Wine Polyphenol Content during the Fermentation of Vitis vinifera CS Grapes and Its Relationship with the Presence of Minerals in the Resulting Wine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Cabernet Sauvignon (CS) Grapes and Wines
2.2. Winemaking Process
2.3. Determination of Physicochemical Parameters
2.4. Antioxidant Properties
2.5. Quantification of Individual Phenolic Compounds
2.6. Elemental Composition
2.7. Phenolic Compound Contents of Fermentation Process Residues
2.8. Statistics Analysis
3. Results and Discussion
3.1. Physicochemical Properties
3.2. Ethanolic Extracts
3.3. Antioxidant Properties
3.4. Storage Time of Laboratory-Made Wine
3.5. Individual Bioactive Compounds
3.6. Elemental Composition of Red Wine
3.7. Principal Component Analysis (PCA)
3.8. Content of Phenolic Compounds in Residues of the Fermentation Process
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Artero, A.; Artero, A.; Tarín, J.J.; Cano, A. The impact of moderate wine consumption on health. Maturitas 2015, 80, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Tresserra-Rimbau, A.; Medina-Remón, R.M.; Lamuela-Raventós, M.; Bulló, J.; Salas-Salvadó, D.; Corella, M.; Fitó, A.; Gea, E.; Gómez-Gracia, J.; Lapetra, F.; et al. Moderate red wine consumption is associated with a lower prevalence of the metabolic syndrome in the PREDIMED population. Br. J. Nutr. 2015, 113, S121–S130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snopek, L.; Mlcek, J.; Sochorova, L.; Baron, M.; Hlavacova, I.; Jurikova, T.; Kizek, R.; Sedlackova, E.; Sochor, J. Contribution of red wine consumption to human health protection. Molecules 2018, 23, 1684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liberale, A.L.; Bonaventura, F.; Montecucco, F.; Dallegri, F.; Carbone, F. Impact of red wine consumption on cardiovascular health. Curr. Med. Chem. 2019, 26, 3542–3566. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, M.A.; Hershey, M.S.; Zazpe, I.; Trichopoulou, A. Transferability of the Mediterranean diet to non-Mediterranean countries. What is and what is not the Mediterranean diet. Nutrients 2017, 9, 1226. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Montoro, M.; Olalla-Herrera, M.; Gimenez-Martinez, R.; Navarro-Alarcon, M.; Rufián-Henares, J.A. Phenolic compounds and antioxidant activity of Spanish commercial grape juices. J. Food Compos. Anal. 2015, 38, 19–26. [Google Scholar] [CrossRef]
- Somkuwar, R.G.; Bhange, M.A.; Oulkar, D.P.; Sharma, A.K.; Shabeer, T.A. Estimation of polyphenols by using HPLC–DAD in red and white wine grape varieties grown under tropical conditions of India. J. Food Sci. Technol. 2018, 55, 4994–5002. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Q.; Lu, H.; Li, J.; Yang, D.; Liu, J.; Yan, C. Phenolic metabolism and related heavy metal tolerance mechanism in Kandelia Obovata under Cd and Zn stress. Ecotoxicol. Environ. Saf. 2019, 169, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Puente-Garza, C.A.; Meza-Miranda, C.; Ochoa-Martínez, D.; García-Lara, S. Effect of in vitro drought stress on phenolic acids, flavonols, saponins, and antioxidant activity in Agave salmiana. Plant Physiol. Biochem. 2017, 115, 400–407. [Google Scholar] [CrossRef]
- Naikoo, M.I.; Dar, M.I.; Raghib, F.; Jaleel, H.; Ahmad, B.; Raina, A.; Ahmad, K.F.; Naushin, F. Role and regulation of plants phenolics in abiotic stress tolerance: An overview. Plant Signal Mol. 2019, 157–168. [Google Scholar] [CrossRef]
