Trends of Global Scientific Research on Reclaimed Coal Mine Sites between 2015 and 2020
Abstract
:1. Introduction
2. Materials and Methods
- C, N, and SOM;
- Physical;
- Biological;
- Chemical;
- Technology;
- Review and Metadata.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Hendrychová, M.; Kabrna, M. An analysis of 200-year-long changes in a landscape affected by large-scale surface coal mining: History, present and future. Appl. Geogr. 2016, 74, 151–159. [Google Scholar] [CrossRef]
- Hilson, G. An overview of land use conflicts in mining communities. Land Use Policy 2002, 19, 65–73. [Google Scholar] [CrossRef]
- Kuter, N. Reclamation of Degraded Landscapes due to Opencast Mining. In Advances in Landscape Architecture; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef] [Green Version]
- Svobodova, K.; Yellishetty, M.; Vojar, J. Coal mining in Australia: Understanding stakeholder knowledge of mining and mine rehabilitation. Energy Policy 2019, 126, 421–430. [Google Scholar] [CrossRef]
- Lima, A.T.; Mitchell, K.; O’connell, D.W.; Verhoeven, J.; Van Cappellen, P. The legacy of surface mining: Remediation, restoration, reclamation and rehabilitation. Environ. Sci. Policy 2016, 66, 227–233. [Google Scholar] [CrossRef]
- Bell, L. Establishment of native ecosystems after mining—Australian experience across diverse biogeographic zones. Ecol. Eng. 2001, 17, 179–186. [Google Scholar] [CrossRef]
- Bradshaw, A.; Hüttl, R. Future minesite restoration involves a broader approach. Ecol. Eng. 2001, 17, 87–90. [Google Scholar] [CrossRef]
- Tropek, R.; Kadlec, T.; Hejda, M.; Kocarek, P.; Skuhrovec, J.; Malenovsky, I.; Vodka, S.; Spitzer, L.; Banar, P.; Konvicka, M. Technical reclamations are wasting the conservation potential of post-mining sites. A case study of black coal spoil dumps. Ecol. Eng. 2012, 43, 13–18. [Google Scholar] [CrossRef]
- Spasić, M.; Borůvka, L.; Vacek, O.; Drábek, O.; Tejnecký, V. Pedogenesis problems on reclaimed coal mining sites. Soil Water Res. 2021, 16, 137–150. [Google Scholar] [CrossRef]
- Rehounkova, K.; Rehounek, J.; Prach, K. Near-Natural Restoration vs. Technical Reclamation of Mining Sites in the Czech Republic; University of South Bohemia in České Budějovice: České Budějovice, Czech Republic, 2011. [Google Scholar]
- Karan, S.K.; Samadder, S.R.; Maiti, S.K. Assessment of the capability of remote sensing and GIS techniques for monitoring reclamation success in coal mine degraded lands. J. Environ. Manag. 2016, 182, 272–283. [Google Scholar] [CrossRef]
- Johansen, K.; Erskine, P.D.; McCabe, M.F. Using Unmanned Aerial Vehicles to assess the rehabilitation performance of open cut coal mines. J. Clean. Prod. 2019, 209, 819–833. [Google Scholar] [CrossRef]
- Ahirwal, J.; Maiti, S.K.; Reddy, M.S. Development of carbon, nitrogen and phosphate stocks of reclaimed coal mine soil within 8 years after forestation with Prosopis juliflora (Sw.) Dc. Catena 2017, 156, 42–50. [Google Scholar] [CrossRef]
- Ahirwal, J.; Maiti, S.K. Assessment of soil carbon pool, carbon sequestration and soil CO2 flux in unreclaimed and reclaimed coal mine spoils. Environ. Earth Sci. 2018, 77, 9. [Google Scholar] [CrossRef]
- Detheridge, A.; Hosking, L.; Thomas, H.; Sarhosis, V.; Gwynn-Jones, D.; Scullion, J. Deep seam and minesoil carbon sequestration potential of the South Wales Coalfield, UK. J. Environ. Manag. 2019, 248, 109325. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, H.; Zhang, Q.; Shao, H.; Gao, C.; Zhang, X. Effects of fertilization and straw return methods on the soil carbon pool and CO2 emission in a reclaimed mine spoil in Shanxi Province, China. Soil Tillage Res. 2019, 195, 104361. [Google Scholar] [CrossRef]
- Sun, W.; Li, X.; Niu, B. Prediction of soil organic carbon in a coal mining area by Vis-NIR spectroscopy. PLoS ONE 2018, 13, e0196198. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Bai, Z.; Cao, Y.; Xie, F.; Zhang, J.; Wang, Y. Dynamic changes in carbon sequestration from opencast mining activities and land reclamation in China’s loess Plateau. Sustainability 2019, 11, 1473. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Zhao, Z.; Li, X.; Wang, Y.; Bai, Z. Characteristics of labile organic carbon fractions in reclaimed mine soils: Evidence from three reclaimed forests in the Pingshuo opencast coal mine, China. Sci. Total Environ. 2018, 613–614, 1196–1206. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Y. Quality evaluation of the carbon pool of reclaimed soil based on principal component analysis. FRESENIUS Environ. Bull. 2019, 28, 1485–1493. Available online: https://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=C4qMBRTGgYOtL8HDkpd&page=1&doc=38&cacheurlFromRightClick=no (accessed on 30 March 2020).
- Guan, Y.; Zhou, W.; Bai, Z.; Cao, Y.; Huang, Y.; Huang, H. Soil nutrient variations among different land use types after reclamation in the Pingshuo opencast coal mine on the Loess Plateau, China. Catena 2020, 188, 104427. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, J.; Bai, Z.; Reading, L.; Jing, Z. Three-dimensional quantification of macropore networks of different compacted soils from opencast coal mine area using X-ray computed tomography. Soil Tillage Res. 2020, 198, 104567. [Google Scholar] [CrossRef]
- Ezeokoli, O.T.; Mashigo, S.K.; Maboeta, M.S.; Bezuidenhout, C.C.; Khasa, D.P.; Adeleke, R.A. Arbuscular mycorrhizal fungal community differentiation along a post-coal mining reclamation chronosequence in South Africa: A potential indicator of ecosystem recovery. Appl. Soil Ecol. 2020, 147, 103429. [Google Scholar] [CrossRef]
- Yan, M.; Cui, F.; Liu, Y.; Zhang, Z.; Zhang, J.; Ren, H.; Li, Z. Vegetation type and plant diversity affected soil carbon accumulation in a postmining area in Shanxi Province, China. Land Degrad. Dev. 2019, 31, 181–189. [Google Scholar] [CrossRef]
- López-Marcos, D.; Turrión, M.B.; Martínez-Ruiz, C. Linking soil variability with plant community composition along a mine-slope topographic gradient: Implications for restoration. Ambio 2020, 49, 337–349. [Google Scholar] [CrossRef] [PubMed]
