Atomic Spectroscopy-Based Analysis of Heavy Metals in Seaweed Species
Abstract
:1. Introduction
1.1. The Importance and Commercial Usage of Seaweed
1.2. Seaweed’s Ability to Absorb Heavy Metals
1.3. Health Risks Associated with Seaweed Consumption
1.4. Seaweed and Environmental Health
2. Atomic Spectroscopy-Based Heavy Metal Analysis Methods for Seaweed
2.1. Sample Preparation
2.2. Atomic Absorption Spectrometry (AAS) Techniques
2.2.1. Flame Atomic Absorption Spectrometry
2.2.2. Graphite Furnace Atomic Absorption Spectrometry (GFAAS)
2.2.3. Solid Sampling Zeeman Atomic Absorption Spectrometry (SS-ZAAS)
2.3. Atomic Emission Spectroscopy
2.3.1. Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES)
2.3.2. Laser-Induced Breakdown Spectrometry (LIBS)
2.4. Atomic Mass Spectrometry
Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)
3. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khandaker, M.U.; Chijioke, N.O.; Heffny, N.A.B.; Bradley, D.A.; Alsubaie, A.; Sulieman, A.; Faruque, M.R.I.; Sayyed, M.I.; Al-mugren, K.S. Elevated Concentrations of Metal(loids) in Seaweed and the Concomitant Exposure to Humans. Foods 2021, 10, 381. [Google Scholar] [CrossRef] [PubMed]
- Morais, T.; Inácio, A.; Coutinho, T.; Ministro, M.; Cotas, J.; Pereira, L.; Bahcevandziev, K. Seaweed Potential in the Animal Feed: A Review. J. Mar. Sci. Eng. 2020, 8, 559. [Google Scholar] [CrossRef]
- National Food Institute, Technical University of Denmark, Denmark; Sá Monteiro, M.; Sloth, J.; Holdt, S.; Hansen, M. Analysis and Risk Assessment of Seaweed. EFSA J. 2019, 17, e170915. [Google Scholar] [CrossRef] [Green Version]
- Squadrone, S.; Brizio, P.; Battuello, M.; Nurra, N.; Sartor, R.M.; Riva, A.; Staiti, M.; Benedetto, A.; Pessani, D.; Abete, M.C. Trace Metal Occurrence in Mediterranean Seaweeds. Environ. Sci. Pollut. Res. 2018, 25, 9708–9721. [Google Scholar] [CrossRef] [PubMed]
- Paz, S.; Rubio, C.; Frías, I.; Gutiérrez, A.J.; González-Weller, D.; Revert, C.; Hardisson, A. Metal Concentrations in Wild-Harvested Phaeophyta Seaweed from the Atlantic Ocean (Canary Islands, Spain). J. Food Prot. 2018, 81, 1165–1170. [Google Scholar] [CrossRef]
- Romarís-Hortas, V.; García-Sartal, C.; Barciela-Alonso, M.C.; Moreda-Piñeiro, A.; Bermejo-Barrera, P. Characterization of Edible Seaweed Harvested on the Galician Coast (Northwestern Spain) Using Pattern Recognition Techniques and Major and Trace Element Data. J. Agric. Food Chem. 2010, 58, 1986–1992. [Google Scholar] [CrossRef]
- Miedico, O.; Pompa, C.; Tancredi, C.; Cera, A.; Pellegrino, E.; Tarallo, M.; Chiaravalle, A.E. Characterisation and Chemometric Evaluation of 21 Trace Elements in Three Edible Seaweed Species Imported from South-East Asia. J. Food Compos. Anal. 2017, 64, 188–197. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Ruangchuay, R.; Lueangthuwapranit, C. Patterns of Element Concentrations and Heavy Metal Accumulations in Edible Seaweed, Gracilaria Fisheri (Xia and Abbott) Abbott, Zhang and Xia (Gracilariales, Rhodophyta) Cultivation in Southern Thailand. J. Fish. Environ. 2018, 42, 13–25. [Google Scholar]
- Silva, A.; Silva, S.A.; Carpena, M.; Garcia-Oliveira, P.; Gullón, P.; Barroso, M.F.; Prieto, M.A.; Simal-Gandara, J. Macroalgae as a Source of Valuable Antimicrobial Compounds: Extraction and Applications. Antibiotics 2020, 9, 642. [Google Scholar] [CrossRef]
- Veluchamy, C.; Palaniswamy, R. A review on marine algae and its applications. Asian J. Pharm. Clin. Res. 2020, 13, 21–27. [Google Scholar] [CrossRef]
- Kinley, R.D.; Martinez-Fernandez, G.; Matthews, M.K.; de Nys, R.; Magnusson, M.; Tomkins, N.W. Mitigating the Carbon Footprint and Improving Productivity of Ruminant Livestock Agriculture Using a Red Seaweed. J. Clean. Prod. 2020, 259, 120836. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). The State of World Fisheries and Aquaculture 2016; Contributing to Food Security and Nutrition for All; FAO: Rome, Italy, 2016; 200p. [Google Scholar]
