
- Panahirad, S.; Naghshiband-Hassani, R.; Mahna, N. Pectin-Based Edible Coating Preserves Antioxidative Capacity of Plum Fruit during Shelf Life. Food Sci. Technol. Int. 2020, 26, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Maftoonazad, N.; Ramaswamy, H.S. Effect of Pectin-Based Coating on the Kinetics of Quality Change Associated with Stored Avocados. J. Food Process. Preserv. 2008, 32, 621–643. [Google Scholar] [CrossRef]
- Ghadetaj, A.; Almasi, H.; Mehryar, L. Development and Characterization of Whey Protein Isolate Active Films Containing Nanoemulsions of Grammosciadium Ptrocarpum Bioss. Essential Oil. Food Packag. Shelf Life 2018, 16, 31–40. [Google Scholar] [CrossRef]
- Wagh, Y.R.; Pushpadass, H.A.; Emerald, F.M.E.; Nath, B.S. Preparation and Characterization of Milk Protein Films and Their Application for Packaging of Cheddar Cheese. J. Food Sci. Technol. 2014, 51, 3767–3775. [Google Scholar] [CrossRef] [Green Version]
- Naseri, H.; Beigmohammadi, F.; Mohammadi, R.; Sadeghi, E. Production and Characterization of Edible Film Based on Gelatin–Chitosan Containing Ferulago Angulate Essential Oil and Its Application in the Prolongation of the Shelf Life of Turkey Meat. J. Food Process. Preserv. 2020, 44, e14558. [Google Scholar] [CrossRef]
- Zinoviadou, K.G.; Koutsoumanis, K.P.; Biliaderis, C.G. Physico-Chemical Properties of Whey Protein Isolate Films Containing Oregano Oil and Their Antimicrobial Action against Spoilage Flora of Fresh Beef. Meat Sci. 2009, 82, 338–345. [Google Scholar] [CrossRef]
- Rodriguez-Turienzo, L.; Cobos, A.; Diaz, O. Effects of Edible Coatings Based on Ultrasound-Treated Whey Proteins in Quality Attributes of Frozen Atlantic Salmon (Salmo salar). Innov. Food Sci. Emerg. Technol. 2012, 14, 92–98. [Google Scholar] [CrossRef]
- Cheng, Y.; Gao, S.; Wang, W.; Hou, H.; Lim, L.-T. Low Temperature Extrusion Blown ε-Polylysine Hydrochloride-Loaded Starch/Gelatin Edible Antimicrobial Films. Carbohydr. Polym. 2022, 278, 118990. [Google Scholar] [CrossRef]
- Fabra, M.J.; Falcó, I.; Randazzo, W.; Sánchez, G.; López-Rubio, A. Antiviral and Antioxidant Properties of Active Alginate Edible Films Containing Phenolic Extracts. Food Hydrocoll. 2018, 81, 96–103. [Google Scholar] [CrossRef]
- Sultan, M.; Hafez, O.M.; Saleh, M.A.; Youssef, A.M. Smart Edible Coating Films Based on Chitosan and Beeswax–Pollen Grains for the Postharvest Preservation of Le Conte Pear. RSC Adv. 2021, 11, 9572–9585. [Google Scholar] [CrossRef]
- Pérez-Vergara, L.D.; Cifuentes, M.T.; Franco, A.P.; Pérez-Cervera, C.E.; Andrade-Pizarro, R.D. Development and Characterization of Edible Films Based on Native Cassava Starch, Beeswax, and Propolis. NFS J. 2020, 21, 39–49. [Google Scholar] [CrossRef]
- Bizymis, A.-P.; Tzia, C. Edible Films and Coatings: Properties for the Selection of the Components, Evolution through Composites and Nanomaterials, and Safety Issues. Crit. Rev. Food Sci. Nutr. 2022, 62, 8777–8792. [Google Scholar] [CrossRef] [PubMed]
- Milani, J.; Tirgarian, B. An Overview of Edible Protein-Based Packaging: Main Sources, Advantages, Drawbacks, Recent Progressions and Food Applications. J. Packag. Technol. Res. 2020, 4, 103–115. [Google Scholar] [CrossRef]