- Lam, S.S.; Howell, K.S. Drosophila-associated yeast species in vineyard ecosystems. FEMS Microbiol. Lett. 2015, 362, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maltman, A. Minerality in wine: A geological perspective. J. Wine Res. 2013, 24, 169–181. [Google Scholar] [CrossRef] [Green Version]
- Galicia-Campos, E.; Ramos-Solano, B.; Montero-Palmero, M.B.; Gutierrez-Mañero, F.J.; García-Villaraco, A. Management of Plant Physiology with Beneficial Bacteria to Improve Leaf Bioactive Profiles and Plant Adaptation under Saline Stress in Olea europea L. Foods 2020, 9, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merkyte, V.; Morozova, K.; Boselli, E.; Scampicchio, M. Fast and simultaneous determination of antioxidant activity, total phenols and bitterness of red wines by a multichannel amperometric electronic tongue. Electroanalysis 2018, 30, 314–319. [Google Scholar] [CrossRef]
- Acuña, P.E.; Vásquez-Murrieta, M.S.; Franco-Hernández, M.O.; López-Cortéz, S. Relationship between the elemental composition of grapeyards and bioactive compounds in the Cabernet Sauvignon grapes Vitis vinífera harvested in Mexico. Food Chem. 2016, 203, 79–85. [Google Scholar] [CrossRef]
- Derwand, R.; Scholz, M.; Zelenko, V. COVID-19 outpatients: Early risk-stratified treatment with zinc plus low-dose hydroxychloroquine and azithromycin: A retrospective case series study. Int. J. Antimicrob. Agents 2020, 56, 106214. [Google Scholar] [CrossRef]
- Kelleni, M.T. Resveratrol-zinc nanoparticles or pterostilbene-zinc: Potential COVID-19 mono and adjuvant therapy. Biomed. Pharmacother. 2021, 139, 111626. [Google Scholar] [CrossRef] [PubMed]
- López, N.; Puértolas, E.; Hernández-Orte, P.; Álvarez, I.; Raso, J. Effect of a pulsed electric field treatment on the anthocyanins composition and other quality parameters of Cabernet Sauvignon freshly fermented model wines obtained after different maceration times. LWT-Food Sci. Technol. 2009, 42, 1225–1231. [Google Scholar] [CrossRef]
- Gerardi, G.; Cavia-Saiz, M.; Rivero-Pérez, M.D.; González-SanJosé, M.L.; Muñiz, P. The dose–response effect on polyphenol bioavailability after intake of white and red wine pomace products by Wistar rats. Food Funct. 2020, 11, 1661–1671. [Google Scholar] [CrossRef]
- Eriotou, E.; Kopsahelis, N.; Lappa, I.; Alimpoumpa, D.; Diamanti, V.; Koulougliotis, D. Identification of Indigenous Yeast Strains from Spontaneous Vinification of Grapes from the Red Variety Avgoustiatis Zakynthou (Ionian Islands, Greece) and Antioxidant Activity of the Produced Wine. J. Food Chem. Nanotechnol. 2020, 6, 48–55. [Google Scholar] [CrossRef]
- Breksa, A.P.; Takeoka, G.R.; Hidalgo, M.B.; Vilches, A.; Vasse, J. Antioxidant activity and phenolic content of 16 raisin grape (Vitis vinifera L.) cultivars and selections. Food Chem. 2010, 121, 740–745. [Google Scholar] [CrossRef]
- Casazza, A.A.; Aliakbarian, B.; Mantegna, S.; Cravotto, G.; Perego, P. Extraction of phenolics from Vitis vinifera wastes using non-conventional techniques. J. Food Eng. 2010, 100, 50–55. [Google Scholar] [CrossRef]
- Franco Hernández, M.O.; Vásquez Murrieta, M.S.; Patiño-Siciliano, A.; Dendooven, L. Heavy metals concentration in plants growing on mine tailings in Central Mexico. Bioresour. Technol. 2010, 101, 3864–3869. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Chua, J.Y.; Huang, D.; Lee, P.R.; Liu, S.Q. Biotransformation of chemical constituents of durian wine with simultaneous alcoholic fermentation by Torulaspora delbrueckii and malolactic fermentation by Oenococcus oeni. Appl. Microbiol. Biot. 2016, 100, 8877–8888. [Google Scholar] [CrossRef]