- Block, P.R.; Gasch, C.K.; Limb, R.F. Biological integrity of mixed-grass prairie topsoils subjected to long-term stockpiling. Appl. Soil Ecol. 2020, 145, 103347. [Google Scholar] [CrossRef]
- Jambhulkar, H.P.; Kumar, M.S. Eco-restoration approach for mine spoil overburden dump through biotechnological route. Environ. Monit. Assess. 2019, 191, 772. [Google Scholar] [CrossRef]
- Mylliemngap, W.; Barik, S.K. Plant diversity, net primary productivity and soil nutrient contents of a humid subtropical grassland remained low even after 50 years of post-disturbance recovery from coal mining. Environ. Monit. Assess. 2019, 191, 697. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J. Slow Recovery of Major Soil Nutrient Pools during Reclamation in a Sub-Alpine Copper Mine Area, Southeastern Edge of the Tibetan Plateau, Sichuan Province, SW China. Forests 2019, 10, 1069. [Google Scholar] [CrossRef] [Green Version]
- Bao, N.; Liu, S.; Zhou, Y. Predicting particle-size distribution using thermal infrared spectroscopy from reclaimed mine land in the semi-arid grassland of North China. Catena 2019, 183, 104190. [Google Scholar] [CrossRef]
- Yang, X.; Li, X.; Shi, M.; Jin, L.; Sun, H. The effects of replaced topsoil of different depths on the vegetation and soil properties of reclaimed coal mine spoils in an alpine mining area. Isr. J. Ecol. Evol. 2019, 65, 92–105. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, J.; Li, S. Tempo-spatial changes and main anthropogenic influence factors of vegetation fractional coverage in a large-scale opencast coal mine area from 1992 to 2015. J. Clean. Prod. 2019, 232, 940–952. [Google Scholar] [CrossRef]
- Pihlap, E.; Vuko, M.; Lucas, M.; Steffens, M.; Schloter, M.; Vetterlein, D.; Endenich, M.; Kögel-Knabner, I. Initial soil formation in an agriculturally reclaimed open-cast mining area—The role of management and loess parent material. Soil Tillage Res. 2019, 191, 224–237. [Google Scholar] [CrossRef]
- Hall, S.L.; Barton, C.D.; Sena, K.L.; Angel, P. Reforesting Appalachian Surface Mines from Seed: A Five-Year Black Walnut Pilot Study. Forests 2019, 10, 573. [Google Scholar] [CrossRef] [Green Version]
- Kumari, S.; Maiti, S.K. Reclamation of coalmine spoils with topsoil, grass, and legume: A case study from India. Environ. Earth Sci. 2019, 78, 429. [Google Scholar] [CrossRef]
- Brooks, J.P.; Adeli, A.; Smith, R.K.; McGrew, R.; Lang, D.J.; Read, J.J. Bacterial Community Structure Recovery in Reclaimed Coal Mined Soil under Two Vegetative Regimes. J. Environ. Qual. 2019, 48, 1029–1037. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, J.; Feng, Y. Linking the reclaimed soils and rehabilitated vegetation in an opencast coal mining area: A complex network approach. Environ. Sci. Pollut. Res. 2019, 26, 19365–19378. [Google Scholar] [CrossRef]
- Agus, C.; Primananda, E.; Faridah, E.; Wulandari, D.; Lestari, T. Role of arbuscular mycorrhizal fungi and Pongamia pinnata for revegetation of tropical open-pit coal mining soils. Int. J. Environ. Sci. Technol. 2019, 16, 3365–3374. [Google Scholar] [CrossRef]
- Cheng, L.; Sun, H. Reclamation suitability evaluation of damaged mined land based on the integrated index method and the difference-product method. Environ. Sci. Pollut. Res. 2019, 26, 13691–13701. [Google Scholar] [CrossRef]
- Franke, M.E.; Zipper, C.; Barney, J.N. Invasive autumn olive performance varies in different reclamation conditions: Implications for restoration. Restor. Ecol. 2019, 27, 600–606. [Google Scholar] [CrossRef]
- Lei, N.; Han, J.; Mu, X.; Sun, Z.; Wang, H. Effects of improved materials on reclamation of soil properties and crop yield in hollow villages in China. J. Soils Sediments 2019, 19, 2374–2380. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, J.; Bai, Z.; Reading, L. Effects of surface coal mining and land reclamation on soil properties: A review. Earth-Sci. Rev. 2019, 191, 12–25. [Google Scholar] [CrossRef]
- Desai, M.; Haigh, M.; Walkington, H. Phytoremediation: Metal decontamination of soils after the sequential forestation of former opencast coal land. Sci. Total Environ. 2019, 656, 670–680. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Bi, Y.; Jiang, B.; Wang, Z.; Zhang, Y.; Zhakypbek, Y. Arbuscular mycorrhizal fungi ameliorate the chemical properties and enzyme activities of rhizosphere soil in reclaimed mining subsidence in northwestern China. J. Arid Land 2019, 11, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wang, J.; Li, B. Determining the influence factors of soil organic carbon stock in opencast coal-mine dumps based on complex network theory. Catena 2019, 173, 433–444. [Google Scholar] [CrossRef]
- Adeli, A.; Brooks, J.P.; Read, J.J.; McGrew, R.; Jenkins, J.N. Post-reclamation Age Effects on Soil Physical Properties and Microbial Activity Under Forest and Pasture Ecosystems. Commun. Soil Sci. Plant Anal. 2019, 50, 20–34. [Google Scholar] [CrossRef]
- Atanassova, I.; Benkova, M.; Simeonova, T.; Nenova, L.; Banov, M.; Rousseva, S.; Doerr, S. Influence of soil water repellency on heavy metal mobility in coal ash reclaimed technosols. J. Environ. Prot. Ecol. 2019, 20, 1667–1679. Available online: https://docs.google.com/a/jepe-journal.info/viewer?a=v&pid=sites&srcid=amVwZS1qb3VybmFsLmluZm98amVwZS1qb3VybmFsfGd4OjU1MDY2ZWIzYzFmZWJmMzA (accessed on 30 March 2020).
- Miller, J.R.; Gannon, J.P.; Corcoran, K. Concentrations, mobility, and potential ecological risks of selected metals within compost amended, reclaimed coal mine soils, tropical South Sumatra, Indonesia. AIMS Environ. Sci. 2019, 6, 298–325. [Google Scholar] [CrossRef]
- Petrov, P. Chemical and Physicochemical Parameters of Recultivated Embankments of Maritsa–Iztok Mine in Relation to Development of Soil Formation Process. J. Environ. Prot. Ecol. 2019, 20, 912–923. Available online: https://docs.google.com/a/jepe-journal.info/viewer?a=v&pid=sites&srcid=amVwZS1qb3VybmFsLmluZm98amVwZS1qb3VybmFsfGd4OjM2YTlmZTA4ZDYxZGQwYmI (accessed on 30 March 2020).