- Malik, A.; Erginkaya, Z.; Erten, H. Health and Safety Aspects of Food Processing Technologies; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Picchio, M.L.; Linck, Y.G.; Monti, G.A.; Gugliotta, L.M.; Minari, R.J.; Alvarez Igarzabal, C.I. Casein Films Crosslinked by Tannic Acid for Food Packaging Applications. Food Hydrocoll. 2018, 84, 424–434. [Google Scholar] [CrossRef]
- Shendurse, A. Milk Protein Based Edible Films and Coatings–Preparation, Properties and Food Applications. J. Nutr. Health Food Eng. 2018, 8, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.; Ramaswamy, H. Characterization of Caseinate–Carboxymethyl Chitosan-Based Edible Films Formulated with and without Transglutaminase Enzyme. J. Compos. Sci. 2022, 6, 216. [Google Scholar] [CrossRef]
- Chaudhary, V.; Kajla, P.; Kumari, P.; Bangar, S.P.; Rusu, A.; Trif, M.; Lorenzo, J.M. Milk Protein-Based Active Edible Packaging for Food Applications: An Eco-Friendly Approach. Front. Nutr. 2022, 9, 942524. [Google Scholar] [CrossRef]
- Kavas, G.; Kavas, N.; Saygili, D. The Effects of Thyme and Clove Essential Oil Fortified Edible Films on the Physical, Chemical and Microbiological Characteristics of Kashar Cheese. J. Food Qual. 2015, 38, 377–457. [Google Scholar] [CrossRef] [Green Version]
- Ramos, M.; Valdés, A.; Beltrán, A.; Garrigós, M. Gelatin-Based Films and Coatings for Food Packaging Applications. Coatings 2016, 6, 41. [Google Scholar] [CrossRef] [Green Version]
- Wittaya, T. Protein-Based Edible Films: Characteristics and Improvement of Properties. In Structure and Function of Food Engineering; IntechOpen: London, UK, 2012; ISBN 978-953-51-0695-1. [Google Scholar]
- Han, T.; Chen, W.; Zhong, Q.; Chen, W.; Xu, Y.; Wu, J.; Chen, H. Development and Characterization of an Edible Zein/Shellac Composite Film Loaded with Curcumin. Foods 2023, 12, 1577. [Google Scholar] [CrossRef]
- Wu, X.; Liu, Z.; He, S.; Liu, J.; Shao, W. Development of an Edible Food Packaging Gelatin/Zein Based Nanofiber Film for the Shelf-Life Extension of Strawberries. Food Chem. 2023, 426, 136652. [Google Scholar] [CrossRef]
- Pavlátková, L.; Sedlaříková, J.; Pleva, P.; Peer, P.; Uysal-Unalan, I.; Janalíková, M. Bioactive Zein/Chitosan Systems Loaded with Essential Oils for Food-Packaging Applications. J. Sci. Food Agric. 2023, 103, 1097–1104. [Google Scholar] [CrossRef] [PubMed]
- Debnath, M.; Basu, S.; Bhattachayya, I.; Mazumder, O. Edible Food Packages: An Approach towards Sustainable Future. Pharma Innov. J. 2022, 11, 1704–1710. [Google Scholar]
- 21CFR184.1978 CFR—Code of Federal Regulations Title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=184.1978 (accessed on 24 May 2023).
- 21CFR184.1976 CFR—Code of Federal Regulations Title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=184.1976 (accessed on 24 May 2023).
- 21CFR172.890 CFR—Code of Federal Regulations Title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=172.890 (accessed on 24 May 2023).
- 21CFR184.1973 CFR—Code of Federal Regulations Title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=184.1973 (accessed on 24 May 2023).