- Peralbo Molina, Á.; Luque de Castro, M.D. Potential of residues from the Mediterranean agriculture and agrifood industry. Trends Food Sci. Technol. 2013, 32, 16–24. [Google Scholar] [CrossRef]
- Atanacković, M.; Petrović, A.; Jović, S.; Gojković-Bukarica, L.; Bursać, M.; Cvejić, J. Influence of winemaking techniques on the resveratrol content, total phenolic content and antioxidant potential of red wines. Food Chem. 2012, 131, 513–518. [Google Scholar] [CrossRef]
- Cetó, X.; Gutiérrez, J.M.; Gutiérrez, M.; Céspedes, F.; Capdevila, J.; Mínguez, S.; Del Valle, M. Determination of total polyphenol index in wines employing a voltammetric electronic tongue. Anal. Chim. Acta 2012, 732, 172–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villano, D.; Fernández-Pachón, M.S.; Troncoso, A.M.; García-Parrilla, M.C. Influence of enological practices on the antioxidant activity of wines. Food Chem. 2006, 95, 394–404. [Google Scholar] [CrossRef]
- Mulero, J.; Pardo, F.; Zafrilla, P. Antioxidant activity and phenolic composition of organic and conventional grapes and wines. J. Food Compos. Anal. 2010, 23, 569–574. [Google Scholar] [CrossRef]
- Schwarz, M.; Rodríguez, M.C.; Guillén, D.A.; Barroso, C.G. Evolution of the colour, antioxidant activity and polyphenols in unusually aged Sherry wines. Food Chem. 2012, 133, 271–276. [Google Scholar] [CrossRef]
- Guld, Z.; Racz, A.; Tima, H.; Kallay, M.; Nyitraine Sardy, D. Effects of aging in oak barrels on the trans -resveratrol and anthocyanin concentration of red wines from hungary. Acta Aliment. 2019, 48, 349–357. [Google Scholar] [CrossRef] [Green Version]
- Ozyigit, I.I.; Kahraman, M.V.; Ercan, O. Relation between explant age, total phenols and regeneration response of tissue cultured cotton (Gossypium hirsutum L.). Afr. J. Biotechnol. 2007, 6, 3–8. [Google Scholar]
- Kment, P.; Mihaljevič, M.; Ettler, V.; Šebek, O.; Strnad, L.; Rohlová, L. Differentiation of Czech wines using multielement composition–A comparison with vineyard soil. Food Chem. 2005, 91, 157–165. [Google Scholar] [CrossRef]
- Fiket, Ž.; Mikac, N.; Kniewald, G. Arsenic and other trace elements in wines of eastern Croatia. Food Chem. 2011, 126, 941–947. [Google Scholar] [CrossRef]
- González, G.; Peña-Méndez, E.M. Multivariate data analysis in classification of must and wine from chemical measurements. Eur. Food Res. Technol. 2000, 212, 100–107. [Google Scholar] [CrossRef]
- Czibulya, Z.; Horváth, I.; Kollár, L.; Kunsági-Máté, S. Unexpected effect of potassium ions on the copigmentation in red wines. Food Res. Int. 2012, 45, 272–276. [Google Scholar] [CrossRef]
- De Orduna, R.M. Climate change associated effects on grape and wine quality and production. Food Res. Int. 2010, 43, 1844–1855. [Google Scholar] [CrossRef]
- Cruz, T.L.E.; Esperanza, M.G.; Wrobel, K.; Barrientos, E.Y.; Aguilar, F.J.A.; Wrobel, K. Determination of major and minor elements in Mexican red wines by microwave-induced plasma optical emission spectrometry, evaluating different calibration methods and exploring potential of the obtained data in the assessment of wine provenance. Spectrochim. Acta B Atomic Spectrosc. 2020, 164, 105754. [Google Scholar] [CrossRef]
- Li, Y.; Skouroumounis, G.K.; Elsey, G.M.; Taylor, D.K. Microwave-assistance provides very rapid and efficient extraction of grape seed polyphenols. Food Chem. 2011, 129, 570–576. [Google Scholar] [CrossRef]