- Bandyopadhyay, S.; Maiti, S.K. Heavy metals distribution in Eucalyptus tree in 30 years old reclaimed overburden dumps. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2019. [Google Scholar]
- Badenhorst, J.; Dabrowski, J.; Scholtz, C.H.; Truter, W.F. Dung beetle activity improves herbaceous plant growth and soil properties on confinements simulating reclaimed mined land in South Africa. Appl. Soil Ecol. 2018, 132, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Qin, Q.; Bai, Z. Characterizing the effects of opencast coal-mining and land reclamation on soil macropore distribution characteristics using 3D CT scanning. Catena 2018, 171, 212–221. [Google Scholar] [CrossRef]
- Priyono, S.; Limantara, L.M. Utilization of River Sludge-Sediment as the Planting Media in Reclaiming Critical Mined Land: Study of Growth and Litter Production of Jabon (Anthocephalus cadamba Miq.). Int. J. GEOMATE 2018, 15, 230–237. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Rana, V.; Maiti, S.K. Chronological Variation of Metals in Reclaimed Coal Mine Soil and Tissues of Eucalyptus Hybrid Tree After 25 Years of Reclamation, Jharia Coal Field (India). Bull. Environ. Contam. Toxicol. 2018, 101, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Duo, L.; Hu, Z. Soil Quality Change after Reclaiming Subsidence Land with Yellow River Sediments. Sustainability 2018, 10, 4310. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Duo, L.; Shao, F. Optimal Thickness of Soil Cover for Reclaiming Subsided Land with Yellow River Sediments. Sustainability 2018, 10, 3853. [Google Scholar] [CrossRef] [Green Version]
- Haigh, M.J.; Reed, H.; D’Aucourt, M.; Flege, A.; Cullis, M.; Davis, S.; Farrugia, F.; Gentcheva-Kostadinova, S.; Zheleva, E.; Hatton, E.; et al. Effects of initial fertilizer treatment on the 10-year growth of mixed woodland on compacted surface-coal-mine spoils, S. Wales. Land Degrad. Dev. 2018, 29, 3456–3468. [Google Scholar] [CrossRef]
- Ahirwal, J.; Kumar, A.; Pietrzykowski, M.; Maiti, S.K. Reclamation of coal mine spoil and its effect on Technosol quality and carbon sequestration: A case study from India. Environ. Sci. Pollut. Res. 2018, 25, 27992–28003. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, P.; Arellano, E.C.; Burger, J.; Oliet, J.A.; Perez, M.F. Soil conditions and sheltering techniques improve active restoration of degraded Nothofagus pumilio forest in Southern Patagonia. For. Ecol. Manag. 2018, 424, 28–38. [Google Scholar] [CrossRef]
- Rawlik, M.; Kasprowicz, M.; Jagodziński, A.M.; Kaźmierowski, C.; Łukowiak, R.; Grzebisz, W. Canopy tree species determine herb layer biomass and species composition on a reclaimed mine spoil heap. Sci. Total Environ. 2018, 635, 1205–1214. [Google Scholar] [CrossRef]
- Guo, A.; Zhao, Z.; Yuan, Y.; Wang, Y.; Li, X.; Xu, R. Quantitative correlations between soil and plants in reclaimed mining dumps using a coupling coordination degree model. R. Soc. Open Sci. 2018, 5, 180484. [Google Scholar] [CrossRef] [Green Version]
- Skousen, J.G.; Dallaire, K.; Scagline-Mellor, S.; Monteleone, A.; Wilson-Kokes, L.; Joyce, J.; Thomas, C.; Keene, T.; DeLong, C.; Cook, T.; et al. Plantation performance of chestnut hybrids and progenitors on reclaimed Appalachian surface mines. New For. 2018, 49, 599–611. [Google Scholar] [CrossRef] [Green Version]
- Franke, M.E.; Zipper, C.; Barney, J.N. Native Hardwood Tree Seedling Establishment Following Invasive Autumn-Olive (Elaeagnus umbellata) Removal on a Reclaimed Coal Mine. Invasive Plant Sci. Manag. 2018, 11, 155–161. [Google Scholar] [CrossRef]
- Hou, H.; Wang, C.; Ding, Z.; Zhang, S.; Yang, Y.; Ma, J.; Chen, F.; Li, J. Variation in the Soil Microbial Community of Reclaimed Land over Different Reclamation Periods. Sustainability 2018, 10, 2286. [Google Scholar] [CrossRef] [Green Version]
- Ahirwal, J.; Maiti, S.K. Development of Technosol properties and recovery of carbon stock after 16 years of revegetation on coal mine degraded lands, India. Catena 2018, 166, 114–123. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhao, Z.; Niu, S.; Li, X.; Wang, Y.; Bai, Z. Reclamation promotes the succession of the soil and vegetation in opencast coal mine: A case study from Robinia pseudoacacia reclaimed forests, Pingshuo mine, China. Catena 2018, 165, 72–79. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, A.K.; Ghosh, P. Distribution of soil organic carbon and glomalin related soil protein in reclaimed coal mine-land chronosequence under tropical condition. Sci. Total Environ. 2018, 625, 1341–1350. [Google Scholar] [CrossRef] [PubMed]
- Sena, K.L.; Yeager, K.M.; Dreaden, T.J.; Barton, C.D. Phytophthora cinnamomi Colonized Reclaimed Surface Mined Sites in Eastern Kentucky: Implications for the Restoration of Susceptible Species. Forests 2018, 9, 203. [Google Scholar] [CrossRef] [Green Version]
- Rana, V.; Maiti, S.K. Differential distribution of metals in tree tissues growing on reclaimed coal mine overburden dumps, Jharia coal field (India). Environ. Sci. Pollut. Res. 2018, 25, 9745–9758. [Google Scholar] [CrossRef]
- Li, S.; Liber, K. Influence of different revegetation choices on plant community and soil development nine years after initial planting on a reclaimed coal gob pile in the Shanxi mining area, China. Sci. Total Environ. 2018, 618, 1314–1323. [Google Scholar] [CrossRef]
- Jing, Z.; Wang, J.; Zhu, Y.; Feng, Y. Effects of land subsidence resulted from coal mining on soil nutrient distributions in a loess area of China. J. Clean. Prod. 2017, 177, 350–361. [Google Scholar] [CrossRef]
- Angst, G.; Mueller, C.W.; Angst, Š.; Pivokonský, M.; Franklin, J.; Stahl, P.D.; Frouz, J. Fast accrual of C and N in soil organic matter fractions following post-mining reclamation across the USA. J. Environ. Manag. 2018, 209, 216–226. [Google Scholar] [CrossRef]
- Tang, Q.; Li, L.; Zhang, S.; Zheng, L.; Miao, C. Characterization of heavy metals in coal gangue-reclaimed soils from a coal mining area. J. Geochem. Explor. 2018, 186, 1–11. [Google Scholar] [CrossRef]
- Rawlik, M.; Kasprowicz, M.; Jagodziński, A.M. Differentiation of herb layer vascular flora in reclaimed areas depends on the species composition of forest stands. For. Ecol. Manag. 2018, 409, 541–551. [Google Scholar] [CrossRef]
- Li, T.; Gao, J.; Hong, J.; Xie, Y.; Gao, Z.; Meng, H.; Li, L.; Meng, L. Variation of nutrients and selected soil properties in reclaimed soil of different ages at a coal-mining subsidence area on the Loess Plateau, China. Ekoloji 2018, 27, 547–554. [Google Scholar]