- Gaspar, M.C.; Braga, M.E.M. Edible Films and Coatings Based on Agrifood Residues: A New Trend in the Food Packaging Research. Curr. Opin. Food Sci. 2023, 50, 101006. [Google Scholar] [CrossRef]
- 21CFR175.250 CFR—Code of Federal Regulations Title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=175.250 (accessed on 24 May 2023).
- 21CFR172.886 CFR—Code of Federal Regulations Title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRsearch.cfm?fr=172.886 (accessed on 24 May 2023).
- Ștefănescu, B.E.; Socaciu, C.; Vodnar, D.C. Recent Progress in Functional Edible Food Packaging Based on Gelatin and Chitosan. Coatings 2022, 12, 1815. [Google Scholar] [CrossRef]
- Tan, L.F.; Elaine, E.; Pui, L.P.; Nyam, K.L.; Yusof, Y.A. Development of Chitosan Edible Film Incorporated with Chrysanthemum Morifolium Essential Oil. Acta Sci. Pol. Technol. Aliment. 2021, 20, 55–66. [Google Scholar] [CrossRef]
- Nesic, A.; Meseldzija, S.; Cabrera-Barjas, G.; Onjia, A. Novel Biocomposite Films Based on High Methoxyl Pectin Reinforced with Zeolite Y for Food Packaging Applications. Foods 2022, 11, 360. [Google Scholar] [CrossRef]
- Dhumal, C.V.; Sarkar, P. Composite Edible Films and Coatings from Food-Grade Biopolymers. J. Food Sci. Technol. 2018, 55, 4369–4383. [Google Scholar] [CrossRef]
- Suresh, S.; Pushparaj, C.; Natarajan, A.; Subramani, R. Gum Acacia/Pectin/Pullulan Based Edible Film for Food Packaging Application to Improve the Shelf Life of Ivy Gourd. Int. J. Food Sci. Technol. 2022, 57, 5878–5886. [Google Scholar] [CrossRef]
- Vieira, M.G.A.; da Silva, M.A.; dos Santos, L.O.; Beppu, M.M. Natural-Based Plasticizers and Biopolymer Films: A Review. Eur. Polym. J. 2011, 47, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Alee, M.; Yang, M.; Liu, H.; Li, Y.; Li, Z.; Yu, L. Synergizing Multi-Plasticizers for a Starch-Based Edible Film. Foods 2022, 11, 3254. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Q.; Liu, Z.; Zhi, L.; Jiao, B.; Hu, H.; Ma, X.; Agyei, D.; Shi, A. Plant Protein-Based Emulsifiers: Mechanisms, Techniques for Emulsification Enhancement and Applications. Food Hydrocoll. 2023, 144, 109008. [Google Scholar] [CrossRef]
- Pooja Saklani, P.S.; Nath, S.; Kishor Das, S.; Singh, S.M. A Review of Edible Packaging for Foods. Int. J. Curr. Microbiol. App. Sci. 2019, 8, 2885–2895. [Google Scholar] [CrossRef]
- Medina, E.; Caro, N.; Abugoch, L.; Gamboa, A.; Díaz-Dosque, M.; Tapia, C. Chitosan Thymol Nanoparticles Improve the Antimicrobial Effect and the Water Vapour Barrier of Chitosan-Quinoa Protein Films. J. Food Eng. 2019, 240, 191–198. [Google Scholar] [CrossRef]
- Alvarez, M.V.; Ponce, A.G.; Moreira, M.d.R. Antimicrobial Efficiency of Chitosan Coating Enriched with Bioactive Compounds to Improve the Safety of Fresh Cut Broccoli. LWT Food Sci. Technol. 2013, 50, 78–87. [Google Scholar] [CrossRef]
- Amjadi, S.; Emaminia, S.; Nazari, M.; Davudian, S.H.; Roufegarinejad, L.; Hamishehkar, H. Application of Reinforced ZnO Nanoparticle-Incorporated Gelatin Bionanocomposite Film with Chitosan Nanofiber for Packaging of Chicken Fillet and Cheese as Food Models. Food Bioprocess Technol. 2019, 12, 1205–1219. [Google Scholar] [CrossRef]