- FAO; WHO. Report of the Expert Meeting on Food Safety for Seaweed—Current Status and Future Perspectives; FAO: Rome, Italy; WHO: Geneva, Switzerland, 2022. [Google Scholar] [CrossRef]
- Boucetta, S.; Benchalel, W.; Ferroudj, S.; Bouslama, Z.; Elmsellem, H. Trace Metal Biomonitoring of Algae (Ulva lactuca), and Mollusks (Patella caerulea; Stramonita haemastoma; Phorcus turbinatus) along the Eastarn-Algerian Coast. Moroc. J. Chem. 2019, 7, 444–459. [Google Scholar] [CrossRef]
- Tresnati, J.; Yasir, I.; Zainuddin; Syafiuddin; Aprianto, R.; Tuwo, A. Metal Bioaccumulation Potential of the Seaweed Kappaphycus Alvarezii. IOP Conf. Ser. Earth Environ. Sci. 2021, 763, 012059. [Google Scholar] [CrossRef]
- Vázquez-Arias, A.; Pacín, C.; Ares, Á.; Fernández, J.Á.; Aboal, J.R. Do We Know the Cellular Location of Heavy Metals in Seaweed? An up-to-Date Review of the Techniques. Sci. Total Environ. 2023, 856, 159215. [Google Scholar] [CrossRef] [PubMed]
- Rey-Rubio, R.; Moreda-Piñeiro, J. Trace Metal Determination of Edible Seaweeds by Pressurized Hot Water Extraction and Determination by Inductively Coupled Plasma Mass Spectrometry. At. Spectrosc. 2012, 33, 179–185. [Google Scholar] [CrossRef]
- Dadolahi-Sohrab, A.; Nikvarz, A.; Nabavi, S.M.B.; Safahyeh, A.; Ketal-Mohseni, M. Environmental Monitoring of Heavy Metals in Seaweed and Associated Sediment from the Strait of Hormuz, I.R. Iran. World J. Fish Mar. Sci. 2011, 3, 576–589. [Google Scholar]
- Malea, P.; Kevrekidis, T. Trace Element Patterns in Marine Macroalgae. Sci. Total Environ. 2014, 494–495, 144–157. [Google Scholar] [CrossRef]
- Medeiros, I.D.; Mathieson, A.C.; Rajakaruna, N. Heavy Metals in Seaweeds from a Polluted Estuary in Coastal Maine. Rhodora 2017, 119, 201–211. [Google Scholar] [CrossRef] [Green Version]
- El-Naggar, N.E.-A.; Hamouda, R.A.; Abuelmagd, M.A.; Alharbi, M.M.; Darwish, D.B.E.; Rabei, N.H.; Farfour, S.A. A Cost-Effective and Eco-Friendly Biosorption Technology for Complete Removal of Nickel Ions from an Aqueous Solution: Optimization of Process Variables. Green Process. Synth. 2022, 11, 631–647. [Google Scholar] [CrossRef]
- Kumari, B.; Sharma, V. Assessment of Seaweeds in Biomonitoring and Biosorption of Heavy Metals. Int. J. Biol. Technol. 2012, 3, 59–61. [Google Scholar]
- Asensio, J.P.; Arnaiz Uceda, D.; Navarro, P.J. Studying Inorganic Arsenic, Heavy Metals, and Iodine in Dried Seaweed. Spectrosc. Suppl. 2021, 36, 24–34. [Google Scholar]
- Kreissig, K.J.; Hansen, L.T.; Jensen, P.E.; Wegeberg, S.; Geertz-Hansen, O.; Sloth, J.J. Characterisation and Chemometric Evaluation of 17 Elements in Ten Seaweed Species from Greenland. PLoS ONE 2021, 16, e0243672. [Google Scholar] [CrossRef] [PubMed]
- Devault, D.A.; Pierre, R.; Marfaing, H.; Dolique, F.; Lopez, P.-J. Sargassum Contamination and Consequences for Downstream Uses: A Review. J. Appl. Phycol. 2021, 33, 567–602. [Google Scholar] [CrossRef]
- Makawita, G.I.P.S.; Wickramasinghe, I.; Wijesekara, I. Analysis of Metals and Metalloids Present in Sri Lankan Dried Seaweeds and Assessing the Possibility of Health Impact to General Consumption Patterns. Aquat. Living Resour. 2020, 33, 16. [Google Scholar] [CrossRef]
- Monchanin, C.; Devaud, J.-M.; Barron, A.B.; Lihoreau, M. Current Permissible Levels of Metal Pollutants Harm Terrestrial Invertebrates. Sci. Total Environ. 2021, 779, 146398. [Google Scholar] [CrossRef]
- Wu, Y. CODEX STAN 193-1995; General Standard for Contaminants and Toxins in Food and Feed Adopted in 1995. Revised in 1997, 2006, 2008, 2009. Amendment 2010, 2012, 2013, 2014. China National Center for Food Safety Risk Assessment: Beijing, China, 2014. [Google Scholar] [CrossRef]
- Codex Stan 193-1995; FAO/WHO General Standard for Contaminants and Toxins in Food and Feed. FAO: Rome, Italy; WHO: Geneva, Switzerland, 2015; pp. 1–59. Available online: www.fao.org/input/download/standards/17/CXS_193e_2015.pdf (accessed on 1 November 2022).