- Huang, Y.; Kuang, X.; Cao, Y.; Bai, Z. The soil chemical properties of reclaimed land in an arid grassland dump in an opencast mining area in China. RSC Adv. 2018, 8, 41499–41508. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.F.; Tan, M.; Le Hou, Y.; Ge, M.Y.; Ni Wang, A.; Wang, K.; Shan, J.X.; Chen, F. Effects of the Stability of Reclaimed Soil Aggregates on Organic Carbon in Coal Mining Subsidence Areas. Appl. Eng. Agric. 2018, 34, 843–854. [Google Scholar] [CrossRef]
- Nedyalkova, K.; Petkova, G.; Atanassova, I.; Banov, M.; Ivanov, P. Microbiological Properties of Hydrophobic and Hydrophilic Technosols from the Region of Maritsa-Iztok Coal Mines. Comptes Rendus l’Académie Bulg. Sci. 2018, 71, 577–584. [Google Scholar] [CrossRef]
- Merrill, S.D.; Liebig, M.A.; Hendrickson, J.D.; Wick, A.F. Soil Quality and Water Redistribution Influences on Plant Production over Low Hillslopes on Reclaimed Mined Land. Int. J. Agron. 2018, 2018, 1431054. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Cao, Y.; Bai, Z.; Wang, J.; Zhou, W. Evaluating relationships between soil chemical properties and vegetation cover at different slope aspects in a reclaimed dump. Environ. Earth Sci. 2017, 76, 805. [Google Scholar] [CrossRef]
- Williams, J.M.; Brown, D.J.; Wood, P.B. Responses of Terrestrial Herpetofauna to Persistent, Novel Ecosystems Resulting from Mountaintop Removal Mining. J. Fish Wildl. Manag. 2017, 8, 387–400. [Google Scholar] [CrossRef] [Green Version]
- Padmanaban, R.; Bhowmik, A.K.; Cabral, P. A Remote Sensing Approach to Environmental Monitoring in a Reclaimed Mine Area. ISPRS Int. J. Geo Inf. 2017, 6, 401. [Google Scholar] [CrossRef] [Green Version]
- Karan, S.K.; Kumar, A.; Samadder, S.R. Evaluation of geotechnical properties of overburden dump for better reclamation success in mining areas. Environ. Earth Sci. 2017, 76, 770. [Google Scholar] [CrossRef]
- Swab, R.; Lorenz, N.; Byrd, S.; Dick, R. Native vegetation in reclamation: Improving habitat and ecosystem function through using prairie species in mine land reclamation. Ecol. Eng. 2017, 108, 525–536. [Google Scholar] [CrossRef]
- Bell, G.; Sena, K.L.; Barton, C.D.; French, M. Establishing Pine Monocultures and Mixed Pine-Hardwood Stands on Reclaimed Surface Mined Land in Eastern Kentucky: Implications for Forest Resilience in a Changing Climate. Forests 2017, 8, 375. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Bai, Z.; Cao, Y.; Zhou, W.; Wang, J. Influence of soil physical properties and vegetation coverage at different slope aspects in a reclaimed dump. Environ. Sci. Pollut. Res. 2017, 24, 23953–23965. [Google Scholar] [CrossRef] [PubMed]
- Ahirwal, J.; Maiti, S.K. Assessment of carbon sequestration potential of revegetated coal mine overburden dumps: A chronosequence study from dry tropical climate. J. Environ. Manag. 2017, 201, 369–377. [Google Scholar] [CrossRef]
- Majee, U.; Chattopadhyay, G.N.; Chaudhury, S. Optimization of the quality of reverse osmosis-treated coal bed water in relation to its effect on soil health. Environ. Earth Sci. 2017, 76, 474. [Google Scholar] [CrossRef]
- Gang, L.; Jun, L.; Ye, X.L.; Ting, W.; Ya, Z.L.; Xin, Y.F. Preferential flow characteristics of reclaimed mine soils in a surface coal mine dump. Environ. Monit. Assess. 2017, 189, 266. [Google Scholar] [CrossRef]
- Plamping, K.; Haigh, M.; Reed, H.; Woodruffe, P.; Fitzpatrick, S.; Farrugia, F.; D’aucourt, M.; Flege, A.; Sawyer, S.; Panhuis, W.; et al. Effects of initial planting method on the performance of mixed plantings of alder and oak on compacted opencast coal-spoils, Wales: 10-year results. Int. J. Min. Reclam. Environ. 2016, 31, 286–300. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhao, Z.; Zhang, P.; Chen, L.; Hu, T.; Niu, S.; Bai, Z. Soil organic carbon and nitrogen pools in reclaimed mine soils under forest and cropland ecosystems in the Loess Plateau, China. Ecol. Eng. 2017, 102, 137–144. [Google Scholar] [CrossRef]
- Qu, J.-F.; Hou, Y.-L.; Ge, M.-Y.; Wang, K.; Liu, S.; Zhang, S.-L.; Li, G.; Chen, F. Carbon Dynamics of Reclaimed Coal Mine Soil under Agricultural Use: A Chronosequence Study in the Dongtan Mining Area, Shandong Province, China. Sustainability 2017, 9, 629. [Google Scholar] [CrossRef] [Green Version]
- Ahirwal, J.; Maiti, S.K.; Singh, A.K. Changes in ecosystem carbon pool and soil CO2 flux following post-mine reclamation in dry tropical environment, India. Sci. Total Environ. 2017, 583, 153–162. [Google Scholar] [CrossRef]
- Chen, Y.; Yuan, L.; Xu, C. Accumulation behavior of toxic elements in the soil and plant from Xinzhuangzi reclaimed mining areas, China. Environ. Earth Sci. 2017, 76, 226. [Google Scholar] [CrossRef]
- Bao, N.; Wu, L.; Ye, B.; Yang, K.; Zhou, W. Assessing soil organic matter of reclaimed soil from a large surface coal mine using a field spectroradiometer in laboratory. Geoderma 2016, 288, 47–55. [Google Scholar] [CrossRef]
- Frouz, J. Effects of Soil Development Time and Litter Quality on Soil Carbon Sequestration: Assessing Soil Carbon Saturation with a Field Transplant Experiment along a Post-mining Chronosequence. Land Degrad. Dev. 2016, 28, 664–672. [Google Scholar] [CrossRef]
- Zhang, Q.; Branam, T.; Olyphant, G. Development and testing of a model for simulating weathering and trace elements release from fixated scrubber sludge utilized in abandoned coal mine reclamation site. Int. J. Coal Geol. 2017, 169, 92–105. [Google Scholar] [CrossRef]
- Maiti, S.K.; Rana, V. Assessment of Heavy Metals Contamination in Reclaimed Mine Soil and their Accumulation and Distribution in Eucalyptus Hybrid. Bull. Environ. Contam. Toxicol. 2017, 98, 97–104. [Google Scholar] [CrossRef]
- Bauman, J.M.; Adamson, J.; Brisbin, R.; Cline, E.T.; Keiffer, C.H. Soil Metals and Ectomycorrhizal Fungi Associated with American Chestnut Hybrids as Reclamation Trees on Formerly Coal Mined Land. Int. J. Agron. 2017, 2017, 9731212. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wei, Z.; Wang, Q. Evaluating the eco-environment benefit of land reclamation in the dump of an opencast coal mine. Chem. Ecol. 2017, 33, 607–624. [Google Scholar] [CrossRef]
- Shi, X.-K.; Ma, J.-J.; Liu, L.-J. Effects of phosphate-solubilizing bacteria application on soil phosphorus availability in coal mining subsidence area in Shanxi. J. Plant Interact. 2017, 12, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yang, R.; Feng, Y. Spatial variability of reconstructed soil properties and the optimization of sampling number for reclaimed land monitoring in an opencast coal mine. Arab. J. Geosci. 2017, 10, 46. [Google Scholar] [CrossRef]