- Suppakul, P.; Miltz, J.; Sonneveld, K.; Bigger, S.W. Active Packaging Technologies with an Emphasis on Antimicrobial Packaging and Its Applications. J. Food Sci. 2003, 68, 408–420. [Google Scholar] [CrossRef] [Green Version]
- Kola, V. Plant Extracts as Additives in Biodegradable Films and Coatings in Active Food Packaging: Effects and Applications. Master’s Thesis, Universidade do Algarve, Faro, Portugal, 2020. [Google Scholar]
- Kong, I.; Lamudji, I.G.; Angkow, K.J.; Insani, R.M.S.; Mas, M.A.; Pui, L.P. Application of Edible Film with Asian Plant Extracts as an Innovative Food Packaging: A Review. Coatings 2023, 13, 245. [Google Scholar] [CrossRef]
- Silva-Weiss, A.; Ihl, M.; Sobral, P.J.A.; Gómez-Guillén, M.C.; Bifani, V. Natural Additives in Bioactive Edible Films and Coatings: Functionality and Applications in Foods. Food Eng. Rev. 2013, 5, 200–216. [Google Scholar] [CrossRef]
- Nogueira, G.; Fakhouri, F.; Oliveira, R. Effect of Incorporation of Blackberry Particles on the Physicochemical Properties of Edible Films of Arrowroot Starch. Dry. Technol. 2018, 37, 1–10. [Google Scholar] [CrossRef]
- Assis, R.Q.; Pagno, C.H.; Costa, T.M.H.; Flôres, S.H.; Rios, A.d.O. Synthesis of Biodegradable Films Based on Cassava Starch Containing Free and Nanoencapsulated β-Carotene. Packag. Technol. Sci. 2018, 31, 157–166. [Google Scholar] [CrossRef]
- Commission directive 2007/42/EC. Off. J. Eur. Union 2007, 50, L172. Available online: https://food.ec.europa.eu/safety/chemical-safety/food-contact-materials/legislation_en (accessed on 27 May 2023).
- Edible Packaging Market Size to Hit USD 2.8 Billion by 2030. Available online: https://www.precedenceresearch.com/edible-packaging-market (accessed on 25 May 2023).
- Experience Ooho at Somerset House for World Earth Day 2022. Available online: https://www.notpla.com/2022/04/22/experience-ooho-at-somerset-house-for-world-earth-day-2022/ (accessed on 25 May 2023).
- Patel, P. Edible Packaging. ACS Cent. Sci. 2019, 5, 1907–1910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Press Release: NOTPLA. 2019. Available online: https://www.notpla.com/wp-content/uploads/2019/07/Press-Release-Rebrand-NOTPLA.pdf (accessed on 27 May 2023).
- Pool, R. Have Your Packing and Eat It [Edible Food Packaging]. Eng. Technol. 2019, 14, 36–38. [Google Scholar] [CrossRef]
- Zhou, X.; Yi, C.; Deng, D. Sustainable Development Strategy of Beverage Straws for Environmental Load Reduction. IOP Conf. Ser. Earth Environ. Sci. 2021, 784, 012041. [Google Scholar] [CrossRef]
- Spector, D. This Space-Aged Edible Packaging Eliminates the Need for Plastic. Insider. 2012. Available online: https://www.businessinsider.com/how-the-wikicell-edible-packaging-is-made-2012-8?IR=T (accessed on 27 May 2023).
- Uys, E. The WikiCell: Nature-Inspired Edible Packaging. Available online: https://www.designindaba.com/articles/creative-work/wikicell-nature-inspired-edible-packaging (accessed on 25 May 2023).