- Commission Regulation (EU) 2015/1006. Commission Regulation (EU) 2015/1006 of 25 June 2015 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Inorganic Arsenic in Foodstuffs (OJ L161); Report No.: OJ L161.; EU: Brussels, Belgium, 2015; Available online: http://data.europa.eu/eli/reg/2015/1006/oj/eng (accessed on 1 November 2022).
- Commission Regulation (EC) No 1881/2006. Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs (OJ L364); EU: Brussels, Belgium, 2006; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02006R1881-20100701 (accessed on 1 November 2022).
- Li, J.; Xie, Z.M.; Xu, J.M.; Sun, Y.F. Risk Assessment for Safety of Soils and Vegetables around a Lead/Zinc Mine. Environ. Geochem. Health 2006, 28, 37–44. [Google Scholar] [CrossRef]
- European Commission. Proposal for a Directive of the European Parliament and of the Council on the Quality of Water Intended for Human Consumption (COM/2017/0753); EU: Brussels, Belgium, 2019. [Google Scholar]
- US EPA. Drinking Water Regulations (Safe Drinking Water Act). 2017. Available online: https://www.epa.gov/dwreginfo/drinking-water-regulations (accessed on 1 November 2022).
- GB 5749-2006; Standards for Drinking Water Quality. Ministry of Health: Beijing, China, 2006.
- Cherry, P.; O’Hara, C.; Magee, P.J.; McSorley, E.M.; Allsopp, P.J. Risks and Benefits of Consuming Edible Seaweeds. Nutr. Rev. 2019, 77, 307–329. [Google Scholar] [CrossRef] [Green Version]
- Biancacci, C.; Sanderson, J.C.; Evans, B.; Callahan, D.L.; Francis, D.S.; Skrzypczyk, V.M.; Cumming, E.E.; Bellgrove, A. Nutritional Composition and Heavy Metal Profiling of Australian Kelps Cultured in Proximity to Salmon and Mussel Farms. Algal Res. 2022, 64, 102672. [Google Scholar] [CrossRef]
- Chen, Q.; Pan, X.-D.; Huang, B.-F.; Han, J.-L. Distribution of Metals and Metalloids in Dried Seaweeds and Health Risk to Population in Southeastern China. Sci. Rep. 2018, 8, 3578. [Google Scholar] [CrossRef] [Green Version]
- Ródenas de la Rocha, S.; Sánchez-Muniz, F.J.; Gómez-Juaristi, M.; Marín, M.T.L. Trace Elements Determination in Edible Seaweeds by an Optimized and Validated ICP-MS Method. J. Food Compos. Anal. 2009, 22, 330–336. [Google Scholar] [CrossRef]
- Lavergne, C.; Celis-Plá, P.S.M.; Chenu, A.; Rodríguez-Rojas, F.; Moenne, F.; Díaz, M.J.; Abello-Flores, M.J.; Díaz, P.; Garrido, I.; Bruning, P.; et al. Macroalgae Metal-Biomonitoring in Antarctica: Addressing the Consequences of Human Presence in the White Continent. Environ. Pollut. 2022, 292, 118365. [Google Scholar] [CrossRef] [PubMed]
- Rakib, M.R.J.; Jolly, Y.N.; Dioses-Salinas, D.C.; Pizarro-Ortega, C.I.; De-la-Torre, G.E.; Khandaker, M.U.; Alsubaie, A.; Almalki, A.S.A.; Bradley, D.A. Macroalgae in Biomonitoring of Metal Pollution in the Bay of Bengal Coastal Waters of Cox’s Bazar and Surrounding Areas. Sci. Rep. 2021, 11, 20999. [Google Scholar] [CrossRef] [PubMed]
- Billah, M.M.; Mustafa Kamal, A.H.; Idris, M.H.; Ismail, J. Mangrove Macroalgae as Biomonitors of Heavy Metal Contamination in a Tropical Estuary, Malaysia. Water Air Soil Pollut. 2017, 228, 347. [Google Scholar] [CrossRef]
- Karthick, P.; Siva Sankar, R.; Kaviarasan, T.; Mohanraju, R. Ecological Implications of Trace Metals in Seaweeds: Bio-Indication Potential for Metal Contamination in Wandoor, South Andaman Island. Egypt. J. Aquat. Res. 2012, 38, 227–231. [Google Scholar] [CrossRef] [Green Version]
- Laursen, K.H.; Schjoerring, J.K.; Kelly, S.D.; Husted, S. Authentication of Organically Grown Plants—Advantages and Limitations of Atomic Spectroscopy for Multi-Element and Stable Isotope Analysis. TrAC Trends Anal. Chem. 2014, 59, 73–82. [Google Scholar] [CrossRef]