- Liu, X.; Bai, Z.; Zhou, W.; Cao, Y.; Zhang, G. Changes in soil properties in the soil profile after mining and reclamation in an opencast coal mine on the Loess Plateau, China. Ecol. Eng. 2017, 98, 228–239. [Google Scholar] [CrossRef] [Green Version]
- Darmody, R.G.; McSweeney, K.; Li, Y.; Zhou, W.; Tong, J.; Hu, Z. Reclamation of prime agricultural farmlands: A retrospective 40 years after reclamation. In Land Reclamation in Ecological Fragile Areas; Taylor & Francis Group London: London, UK, 2017; pp. 307–314. [Google Scholar]
- Hou, H.; Wang, C.; Li, J.; Ding, Z.; Zhang, S.; Huang, L.; Dong, J.; Ma, J.; Yang, Y.; Li, L.; et al. Bacterial community structure in reclaimed soil filled with coal wastes in different reclamation years. In Land Reclamation in Ecological Fragile Areas; Taylor & Francis Group London: London, UK, 2017; pp. 381–385. [Google Scholar]
- Maiti, S.K.; Ahirwal, J. Ecological restoration of coal mine degraded lands using a grass-legume mixture a case study from India. In Land Reclamation in Ecological Fragile Areas—Proceedings of the 2nd International Symposium on Land Reclamation and Ecological Restoration, LRER 2017, Beijing, China, 20–23 October 2017; CRC Press: Boca Raton, FL, USA, 2017; pp. 419–431. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Masto, R. Carbon storage in coal mine spoil by Dalbergia sissoo Roxb. Geoderma 2016, 284, 204–213. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhao, Z.; Bai, Z.; Wang, H.; Wang, Y.; Niu, S. Reclamation patterns vary carbon sequestration by trees and soils in an opencast coal mine, China. Catena 2016, 147, 404–410. [Google Scholar] [CrossRef]
- Koſodziej, B.; Bryk, M.; Sſowiſska-Jurkiewicz, A.; Otremba, K.; Gilewska, M. Soil physical properties of agriculturally reclaimed area after lignite mine: A case study from central Poland. Soil Tillage Res. 2016, 163, 54–63. [Google Scholar] [CrossRef]
- Nash, W.L.; Daniels, W.L.; Haering, K.C.; Burger, J.A.; Zipper, C.E. Long-term Effects of Rock Type on Appalachian Coal Mine Soil Properties. J. Environ. Qual. 2016, 45, 1597–1606. [Google Scholar] [CrossRef]
- Russell, L.; Farrish, K.; Damoff, G.; Coble, D.; Young, L. Establishment of earthworms on reclaimed lignite mine soils in east Texas. Appl. Soil Ecol. 2016, 104, 125–130. [Google Scholar] [CrossRef]
- Stumpf, L.; Pauletto, E.A.; Pinto, L.F.S. Soil aggregation and root growth of perennial grasses in a constructed clay minesoil. Soil Tillage Res. 2016, 161, 71–78. [Google Scholar] [CrossRef]
- Wang, J.; Guo, L.; Bai, Z.; Yang, L. Using computed tomography (CT) images and multi-fractal theory to quantify the pore distribution of reconstructed soils during ecological restoration in opencast coal-mine. Ecol. Eng. 2016, 92, 148–157. [Google Scholar] [CrossRef]
- Maiti, S.K.; Kumar, A.; Ahirwal, J. Bioaccumulation of metals in timber and edible fruit trees growing on reclaimed coal mine overburden dumps. Int. J. Min. Reclam. Environ. 2016, 30, 231–244. [Google Scholar] [CrossRef]
- Wick, A.F.; Daniels, W.L.; Nash, W.L.; Burger, J.A. Aggregate Recovery in Reclaimed Coal Mine Soils of SW Virginia. Land Degrad. Dev. 2014, 27, 965–972. [Google Scholar] [CrossRef]
- Das, R.; Maiti, S.K. Importance of carbon fractionation for the estimation of carbon sequestration in reclaimed coalmine soils—A case study from Jharia coalfields, Jharkhand, India. Ecol. Eng. 2016, 90, 135–140. [Google Scholar] [CrossRef]
- Ahirwal, J.; Maiti, S.K. Assessment of soil properties of different land uses generated due to surface coal mining activities in tropical Sal (Shorea robusta) forest, India. Catena 2016, 140, 155–163. [Google Scholar] [CrossRef]
- Clark, E.V.; Zipper, C.E. Vegetation influences near-surface hydrological characteristics on a surface coal mine in eastern USA. Catena 2016, 139, 241–249. [Google Scholar] [CrossRef] [Green Version]
- Gypser, S.; Veste, M.; Fischer, T.; Lange, P. Infiltration and water retention of biological soil crusts on reclaimed soils of former open-cast lignite mining sites in Brandenburg, north-east Germany. J. Hydrol. Hydromech. 2016, 64, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.; Griggs, T.; Holaskova, I.; Skousen, J. Switchgrass Biofuel Production on Reclaimed Surface Mines: II. Feedstock Quality and Theoretical Ethanol Production. BioEnergy Res. 2016, 9, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Dutta, T.; Dell, C.J.; Stehouwer, R.C. Nitrous Oxide Emissions from a Coal Mine Land Reclaimed with Stabilized Manure. Land Degrad. Dev. 2016, 27, 427–437. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Masto, R.; Yadav, A.; George, J.; Ram, L.; Shukla, S. Soil quality index for evaluation of reclaimed coal mine spoil. Sci. Total Environ. 2016, 542, 540–550. [Google Scholar] [CrossRef]
- de Freitas, F.J.M.; Rosado, J.L.O.; Elias, S.G.; Harter-Marques, B. Litter Decomposition of Two Pioneer Tree Species and Associated Soil Fauna in Areas Reclaimed after Surface Coal Mining in Southern Brazil. Rev. Bras. Ciência Solo 2016, 40, e0150444. [Google Scholar] [CrossRef] [Green Version]
- Cudlín, O.; Řehák, Z.; Cudlín, P. Development of Soil Characteristics and Plant Communities on Reclaimed and Unreclaimed Spoil Heaps after Coal Mining. IOP Conf. Ser. Earth Environ. Sci. 2016, 44, 052030. [Google Scholar] [CrossRef]
- Hu, Z.; Xiao, W.; Fu, Y. Innovations of Concurrent Mining and Reclamation for Underground Coal Mines in China; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Zhang, X.R.; Cao, Y.G.; Bai, Z.K.; Wang, J.M.; Zhou, W.; Ding, X. Relationships Between Vegetation Coverage and Soil Properties on the Reclaimed Dump of Opencast Coal Mine in Loess Plateau, China. Fresenius Environ. Bull. 2016, 25, 4767–4776. [Google Scholar]
- Nadłonek, W.; Cabala, J. Potentially toxic elements in soils and plants on a reclaimed coalwaste dump in Southern Poland (preliminary study). Acta Geodyn. Geomater. 2016, 13, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Klojzy-Karczmarczyk, B.; Mazurek, J.; Mucha, J. Sulfur as a parameter in the suitability assessment of gangue from coal mining for reclamation of opencast excavation, taking into the requirements regarding protection of the soil. E3S Web Conf. 2016, 10, 00036. [Google Scholar] [CrossRef]
- Li, J.; Liu, F.; Chen, J. The Effects of Various Land Reclamation Scenarios on the Succession of Soil Bacteria, Archaea, and Fungi Over the Short and Long Term. Front. Ecol. Evol. 2016, 4, 32. Available online: https://www.frontiersin.org/article/10.3389/fevo.2016.00032 (accessed on 30 March 2020). [CrossRef] [Green Version]