- Evoware Product Catalogue. 2022. Available online: https://rethink-plastic.com/home/themes/EVODEVELOP/assets/images/productcategories.pdf. (accessed on 27 May 2023).
- Garfield, L. Spray This Invisible, Edible Coating on Produce and It Will Last Five Times Longer. Available online: https://www.insider.com/apeel-sciences-food-edipeel-invisipeel-extend-life-2017-1 (accessed on 25 May 2023).
- NewGem Wraps NewGem Foods. Available online: https://newgemfoods.com/ (accessed on 25 May 2023).
- Entrepreneur’s Answer to Toxic Plastic Waste—Organic Carry Bags. The Times of India. 2016. Available online: https://timesofindia.indiatimes.com/city/bengaluru/entrepreneuraposs-answer-to-toxic-plastic-waste-organic-carry-bags/articleshow/55549705.cms (accessed on 29 May 2023).
- Singh, T. These “Plastic” Bags Are Actually Made of Potato & Tapioca—Nd Can Become Animal Food on Disposal! Available online: https://www.thebetterindia.com/77202/envigreen-bags-organic-biodegradable-plastic/ (accessed on 25 May 2023).
- Amtrex Nature Care Pvt. Ltd. Available online: http://www.amtrexnaturecare.com/index.php (accessed on 24 May 2023).
- Padmanabhan, S. Edible Coating Materials to Improve Shelf Life of Fruit Crops—The Hindu Business Line. Available online: https://www.thehindubusinessline.com/news/science/edible-coating-materials-to-improve-shelf-life-of-fruit-crops/article30822041.ece (accessed on 25 May 2023).
- NuitriCorp. BioEnvelop to Produce Edible Film for NuitriCorp. Available online: https://fif.cnsmedia.com/a/wpZ2TE9jxc= (accessed on 24 May 2023).
- Eagle, J. Lactips Creates Edible Plastic Packaging from Milk Protein. Dairy Reporter. 2017. Available online: https://www.dairyreporter.com/Article/2017/03/30/Lactips-creates-edible-plastic-packaging-from-milk-protein (accessed on 24 May 2023).
- Iversen, L.J.L.; Rovina, K.; Vonnie, J.M.; Matanjun, P.; Erna, K.H.; ‘Aqilah, N.M.N.; Felicia, W.X.L.; Funk, A.A. The Emergence of Edible and Food-Application Coatings for Food Packaging: A Review. Molecules 2022, 27, 5604. [Google Scholar] [CrossRef]
Type of Edible Packing Material | Antimicrobial Agent Used | Food Models | Target Microorganism | Result | References |
---|---|---|---|---|---|
Film | Chitosan thymol nanoparticles | Blueberries, tomato cherries | Listeria innocua, Salmonella typhimurium, and Staphylococcus aureus | Stronger antimicrobial action of chitosan-thymol nanoparticles than thymol alone. | [98] |
Chitosan film | Bioactive extracts (tea tree, rosemary, pomegranate, resveratrol, and propolis) | Minimally processed broccoli | E. coli, Listeria monocytogenes | Slowed the growth of both psychotropic and mesophilic microorganisms; improved the color, texture, and sensory qualities of broccoli. | [99] |
Whey proteins isolate films | Oregano oil | Fresh beef cuts | Spoilage flora | Increased shelf life of fresh beef. | [62] |
Gelatin-based nanocomposite film | Chitosan nanofiber (CHINF) and ZnO nanoparticles (ZnONPs) | Chicken fillet and cheese | E. coli, Staphylococcus aureus, P. aeruginosa | Decreased the growth of inoculation bacteria and increased the organoleptic characteristics of both samples. | [100] |
Polylactic acid (PLA) film | Sorbic acid and lyophilized alga (Ficus spiralis) | Megrim (Lepidorhombus whiffiagonis) | Aerobes, Enterobacteriaceae and psychrotrophs | Enhanced refrigerated fish quality and reduced the waste material content. | [28] |
Edible Material | Brand & Origin | Features | References |
---|---|---|---|
Ooho | Notpla (rebranded from Skipping Rocks Lab), London, UK | Edible bubble made from natural a renewable resource (brown seaweed). Consumer can gulp the drink and swallow the packaging or spit out the film; available in different flavors. | [109,110,111] |