- Baker, S.A.; Miller-Ihli, N.J.; Fodor, P.; Woller, Á. Atomic Spectroscopy in Food Analysis Update Based on the Original Article by Scott A. Baker and Nancy J. Miller-Ihli, Encyclopedia of Analytical Chemistry, © 2000, John Wiley & Sons, Ltd. In Encyclopedia of Analytical Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012. [Google Scholar] [CrossRef]
- Cubadda, F. Applications of Inductively Coupled Plasma Mass Spectrometry to Trace Element Research and Control. In The Determination of Chemical Elements in Food; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007; pp. 223–295. [Google Scholar] [CrossRef]
- Andrade Korn, M.D.G.; da Boa Morte, E.S.; Batista dos Santos, D.C.M.; Castro, J.T.; Barbosa, J.T.P.; Teixeira, A.P.; Fernandes, A.P.; Welz, B.; dos Santos, W.P.C.; Nunes dos Santos, E.B.G.; et al. Sample Preparation for the Determination of Metals in Food Samples Using Spectroanalytical Methods—A Review. Appl. Spectrosc. Rev. 2008, 43, 67–92. [Google Scholar] [CrossRef]
- Levine, K.E.; Batchelor, J.D.; Rhoades, C.B.R., Jr.; Jones, B.T. Evaluation of a High-Pressure, High-Temperature Microwave Digestion System. J. Anal. At. Spectrom. 1999, 14, 49–59. [Google Scholar] [CrossRef]
- Krishna, M.V.B.; Arunachalam, J. Ultrasound-Assisted Extraction Procedure for the Fast Estimation of Major, Minor and Trace Elements in Lichen and Mussel Samples by ICP-MS and ICP-AES. Anal. Chim. Acta 2004, 522, 179–187. [Google Scholar] [CrossRef]
- Costas, M.; Lavilla, I.; Gil, S.; Pena, F.; de la Calle, I.; Cabaleiro, N.; Bendicho, C. Evaluation of Ultrasound-Assisted Extraction as Sample Pre-Treatment for Quantitative Determination of Rare Earth Elements in Marine Biological Tissues by Inductively Coupled Plasma-Mass Spectrometry. Anal. Chim. Acta 2010, 679, 49–55. [Google Scholar] [CrossRef]
- Ashoka, S.; Peake, B.M.; Bremner, G.; Hageman, K.J.; Reid, M.R. Comparison of Digestion Methods for ICP-MS Determination of Trace Elements in Fish Tissues. Anal. Chim. Acta 2009, 653, 191–199. [Google Scholar] [CrossRef]
- Hill, S.J.; Fisher, A.S. Atomic Absorption, Methods and Instrumentation. In Encyclopedia of Spectroscopy and Spectrometry, 3rd ed.; Lindon, J.C., Tranter, G.E., Koppenaal, D.W., Eds.; Academic Press: Oxford, UK, 2017; pp. 37–43. [Google Scholar] [CrossRef]
- Jorhem, L. Determination of Metals in Foods by Atomic Absorption Spectrometry after Dry Ashing: NMKL Collaborative Study. J. AOAC Int. 2000, 83, 1204–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Loon, J.C. Selected Methods of Trace Metal Analysis; Wiley: New York, NY, USA, 1985. [Google Scholar]
- Nascentes, C.C.; Kamogawa, M.Y.; Fernandes, K.G.; Arruda, M.A.Z.; Nogueira, A.R.A.; Nóbrega, J.A. Direct Determination of Cu, Mn, Pb, and Zn in Beer by Thermospray Flame Furnace Atomic Absorption Spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2005, 60, 749–753. [Google Scholar] [CrossRef]
- Díaz, J.P.; Navarro, M.; López, H.; López, M.C. Determination of Selenium Levels in Dairy Products and Drinks by Hydride Generation Atomic Absorption Spectrometry: Correlation with Daily Dietary Intake. Food Addit. Contam. 1997, 14, 109–114. [Google Scholar] [CrossRef]
- Daryaii, L.B.; Samsampour, D.; Bagheri, A.; Sohrabi, J. High Content of Heavy Metals in Seaweed Species: A Case Study in the Persian Gulf and the Gulf of Oman in the Southern Coast of Iran. Phycol. Res. 2020, 4, 544–560. [Google Scholar]
- Trifan, A.; Breabăn, I.G.; Sava, D.; Bucur, L.; Toma, C.-C.; Miron, A. Heavy Metal Content in Macroalgae from Roumanian Black Sea. Rev. Roum. Chim. 2015, 60, 915–920. [Google Scholar]
- AOAC. Official Methods of Analysis, Association of Official Analytical Chemists (AOAC), 17th ed.; AOAC: Arlington, VA, USA, 2000; pp. 1–62. [Google Scholar]