- Frouz, J.; Vobořilová, V.; Janoušová, I.; Kadochová, Š.; Matějíček, L. Spontaneous establishment of late successional tree species english oak (Quercus robur) and european beech (fagus sylvatica) at reclaimed alder plantation and unreclaimed post mining sites. Ecol. Eng. 2015, 77, 1–8. [Google Scholar] [CrossRef]
- Kumar, S.; Maiti, S.K.; Chaudhuri, S. Soil development in 2–21 years old coalmine reclaimed spoil with trees: A case study from Sonepur-Bazari opencast project, Raniganj Coalfield, India. Ecol. Eng. 2015, 84, 311–324. [Google Scholar] [CrossRef]
- Lanham, J.; Sencindiver, J.; Skousen, J. Characterization of Soil Developing in Reclaimed Upper Freeport Coal Surface Mines. Southeast. Nat. 2015, 14, 58–64. [Google Scholar] [CrossRef]
- Evans, D.M.; Zipper, C.E.; Hester, E.T.; Schoenholtz, S.H. Hydrologic Effects of Surface Coal Mining in Appalachia (U.S.). JAWRA J. Am. Water Resour. Assoc. 2015, 51, 1436–1452. [Google Scholar] [CrossRef]
- Bauman, J.M.; Cochran, C.; Chapman, J.; Gilland, K. Plant community development following restoration treatments on a legacy reclaimed mine site. Ecol. Eng. 2015, 83, 521–528. [Google Scholar] [CrossRef]
- Weber, J.; Strączyńska, S.; Kocowicz, A.; Gilewska, M.; Bogacz, A.; Gwiżdż, M.; Debicka, M. Properties of soil materials derived from fly ash 11 years after revegetation of post-mining excavation. Catena 2015, 133, 250–254. [Google Scholar] [CrossRef]
- Zhen, Q.; Ma, W.; Li, M.; He, H.; Zhang, X.; Wang, Y. Effects of vegetation and physicochemical properties on solute transport in reclaimed soil at an opencast coal mine site on the Loess Plateau, China. Catena. 2015, 133, 403–411. [Google Scholar] [CrossRef]
- Macdonald, S.E.; Snively, A.E.K.; Fair, J.M.; Landhäusser, S.M. Early trajectories of forest understory development on reclamation sites: Influence of forest floor placement and a cover crop. Restor. Ecol. 2015, 23, 698–706. [Google Scholar] [CrossRef]
- Wang, J.; Yang, R.; Bai, Z. Spatial variability and sampling optimization of soil organic carbon and total nitrogen for Minesoils of the Loess Plateau using geostatistics. Ecol. Eng. 2015, 82, 159–164. [Google Scholar] [CrossRef]
- Saminathan, T.; Malkaram, S.A.; Patel, D.; Taylor, K.; Hass, A.; Nimmakayala, P.; Huber, D.H.; Reddy, U.K. Transcriptome Analysis of Invasive Plants in Response to Mineral Toxicity of Reclaimed Coal-Mine Soil in the Appalachian Region. Environ. Sci. Technol. 2015, 49, 10320–10329. [Google Scholar] [CrossRef] [PubMed]
- Dutta, T.; Stehouwer, R.C.; Dell, C.J. Linking Organic Carbon, Water Content, and Nitrous Oxide Emission in a Reclaimed Coal Mine Soil. Land Degrad. Dev. 2015, 26, 620–628. [Google Scholar] [CrossRef]
- Bartuška, M.; Pawlett, M.; Frouz, J. Particulate organic carbon at reclaimed and unreclaimed post-mining soils and its microbial community composition. Catena 2015, 131, 92–98. [Google Scholar] [CrossRef]
- Mathiba, M.; Awuah-Offei, K. Spatial autocorrelation of soil CO2 fluxes on reclaimed mine land. Environ. Earth Sci. 2015, 73, 8287–8297. [Google Scholar] [CrossRef]
- Niu, S.; Gao, L.; Zhao, J. Distribution and Risk Assessment of Heavy Metals in the Xinzhuangzi Reclamation Soil from the Huainan Coal Mining Area, China. Hum. Ecol. Risk Assess. An Int. J. 2015, 21, 900–912. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Bai, Z.; Lv, C. Effects of vegetation on runoff and soil erosion on reclaimed land in an opencast coal-mine dump in a loess area. Catena 2015, 128, 44–53. [Google Scholar] [CrossRef]
- Shouqin, Z.; Chaofu, W.; Bo, L.; Weihua, Z.; Jing, D.; Shichao, Z. Restoration technologies of damaged paddy in hilly post-mining and subsidence-stable area of Southwest China. Int. J. Agric. Biol. Eng. 2015, 8, 46–57. [Google Scholar] [CrossRef]
- Haigh, M.; Reed, H.; Flege, A.; D’Aucourt, M.; Plamping, K.; Cullis, M.; Woodruffe, P.; Sawyer, S.; Panhuis, W.; Wilding, G.; et al. Effect of Planting Method on the Growth of Alnus glutinosa and Quercus petraea in Compacted Opencast Coal-Mine Spoils, South Wales. Land Degrad. Dev. 2015, 26, 227–236. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M.; Bai, Z.; Guo, L. Multi-fractal characteristics of the particle distribution of reconstructed soils and the relationship between soil properties and multi-fractal parameters in an opencast coal-mine dump in a loess area. Environ. Earth Sci. 2015, 73, 4749–4762. [Google Scholar] [CrossRef]
- Pallavicini, Y.; Alday, J.G.; Martínez-Ruiz, C. Factors Affecting Herbaceous Richness and Biomass Accumulation Patterns of Reclaimed Coal Mines. Land Degrad. Dev. 2015, 26, 211–217. [Google Scholar] [CrossRef]
- Li, Y.; Chen, L.; Wen, H. Changes in the composition and diversity of bacterial communities 13 years after soil reclamation of abandoned mine land in eastern China. Ecol. Res. 2015, 30, 357–366. [Google Scholar] [CrossRef]
- Sena, K.; Barton, C.; Hall, S.; Angel, P.; Agouridis, C.; Warner, R. Influence of spoil type on afforestation success and natural vegetative recolonization on a surface coal mine in Appalachia, United States. Restor. Ecol. 2015, 23, 131–138. [Google Scholar] [CrossRef]
- Hoomehr, S.; Schwartz, J.S.; Yoder, D.; Drumm, E.C.; Wright, W. Erodibility of low-compaction steep-sloped reclaimed surface mine lands in the southern Appalachian region, USA. Hydrol. Process. 2015, 29, 321–338. [Google Scholar] [CrossRef]
- Li, Y.; Chen, L.Q.; Zhang, T.; Zhou, T.J. Effect of reclamation on diversity of soil bacterial community in mining subsidence area. In Legislation, Technology and Practice of Mine Land Reclamation—Proceedings of the Beijing International Symposium Land Reclamation and Ecological Restoration, LRER 2014, Beijing, China, 16–19 October 2014; CRC Press: Boca Raton, FL, USA, 2015; pp. 247–256. [Google Scholar] [CrossRef]
- Huang, C.; Xu, L.J.; Meuser, H.; Anlauf, R. Study on the spatial distribution regularities of coal gangue accumulation in the coal mining area of northern Germany—Taking coal gangue accumulation area of Ibbenbueren for instance. In Legislation, Technology and Practice of Mine Land Reclamation—Proceedings of the Beijing International Symposium Land Reclamation and Ecological Restoration, LRER 2014, Beijing, China, 16–19 October 2014; CRC Press: Boca Raton, FL, USA, 2015; pp. 351–356. [Google Scholar] [CrossRef]
- Gruchot, A.; Zając, E.; Zarzycki, J. Analysis of possibilities for management of hard coal mine water sediments. Rocz. Ochr. Sr. 2015, 17, 998–1016. [Google Scholar]