Lolistraw | Loliware, San Francisco, CA, USA | Edible, non-toxic, and eco-friendly straws made from alginate and agar from seaweed and red algae. Film-like membrane that provides double-layer protection around the liquid, foam, or solids it carries. | [112,113] |
Wikicells | Wikicells Designs Inc., Cambridge, MA, USA | The first layer is soft skin made up of natural food particles, calcium, and a nutritive ion, which, together, form an electrostatic gel to keep water inside a food or drink, while the second layer is a protective shell made of isomalt or tapioca that is edible or biodegradable. | [114,115] |
Ello Jello | Evoware, Jacarta, Indonesia | Edible cup and wrappers made from seaweed containing nutritious ingredients. | [116] |
Edipeel | Apeel Sciences, Goleta, CA, USA | Spray-based edible coating derived from agricultural waste and by-products. Entirely plant-based, edible, colorless, odorless, and tasteless. Proven to be effective on bananas, lemons, limes, mangos, blueberries, tomatoes, strawberries, avocados, green beans, and raspberries. | [117] |
Sandwich wraps | NewGem Foods, Allyn, OH, USA | Plant-based sandwich wraps; alternatives to bread and tortillas as they can easily damage. Each wrap is a serving of fruit/vegetable, making it easier to eat healthily. They have a one-year shelf life and do not need to be refrigerated. | [118] |
Sushi wraps | Sushi Wraps made from fruits/vegetables. | ||
Edible carrier bags | Envigreen Biotech India Ltd., Karnataka, India | Biodegradable edible carrier bags; an alternative to plastic bags. The bags are made of tapioca, starch, vegetable oil, and flower oil. | [119,120] |
Edible films | Amtrex Nature Care Pvt., Ltd., Mumbai, India | Edible films made of starch and cellulose; they are available in roll form in many colors and flavors. | [121] |
Composite coating | National Agri-Food Biotechnology Institute, Mohali, India | Edible composite coatings based on wheat straw hemicellulosic polysaccharide and stearic acid-derivatized oat bran polysaccharide; they reduce fruit weight loss and softening, delay ripening, and maintain sensory qualities. | [122] |
Longevita(R) coating solution | BioEnvelop Technologies Corporation, Laval, QB, Canada | Biodegradable and edible protein-based coating treatment that prolongs shelf life and inhibits humidity transfer in fresh and frozen food products. | [123] |
Lactips | Lactips, Saint-Paul-en-Jarez, France | This company has developed a water-soluble, biodegradable plastic substitute made from milk protein casein. It has a good oxygen barrier and is edible, but has not yet been exploited to design edible cutlery. | [124] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nair, S.S.; Trafiałek, J.; Kolanowski, W. Edible Packaging: A Technological Update for the Sustainable Future of the Food Industry. Appl. Sci. 2023, 13, 8234. https://doi.org/10.3390/app13148234
Nair SS, Trafiałek J, Kolanowski W. Edible Packaging: A Technological Update for the Sustainable Future of the Food Industry. Applied Sciences. 2023; 13(14):8234. https://doi.org/10.3390/app13148234
Chicago/Turabian StyleNair, Surya Sasikumar, Joanna Trafiałek, and Wojciech Kolanowski. 2023. "Edible Packaging: A Technological Update for the Sustainable Future of the Food Industry" Applied Sciences 13, no. 14: 8234. https://doi.org/10.3390/app13148234
APA StyleNair, S. S., Trafiałek, J., & Kolanowski, W. (2023). Edible Packaging: A Technological Update for the Sustainable Future of the Food Industry. Applied Sciences, 13(14), 8234. https://doi.org/10.3390/app13148234