- Qari, R.; Siddiqui, S.A.; Qureshi, N.A. A Comparative Study of Heavy Metal Concentrations in Surficial Sediments from Coastal Areas of Karachi, Pakistan. Mar. Pollut. Bull. 2005, 50, 595–599. [Google Scholar] [CrossRef]
- Miller-Ihli, N.J. Influence of Slurry Preparation on the Accuracy of Ultrasonic Slurry Electrothermal Atomic Absorption Spectrometry. J. Anal. At. Spectrom. 1994, 9, 1129–1134. [Google Scholar] [CrossRef]
- Cabrera, C.; Lorenzo, M.L.; Lopez, M.C. Electrothermal Atomic Absorption Spectrometric Determination of Cadmium, Copper, Iron, Lead, and Selenium in Fruit Slurry: Analytical Application to Nutritional and Toxicological Quality Control. J. AOAC Int. 1995, 78, 1061–1067. [Google Scholar] [CrossRef]
- Carlosena, A.; Gallego, M.; Valcárcel, M. Evaluation of Various Sample Preparation Procedures for TheDetermination of Chromium, Cobalt and Nickel in Vegetables. J. Anal. At. Spectrom. 1997, 12, 479–486. [Google Scholar] [CrossRef]
- Viñas, P.; Campillo, N.; López-García, I.; Hernández-Córdoba, M. Electrothermal Atomic Absorption Spectrometric Determination of Molybdenum, Aluminium, Chromium and Manganese in Milk. Anal. Chim. Acta 1997, 356, 267–276. [Google Scholar] [CrossRef]
- Giusti, L. Heavy Metal Contamination of Brown Seaweed and Sediments from the UK Coastline between the Wear River and the Tees River. Environ. Int. 2001, 26, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Albeshr, M.F.; Mahboobb, S.; Atique, U.; Pramanick, P.; Mitra, A. Bioaccumulation Factor (BAF) of Heavy Metals in Green Seaweed to Assess the Phytoremediation Potential. J. King Saud Univ.—Sci. 2022, 34, 102078. [Google Scholar] [CrossRef]
- Grobecker, K.H.; Kurfürst, U. Solid sampling by Zeeman graphite-furnace-AAS, a suitable tool for environmental analysis. In Element Concentration Cadasters; Lieth, H., Markert, B., Eds.; VCH: New York, NY, USA, 1990; pp. 121–137. [Google Scholar]
- Detcheva-Tchakarova, A.; Grobecker, K.-H. Determination of Trace Elements in Sea Food by Solid Sampling Zeeman Atomic Absorption Spectrometry (SSZAAS). JRC Publications Repository. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC33216 (accessed on 27 January 2023).
- Thirumdas, R.; Janve, M.; Siliveru, K.; Kothakota, A. 10—Determination of Food Quality Using Atomic Emission Spectroscopy. In Evaluation Technologies for Food Quality; Zhong, J., Wang, X., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2019; pp. 175–192. [Google Scholar] [CrossRef]
- Monaster, A.; Golightly, D.W. Inductively Coupled Plasmas in Analytical Atomic Spectrometry; VCH: New York, NY, USA, 1987. [Google Scholar]
- Grosser, Z.; Thompson, L.; Davidowski, L.; Neubauer, K. A Comparison of ICP-OES and ICP-MS for the Determination of Metals in Food. LCGC Suppl. 2008, 36–41. [Google Scholar]
- Mermet, J.M. Is It Still Possible, Necessary and Beneficial to Perform Research in ICP-Atomic Emission Spectrometry? J. Anal. At. Spectrom. 2005, 20, 11–16. [Google Scholar] [CrossRef]
- Todolí, J.L.; Maestre, S.E.; Mermet, J.M. Compensation for Matrix Effects in ICP-AES by Using Air Segmented Liquid Microsample Introduction. The Role of the Spray Chamber. J. Anal. At. Spectrom. 2004, 19, 728–737. [Google Scholar] [CrossRef] [Green Version]
- Kaviarasan, T.; Gokul, M.S.; Henciya, S.; Muthukumar, K.; Dahms, H.-U.; James, R.A. Trace Metal Inference on Seaweeds in Wandoor Area, Southern Andaman Island. Bull. Environ. Contam. Toxicol. 2018, 100, 614–619. [Google Scholar] [CrossRef]
- Farias, D.R.; Hurd, C.L.; Eriksen, R.S.; Simioni, C.; Schmidt, E.; Bouzon, Z.L.; Macleod, C.K. In Situ Assessment of Ulva Australis as a Monitoring and Management Tool for Metal Pollution. J. Appl. Phycol. 2017, 29, 2489–2502. [Google Scholar] [CrossRef]
- Lalitha, N.; Dhandapani, R. Trace Metals and Mineral Contents of Some Green Algal Seaweeds from Vadakadu (Rameswaram) Coastal Regions, Tamil Nadu, India. J. Pharm. Phytochem. 2018, 7, 2558–2561. [Google Scholar]