Sample | Grape (in 100 g dw) | Wine (mg/L) | ||||||
---|---|---|---|---|---|---|---|---|
Catechin (mg) * | Epicatechin (mg) * | Piceid (µg) * | Resveratrol (µg) * | Catechin * | Epicatechin | Piceid * | Resveratrol * | |
QRO | 9.3 ± 1 | 3.7 ± 2.8 | 178 ± 23 | 64 ± 17 | 71 ± 12 | 49 ± 15 | 1.7 ± 0.5 | 0.6 ± 0.15 |
BC1 | 7.3 ± 1 | 0.4 ± 0.4 | 29 ± 8 | 1 ± 1 | 40 ± 6 | 46 ± 12 | 0.4 ± 0.2 | 0.18 ± 0.1 |
BC2 | 8.4 ± 0.8 | 0.4 ± 0.2 | 43 ± 15 | 8 ± 8 | 56 ± 18 | 58 ± 14 | 1 ± 0.4 | 0.25 ± 0.1 |
CQRO | - | - | - | - | 37 ± 1.2 | 2.5 ± 0.4 | 4 ± 0.2 | 0.4 ± 0.3 |
CBC | - | - | - | - | 46 ± 3 | 24 ± 1.6 | 6.1 ± 0.5 | 0.1 ± 0.05 |
Element | QRO | BC1 | BC2 | CQRO | CBC | Kment et al. (2005) [33] |
---|---|---|---|---|---|---|
Al | 30 | 34 | 31 | 1.55 | 19 | 0.56 |
B * | 2.33 | 4.66 | 3.13 | 3.23 | 5.96 | --- |
Ba | 8.82 | 134.6 | 26.45 | n/d | n/d | 0.086 |
Ca | 130 | 124 | 152 | 109 | 149 | 108 |
Co * | 1.3 | 0.2 | n/d | n/d | 0.05 | 0.002 |
Cr | 1.48 | 2.1 | 0.91 | 0.8 | 0.8 | 0.058 |
Cu | 1.52 | 0.75 | 0.81 | 0.6 | 1.6 | 0.448 |
Fe | 26 | 17 | 13 | 9.17 | 8.3 | 2.64 |
K * | 11,679 | 15,596 | 14,133 | 9337 | 13,145 | 1126 |
Mg | 120 | 103 | 118 | 115 | 135 | 75.4 |
Mn | 1.55 | 1.06 | 0.96 | 0.95 | 0.96 | 0.92 |
Na * | 1232 | 938 | 1228 | 859 | 2129 | 14.7 |
Ni | 0.76 | 0.95 | 0.47 | 1.13 | 0.45 | 0.026 |
Pb * | 0.2 | n/d | n/d | 1 | n/d | 1.2 |
Si * | 10 | 16 | 14 | 18 | 228 | --- |
Sr | 10 | 14 | 15 | 10 | 11 | 0.4 |
Ti | 0.65 | 0.32 | 1.35 | n/d | n/d | --- |
Tl | 0.16 | 0.29 | 0.2 | 0.26 | 0.36 | 0.0002 |
Zn * | 1.6 | 0.85 | 0.56 | 0.7 | 2.2 | 0.401 |
Exp. | Power (W) | Time (s) | % Recovery * |
---|---|---|---|
1 | 100 | 10 | 39 |
2 | 100 | 10 | 42 |
3 | 300 | 10 | 51 |
4 | 300 | 10 | 50.8 |
5 | 100 | 30 | 58.8 |
6 | 100 | 30 | 54.8 |
7 | 300 | 30 | 65 |
8 | 300 | 30 | 53 |
9 | 200 | 20 | 54 |
10 | 200 | 20 | 43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acuña-Avila, P.E.; Vasquez-Murrieta, M.S.; Cortés-Camargo, S.; Hernández-Botello, M.T.; Ramos-Monroy, O.; López-Cortéz, M.d.S. Wine Polyphenol Content during the Fermentation of Vitis vinifera CS Grapes and Its Relationship with the Presence of Minerals in the Resulting Wine. Appl. Sci. 2023, 13, 8314. https://doi.org/10.3390/app13148314
Acuña-Avila PE, Vasquez-Murrieta MS, Cortés-Camargo S, Hernández-Botello MT, Ramos-Monroy O, López-Cortéz MdS. Wine Polyphenol Content during the Fermentation of Vitis vinifera CS Grapes and Its Relationship with the Presence of Minerals in the Resulting Wine. Applied Sciences. 2023; 13(14):8314. https://doi.org/10.3390/app13148314
Chicago/Turabian StyleAcuña-Avila, Pedro Estanislao, María Soledad Vasquez-Murrieta, Stefani Cortés-Camargo, Mayuric Teresa Hernández-Botello, Oswaldo Ramos-Monroy, and Ma del Socorro López-Cortéz. 2023. "Wine Polyphenol Content during the Fermentation of Vitis vinifera CS Grapes and Its Relationship with the Presence of Minerals in the Resulting Wine" Applied Sciences 13, no. 14: 8314. https://doi.org/10.3390/app13148314
APA StyleAcuña-Avila, P. E., Vasquez-Murrieta, M. S., Cortés-Camargo, S., Hernández-Botello, M. T., Ramos-Monroy, O., & López-Cortéz, M. d. S. (2023). Wine Polyphenol Content during the Fermentation of Vitis vinifera CS Grapes and Its Relationship with the Presence of Minerals in the Resulting Wine. Applied Sciences, 13(14), 8314. https://doi.org/10.3390/app13148314