- Hlava, J.; Hlavová, A.; Hakl, J.; Fér, M. Earthworm responses to different reclamation processes in post opencast mining lands during succession. Environ. Monit. Assess. 2015, 187, 4108. [Google Scholar] [CrossRef]
- FAO. Carbon Sequestration Options under the Clean Development Mechanism to Address Land Degradation; FAO: Rome, Italy, 2000. [Google Scholar]
- Shrestha, R.K.; Lal, R. Ecosystem carbon budgeting and soil carbon sequestration in reclaimed mine soil. Environ. Int. 2006, 32, 781–796. [Google Scholar] [CrossRef]
- United States Department of Energy and the National Energy Technology. Best Practices for Terrestrial Sequestration of Carbon; United States Department of Energy and the National Energy Technology: Pittsburgh, PA, USA, 2010. [Google Scholar]
- Bodlák, L.; Křováková, K.; Kobesová, M.; Brom, J.; Šťastný, J.; Pecharová, E. SOC content-An appropriate tool for evaluating the soil quality in a reclaimed post-mining landscape. Ecol. Eng. 2012, 43, 53–59. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R. Stabilization of organic carbon in chemically separated pools in reclaimed coal mine soils in Ohio. Geoderma 2007, 141, 294–301. [Google Scholar] [CrossRef]
- Vindušková, O.; Frouz, J. Soil carbon accumulation after open-cast coal and oil shale mining in Northern Hemisphere: A quantitative review. Environ. Earth Sci. 2013, 69, 1685–1698. [Google Scholar] [CrossRef]
- British Petroleum, B.P. Statistical Review of World Energy 2019. Br. Pet 2019, 66, 1. [Google Scholar]
- Chuman, T. Restoration Practices Used on Post Mining Sites and Industrial Deposits in the Czech Republic with an Example of Natural Restoration of Granodiorite Quarries and Spoil Heaps. J. Landsc. Ecol. Repub. 2015, 8, 29–46. [Google Scholar] [CrossRef] [Green Version]
- Gerwing, T.G.; Hawkes, V.C.; Gann, G.D.; Murphy, S.D. Restoration, reclamation, and rehabilitation: On the need for, and positing a definition of, ecological reclamation. Restor. Ecol. 2022, 30, e13461. [Google Scholar] [CrossRef]
- Pautasso, M. Ten Simple Rules for Writing a Literature Review. PLoS Comput. Biol. 2013, 9, e1003149. [Google Scholar] [CrossRef] [PubMed]
- Moed, H.F.; Markusova, V.; Akoev, M. Trends in Russian research output indexed in Scopus and Web of Science. Scientometrics 2018, 116, 1153–1180. [Google Scholar] [CrossRef] [Green Version]
- Li, Y. Suitability evaluation of land reclamation as arable land in coal mining area based on catastrophe theory. SN Appl. Sci. 2023, 5, 146. [Google Scholar] [CrossRef]
- Song, W.; Xu, R.; Li, X.; Min, X.; Zhang, J.; Zhang, H.; Hu, X.; Li, J. Soil reconstruction and heavy metal pollution risk in reclaimed cultivated land with coal gangue filling in mining areas. Catena 2023, 228, 107147. [Google Scholar] [CrossRef]
- Qi, L.; Sun, S.; Gao, K.; Ren, W.; Liu, Y.; Chen, Z.; Yuan, X. Effect of reclamation years on soil physical, chemical, bacterial, and fungal community compositions in an open-pit coal mine dump in grassland area of Inner Mongolia, China. Land Degrad. Dev. 2023, 34, 3568–3580. [Google Scholar] [CrossRef]
- Zhao, G.; Chen, J.; Zhang, L.; Wang, S.; Lyu, Y.; Si, G. Ecological restoration of coal mine waste dumps: A case study in Ximing Mine, China. Int. J. Min. Reclam. Environ. 2023, 37, 375–397. [Google Scholar] [CrossRef]
- Cheng, Q.; Zhang, S.; Chen, X.; Cui, H.; Xu, Y.; Xia, S.; Xia, K.; Zhou, T.; Zhou, X. Inversion of reclaimed soil water content based on a combination of multi-attributes of ground penetrating radar signals. J. Appl. Geophys. 2023, 213, 105019. [Google Scholar] [CrossRef]
- Li, Q.; Hu, Z.; Zhang, F.; Song, D.; Liang, Y.; Yu, Y. Multispectral Remote Sensing Monitoring of Soil Particle-Size Distribution in Arid and Semi-Arid Mining Areas in the Middle and Upper Reaches of the Yellow River Basin: A Case Study of Wuhai City, Inner Mongolia Autonomous Region. Remote Sens. 2023, 15, 2137. [Google Scholar] [CrossRef]
- Lin, Z.; Lu, P.; Wang, R.; Liu, X.; Yuan, T. Sulfur: A neglected driver of the increased abundance of antibiotic resistance genes in agricultural reclaimed subsidence land located in coal mines with high phreatic water levels. Heliyon 2023, 9, e14364. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Das, S.K.; Nainegali, L.; Reddy, K.R. Investigation of root traits of Dendrocalamus strictus cultivated on organically amended coalmine overburden and its potential use for slope stabilization. Int. J. Phytoremediation 2023. [Google Scholar] [CrossRef]
- Kumari, M.; Bhattacharya, T. A review on bioaccessibility and the associated health risks due to heavy metal pollution in coal mines: Content and trend analysis. Environ. Dev. 2023, 46, 100859. [Google Scholar] [CrossRef]
- Kumar, A.; Das, S.K.; Nainegali, L.; Reddy, K.R. Phytostabilization of coalmine overburden waste rock dump slopes: Current status, challenges, and perspectives. Bull. Eng. Geol. Environ. 2023, 82, 130. [Google Scholar] [CrossRef]
- Bierza, W.; Czarnecka, J.; Błońska, A.; Kompała-Bąba, A.; Hutniczak, A.; Jendrzejek, B.; Bakr, J.; Jagodziński, A.M.; Prostański, D.; Woźniak, G. Plant Diversity and Species Composition in Relation to Soil Enzymatic Activity in the Novel Ecosystems of Urban–Industrial Landscapes. Sustainability 2023, 15, 7284. [Google Scholar] [CrossRef]
- Kozłowski, M.; Otremba, K.; Pająk, M.; Pietrzykowski, M. Changes in Physical and Water Retention Properties of Technosols by Agricultural Reclamation with Wheat–Rapeseed Rotation in a Post-Mining Area of Central Poland. Sustainability 2023, 15, 7131. [Google Scholar] [CrossRef]
- Szadek, P.; Pająk, M.; Michalec, K.; Wąsik, R.; Otremba, K.; Kozłowski, M.; Pietrzykowski, M. The Impact of the Method of Reclamation of the Coal Ash Dump from the ‘Adamów’ Power Plant on the Survival, Viability, and Wood Quality of the Introduced Tree Species. Forests 2023, 14, 848. [Google Scholar] [CrossRef]
- Woś, B.; Józefowska, A.; Chodak, M.; Pietrzykowski, M. Recovering of soil organic matter and associated C and N pools on regenerated forest ecosystems at different tree species influence on post-fire and reclaimed mine sites. Geoderma Reg. 2023, 33, e00632. [Google Scholar] [CrossRef]
No. | Author and Reference Number | Year | Category | Location | |||||
---|---|---|---|---|---|---|---|---|---|
C, N and SOM | Physical | Biological | Chemical | Technology | Review & Metadata | ||||
1 | Guan et al. [21] | 2020 | 0.80 | 0.00 | 0.10 | 0.10 | 0.00 | 0.00 | China |
2 | Feng et al. [22] | 2020 | 0.00 | 0.50 | 0.00 | 0.00 | 0.50 | 0.00 | China |