- Farías, S.; Arisnabarreta, S.P.; Vodopivez, C.; Smichowski, P. Levels of Essential and Potentially Toxic Trace Metals in Antarctic Macro Algae. Spectrochim. Acta Part B At. Spectrosc. 2002, 57, 2133. [Google Scholar] [CrossRef]
- Cipolloni, O.-A.; Gigault, J.; Dassié, É.P.; Baudrimont, M.; Gourves, P.-Y.; Amaral-Zettler, L.; Pascal, P.-Y. Metals and Metalloids Concentrations in Three Genotypes of Pelagic Sargassum from the Atlantic Ocean Basin-Scale. Mar. Pollut. Bull. 2022, 178, 113564. [Google Scholar] [CrossRef]
- Chávez, V.; Lithgow, D.; Losada, M.; Silva-Casarin, R. Coastal Green Infrastructure to Mitigate Coastal Squeeze. J. Infrastruct. Preserv. Resil. 2021, 2, 7. [Google Scholar] [CrossRef]
- López Miranda, J.L.; Celis, L.B.; Estévez, M.; Chávez, V.; van Tussenbroek, B.I.; Uribe-Martínez, A.; Cuevas, E.; Rosillo Pantoja, I.; Masia, L.; Cauich-Kantun, C.; et al. Commercial Potential of Pelagic Sargassum spp. in Mexico. Front. Mar. Sci. 2021, 8, 1692. [Google Scholar] [CrossRef]
- Bilge, G.; Sezer, B.; Boyaci, I.H.; Eseller, K.E.; Berberoglu, H. Performance Evaluation of Laser Induced Breakdown Spectroscopy in the Measurement of Liquid and Solid Samples. Spectrochim. Acta 2018, 145, 115–121. [Google Scholar] [CrossRef]
- Markiewicz-Keszycka, M.; Cama-Moncunill, X.; Casado-Gavalda, M.P.; Dixit, Y.; Cama-Moncunill, R.; Cullen, P.J.; Sullivan, C. Laser-Induced Breakdown Spectroscopy (LIBS) for Food Analysis: A Review. Trends Food Sci. Technol. 2017, 65, 80–93. [Google Scholar] [CrossRef]
- Senesi, G.S.; Senesi, N. Laser-Induced Breakdown Spectroscopy (LIBS) to Measure Quantitatively Soil Carbon with Emphasis on Soil Organic Carbon. A Review. Anal. Chim. Acta 2016, 938, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Peña-Icart, M.; Pomares-Alfonso, M.S.; Batista De Aquino, F.W.; Alonso-Hernandez, C.; Bolaños-Alvarez, Y.; Pereira-Filho, E.R. Fast and Direct Detection of Metal Accumulation in Marine Sediments Using Laser-Induced Breakdown Spectroscopy (LIBS): A Case Study from the Bay of Cienfuegos, Cuba. Anal. Methods 2017, 9, 3713–3719. [Google Scholar] [CrossRef]
- Da Silva Gomes, M.; Santos, D.; Nunes, L.C.; de Carvalho, G.G.A.; de Oliveira Leme, F.; Krug, F.J. Evaluation of Grinding Methods for Pellets Preparation Aiming at the Analysis of Plant Materials by Laser Induced Breakdown Spectrometry. Talanta 2011, 85, 1744–1750. [Google Scholar] [CrossRef] [Green Version]
- Andersen, M.-B.S.; Frydenvang, J.; Henckel, P.; Rinnan, Å. The Potential of Laser-Induced Breakdown Spectroscopy for Industrial at-Line Monitoring of Calcium Content in Comminuted Poultry Meat. Food Control 2016, 64, 226–233. [Google Scholar] [CrossRef]
- Jantzi, S.C.; Motto-Ros, V.; Trichard, F.; Markushin, Y.; Melikechi, N.; De Giacomo, A. Sample Treatment and Preparation for Laser-Induced Breakdown Spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2016, 115, 52–63. [Google Scholar] [CrossRef]
- Su, L.; Shi, W.; Chen, X.; Meng, L.; Yuan, L.; Chen, X.; Huang, G. Simultaneously and Quantitatively Analyze the Heavy Metals in Sargassum Fusiforme by Laser-Induced Breakdown Spectroscopy. Food Chem. 2021, 338, 127797. [Google Scholar] [CrossRef]
- Watson, J.T.; Sparkman, O.D. Introduction to Mass Spectrometry—Instrumentation, Applications and Strategies for Data Interpretation, 4th ed.; John Wiley and Sons: Chichester, UK, 2007. [Google Scholar]
- Removal of Spectral Interferences on Noble Metal Elements Using MS/MS Reaction Cell Mode of a Triple Quadrupole ICP-MS—Journal of Analytical Atomic Spectrometry (RSC Publishing). Available online: https://pubs.rsc.org/en/content/articlelanding/2015/ja/c5ja00308c/unauth (accessed on 1 October 2022).
- Crews, H.M. Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) for the Analysis of Trace Element Contaminants in Foods. In Progress in Food Contaminant Analysis; Gilbert, J., Ed.; Springer: Boston, MA, USA, 1996; pp. 147–186. [Google Scholar] [CrossRef]
- Khan, N.; Ryu, K.Y.; Choi, J.Y.; Nho, E.Y.; Habte, G.; Choi, H.; Kim, M.H.; Park, K.S.; Kim, K.S. Determination of Toxic Heavy Metals and Speciation of Arsenic in Seaweeds from South Korea. Food Chem. 2015, 169, 464–470. [Google Scholar] [CrossRef]
- Kumar, M.S.; Sharma, S.A. Toxicological effects of marine seaweeds: A cautious insight for human consumption. Crit. Rev. Food Sci. Nutr. 2021, 61, 500–521. [Google Scholar] [CrossRef] [PubMed]
- Banach, J.L.; Hoek-van den Hil, E.F.; van der Fels-Klerx, H.J. Food Safety Hazards in the European Seaweed Chain. Compr. Rev. Food Sci. Food Saf. 2020, 19, 332–364. [Google Scholar] [CrossRef] [PubMed]
- Conti, M.E.; Cecchetti, G. A Biomonitoring Study: Trace Metals in Algae and Molluscs from Tyrrhenian Coastal Areas. Environ. Res. 2003, 93, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Akcali, I.; Kucuksezgin, F. A Biomonitoring Study: Heavy Metals in Macroalgae from Eastern Aegean Coastal Areas. Mar. Pollut. Bull. 2011, 62, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Quiles, D.; Marbà, N.; Tovar-Sánchez, A. Trace Metal Accumulation in Marine Macrophytes: Hotspots of Coastal Contamination Worldwide. Sci. Total. Environ. 2017, 576, 520–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duinker, A.; Kleppe, M.; Fjære, E.; Biancarosa, I.; Heldal, H.E.; Dahl, L.; Lunestad, B.T. Knowledge Update on Macroalgae Food and Feed Safety-Based on Data Generated in the Period 2014–2019 by the Institute of Marine Research, Norway; Havforskningsinstituttet: Bergen, Norway, 2020; Available online: https://www.hi.no/hi/nettrapporter/rapport-fra-havforskningen-en-2020-44 (accessed on 23 March 2023).
Matrices | Area of Application | Arsenic (As) | Cadmium (Cd) | Mercury (Hg) | Lead (Pb) |
---|---|---|---|---|---|
Food | International | 0.1–0.2 | 0.05–2 | 0.5–1 | 0.01–3 |
European Union | 0.1–0.2 | 0.05–3 | 0.1–1 | 0.02–3 | |
USA | NA | NA | NA | NA | |
China | 0.5 | 0.05 | 0.01 | 0.2 | |
Drinking water | International | 0.01 | 0.003 | 0.001 | 0.01 |
European Union | 0.01 | 0.005 | 0.01 | 0.001 | |
USA | 0.01 | 0.005 | 0.002 | 0.015 | |
China | 0.01 | 0.005 | 0.001 | 0.01 |
Persian Gulf and the Gulf of Oman [37] | Southern Thailand Provinces [8] | Bay of Bengal [34] | Coastal Areas of Rameshwaram, Tamil Nadu, India [22] | Coastline of Hormuzgan Province, Iran [18] | Coastal Areas of Karachi, Arabian Sea [40] | Coastal Sites of Northeast England [41] | |
---|---|---|---|---|---|---|---|
Cr | 1.43–2.80 | ND * | 0.004–4 | 0.8–5.0 | |||
Mn | 557.05–746.75 | 0.543–3.615 | - | - | 0.006–1.57 | 18.8–778.4 | |
Fe | 196.08 | 172.95–841.23 | 1104–2872 | 4438–14,867 | 0.011–12.6 | 65.0–1208.9 | |
Co | 0.003–0.20 | ||||||
Ni | 12.89 | 6.03–8.26 | 21.5–90.8 | 0.003–0.43 | 0.3–70.5 | ||
Cu | 11.17 | 1.65–2.91 | ND * | 90–107 | 6.4–16.9 | 0.002–0.8 | 4.8–50.6 |
Zn | 19.67 | 30.15–36.60 | 0.203 | 108–137 | 54.93 | 0.008–0.632 | 12.9–1015.5 |
Ag | 0.9–4.2 | ||||||
Cd | 4.8 | 0.08–0.13 | 0.092–0.121 | 27–42.2 | 2.1–7.0 | 0.002–0.42 | 0.02–10.03 |
Pb | 7.41 | 4.79–6.60 | 0.429–0.933 | 19–37 | 13.1–30.5 | 0.006–1.1 | 0.1–12.1 |
Seaweed Farms in Malaysia [24] | Coastal Regions of Sri Lanka [26] | Canary Islands, Spain [5] | Wandoor Area of Southern Andaman Island [47] | Abandoned Intertidal Cu and Zinc Mine, Brooksville, ME, USA [20] | Zhejiang, China [29] | Southeast Coast of India [48] | |
---|---|---|---|---|---|---|---|
V | 0.36–3.12 | ||||||
Cr | 23.8–47.37 | 33.5–77.5 | 0.002–0.334 | 0.853–6.846 | 0.029–0.89 | ||
Mn | 2.5–25.6 | 0.118–7.736 | 11.30–46.56 | 0.53–7.36 | |||
Fe | 133–324.2 | 49.1-–629 | 1.11–58.5 | ||||
Co | 0.02–5.12 | ||||||
Ni | 6.9–14.3 | 3.5–10.7 | 0.88–2.30 | 1.023–2.138 | 0.03–13.26 | ||
Cu | 0.85–2.9 | 1.5–8.4 | 0.003–0.291 | <1.0–234 | 1.099–21.94 | 0.19–1.38 | |
Zn | 12–31.2 | 0.019–5.537 | 22.9–2570 | 0.36–2.11 | |||
As | 1.35-7.9 | ND *–8.1 | 12.44–30.5 | ||||
Ag | 0.1–0.25 | ||||||
Cd | 1.23–2 | 3.1–6.8 | 0.13–0.22 | 0–0.311 | <1.0–20.1 | 0.117–4.323 | 0.01–0.60 |
Hg | ND * | 0.008–0.087 | |||||
Pb | 2.75–11.94 | ND * | 0.34–2.70 | 0–0.165 | <1.0–55.2 | 0.532–1.186 | 0.13–11.31 |
Northwestern Spain [17] | Gulf of Thessaloniki, Aegean Sea [19] | South Korea [60] | Southeast Asia [7] | Coast of the Northwestern Mediterranean Sea [4] | Greenland [24] | |
---|---|---|---|---|---|---|
V | 9.802–26.21 | 0.303–5.85 | 4.9–43 | |||
Cr | 0.56 | 2.767–53.39 | 0.063–15.8 | 1.4–35 | 0.657–7.04 | |
Mn | 19.3 | 38.88–757.4 | 5.68–58.5 | 14–379 | 3.35–36.5 | |
Fe | 95.1–2295 | 125–14,148 | 82.2–702 | |||
Co | 0.474–9.199 | 0.082–0.911 | 0.75–5.6 | |||
Ni | 2.42 | 3.187–48.34 | 0.275–6.73 | 2.1–32 | 0.783–7.80 | |
Cu | 2.021–26.65 | 1.01–48.1 | 4.1–73 | 1.40–19.10 | ||
Zn | 70.6 | 70.39–218.6 | 11.9–137.2 | 8.2–52 | 12.3–75.5 | |
As | 19.7 | 0.593–45.65 | 1.84–6.48 | 12.5–92.5 | 2.0–37 | 6.93–63.1 |
Sr | 51.88–2223.0 | 23.9–1560 | ||||
Mo | 0.006–0.934 | 0.072–1.090 | 0.30–4.7 | |||
Ag | ||||||
Cd | 0.86 | 0.016–1.121 | 0.038–0.119 | 0.234–7.33 | 0.62–0.54 | 0.134–2.96 |
Sn | 0.004–0.947 | 0.043–4.6 | ||||
Sb | 0.002–0.313 | 0.045–1.1 | ||||
Hg | <DL *–0.006 | 0.005–0.068 | 0.010–0.12 | <0.078 | ||
Tl | 0.0004–0.02 | 0.010–0.13 | ||||
Pb | 0.02 | 2.697–27.94 | 0.032–0.988 | 0.141–28.40 | 2.2–40 | 0.101–1.59 |
U | 0.037–1.542 | 0.015–1.260 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindenmayer, R.; Lu, L.; Eivazi, F.; Afrasiabi, Z. Atomic Spectroscopy-Based Analysis of Heavy Metals in Seaweed Species. Appl. Sci. 2023, 13, 4764. https://doi.org/10.3390/app13084764
Lindenmayer R, Lu L, Eivazi F, Afrasiabi Z. Atomic Spectroscopy-Based Analysis of Heavy Metals in Seaweed Species. Applied Sciences. 2023; 13(8):4764. https://doi.org/10.3390/app13084764
Chicago/Turabian StyleLindenmayer, Randall, Lucy Lu, Frieda Eivazi, and Zahra Afrasiabi. 2023. "Atomic Spectroscopy-Based Analysis of Heavy Metals in Seaweed Species" Applied Sciences 13, no. 8: 4764. https://doi.org/10.3390/app13084764
APA StyleLindenmayer, R., Lu, L., Eivazi, F., & Afrasiabi, Z. (2023). Atomic Spectroscopy-Based Analysis of Heavy Metals in Seaweed Species. Applied Sciences, 13(8), 4764. https://doi.org/10.3390/app13084764