3 | Ezeokoli et al. [23] | 2020 | 0.00 | 0.17 | 0.67 | 0.17 | 0.00 | 0.00 | South Africa |
4 | Yan et al. [24] | 2020 | 0.67 | 0.00 | 0.33 | 0.00 | 0.00 | 0.00 | China |
5 | López-Marcos et al. [25] | 2020 | 0.17 | 0.17 | 0.50 | 0.00 | 0.17 | 0.00 | Spain |
6 | Block et al. [26] | 2020 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | USA |
7 | Jambhulkar & Kumar [27] | 2019 | 0.25 | 0.25 | 0.25 | 0.25 | 0.00 | 0.00 | India |
8 | Mylliemngap & Barik [28] | 2019 | 0.25 | 0.25 | 0.25 | 0.25 | 0.00 | 0.00 | India |
9 | Yang Chen & Zhang [29] | 2019 | 0.67 | 0.00 | 0.17 | 0.17 | 0.00 | 0.00 | China |
10 | Jianhua Li et al. [16] | 2019 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | China |
11 | Bao et al. [30] | 2019 | 0.00 | 0.33 | 0.00 | 0.00 | 0.67 | 0.00 | China |
12 | X. Yang et al. [31] | 2019 | 0.33 | 0.00 | 0.33 | 0.33 | 0.00 | 0.00 | China |
13 | Detheridge et al. [15] | 2019 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | UK |
14 | Min Zhang et al. [32] | 2019 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | China |
15 | Pihlap et al. [33] | 2019 | 0.25 | 0.25 | 0.25 | 0.25 | 0.00 | 0.00 | Germany |
16 | Hall et al. [34] | 2019 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | USA |
17 | Kumari & Maiti [35] | 2019 | 0.50 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | India |
18 | Brooks et al. [36] | 2019 | 0.00 | 0.25 | 0.50 | 0.25 | 0.00 | 0.00 | USA |
19 | Z. Zhang, Wang, & Feng [37] | 2019 | 0.25 | 0.25 | 0.25 | 0.25 | 0.00 | 0.00 | China |
20 | Agus et al. [38] | 2019 | 0.17 | 0.17 | 0.50 | 0.17 | 0.00 | 0.00 | Indonesia |
21 | Cheng & Sun [39] | 2019 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | China |
22 | Franke et al. [40] | 2019 | 0.00 | 0.17 | 0.67 | 0.17 | 0.00 | 0.00 | USA |
23 | Lei et al. [41] | 2019 | 0.33 | 0.33 | 0.00 | 0.33 | 0.00 | 0.00 | China |
24 | Feng et al. [42] | 2019 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | China |
25 | Desai et al. [43] | 2019 | 0.00 | 0.00 | 0.33 | 0.67 | 0.00 | 0.00 | UK |
26 | Yang et al. [18] | 2019 | 0.67 | 0.00 | 0.17 | 0.00 | 0.17 | 0.00 | China |
27 | Qiu et al. [44] | 2019 | 0.25 | 0.00 | 0.50 | 0.25 | 0.00 | 0.00 | China |
28 | Z. Zhang, Wang, & Li [45] | 2019 | 0.33 | 0.11 | 0.11 | 0.11 | 0.33 | 0.00 | China |
29 | Adeli et al. [46] | 2019 | 0.20 | 0.40 | 0.40 | 0.00 | 0.00 | 0.00 | USA |
30 | Atanassova et al. [47] | 2019 | 0.00 | 0.25 | 0.00 | 0.75 | 0.00 | 0.00 | Bulgaria |
31 | Miller et al. [48] | 2019 | 0.20 | 0.00 | 0.00 | 0.80 | 0.00 | 0.00 | Indonesia |
32 | Petrov [49] | 2019 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | Bulgaria |
33 | Bandyopadhyay & Maiti [50] | 2019 | 0.00 | 0.00 | 0.33 | 0.67 | 0.00 | 0.00 | India |
34 | M. Zhang & Zhang [20] | 2019 | 0.80 | 0.00 | 0.10 | 0.00 | 0.10 | 0.00 | China |
35 | Badenhorst et al. [51] | 2018 | 0.00 | 0.25 | 0.50 | 0.25 | 0.00 | 0.00 | South Africa |
36 | Jinman Wang et al. [52] | 2018 | 0.00 | 0.67 | 0.00 | 0.00 | 0.33 | 0.00 | China |
37 | Priyono et al. [53] | 2018 | 0.00 | 0.50 | 0.25 | 0.25 | 0.00 | 0.00 | Indonesia |
38 | Bandyopadhyay et al. [54] | 2018 | 0.00 | 0.00 | 0.33 | 0.67 | 0.00 | 0.00 | India |
39 | Duo & Hu [55] | 2018 | 0.33 | 0.33 | 0.00 | 0.33 | 0.00 | 0.00 | China |
40 | Hu et al. [56] | 2018 | 0.25 | 0.25 | 0.25 | 0.25 | 0.00 | 0.00 | China |
41 | Haigh et al. [57] | 2018 | 0.25 | 0.00 | 0.50 | 0.25 | 0.00 | 0.00 | UK |
42 | Ahirwal et al. [58] | 2018 | 0.25 | 0.25 | 0.25 | 0.25 | 0.00 | 0.00 | India |
43 | Valenzuela et al. [59] | 2018 | 0.33 | 0.33 | 0.33 | 0.00 | 0.00 | 0.00 | Chile |
44 | Rawlik, Kasprowicz, Jagodziński, et al. [60] | 2018 | 0.00 | 0.00 | 0.67 | 0.33 | 0.00 | 0.00 | Poland |
45 | Guo et al. [61] | 2018 | 0.13 | 0.13 | 0.13 | 0.13 | 0.50 | 0.00 | China |
46 | Skousen et al. [62] | 2018 | 0.00 | 0.00 | 0.67 | 0.33 | 0.00 | 0.00 | USA |
47 | Franke et al. [63] | 2018 | 0.00 | 0.00 | 0.80 | 0.20 | 0.00 | 0.00 | USA |
48 | Hou et al. [64] | 2018 | 0.00 | 0.10 | 0.70 | 0.20 | 0.00 | 0.00 | China |
49 | Ahirwal & Maiti [65] | 2018 | 0.40 | 0.20 | 0.20 | 0.20 | 0.00 | 0.00 | India |
50 | Ye Yuan, Zhao, Niu, et al. [66] | 2018 | 0.25 | 0.25 | 0.25 | 0.25 | 0.00 | 0.00 | China |
51 | Kumar et al. [67] | 2018 | 0.50 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | India |
52 | Sun et al. [17] | 2018 | 0.50 | 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | China |
53 | Sena et al. [68] | 2018 | 0.25 | 0.25 | 0.25 | 0.25 | 0.00 | 0.00 | USA |
54 | Rana & Maiti [69] | 2018 | 0.00 | 0.00 | 0.50 | 0.50 | 0.00 | 0.00 | India |
55 | S. Li & Liber [70] | 2018 | 0.00 | 0.10 | 0.50 | 0.30 | 0.10 | 0.00 | China |
56 | Jing et al. [71] | 2018 | 0.80 | 0.00 | 0.00 | 0.00 | 0.20 | 0.00 | China |
57 | Angst et al. [72] | 2018 | 0.70 | 0.10 | 0.10 | 0.10 | 0.00 | 0.00 | USA |
58 | Tang et al. [73] | 2018 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | China |
59 | Rawlik, Kasprowicz, & Jagodziński [74] | 2018 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | Poland |
60 | Ye Yuan, Zhao, Li, et al. [19] | 2018 | 0.70 | 0.00 | 0.10 | 0.10 | 0.10 | 0.00 | China |
61 | T. Li et al. [75] | 2018 | 0.50 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | China |
62 | Y. Huang et al. [76] | 2018 | 0.50 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | China |
63 | J. F. Qu et al. [77] | 2018 | 0.50 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | China |
64 | Nedyalkova et al. [78] | 2018 | 0.00 | 0.33 | 0.67 | 0.00 | 0.00 | 0.00 | Bulgaria |
65 | Merrill et al. [79] | 2018 | 0.00 | 0.50 | 0.25 | 0.25 | 0.00 | 0.00 | USA |
66 | Ahirwal & Maiti [14] | 2018 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | India |
67 | Liu, Cao, et al. [80] | 2017 | 0.50 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | China |
68 | Williams et al. [81] | 2017 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | USA |
69 | Padmanaban et al. [82] | 2017 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | Germany |
70 | Karan et al. [83] | 2017 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | India |
71 | Swab et al. [84] | 2017 | 0.10 | 0.10 | 0.70 | 0.10 | 0.00 | 0.00 | USA |
72 | G. Bell et al. [85] | 2017 | 0.10 | 0.10 | 0.40 | 0.40 | 0.00 | 0.00 | USA |
73 | Pan et al. [86] | 2017 | 0.00 | 0.67 | 0.33 | 0.00 | 0.00 | 0.00 | China |
74 | Ahirwal & Maiti [87] | 2017 | 0.50 | 0.17 | 0.17 | 0.17 | 0.00 | 0.00 | India |
75 | Ahirwal, Maiti, & Satyanarayana Reddy [13] | 2017 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | India |
76 | Majee et al. [88] | 2017 | 0.00 | 0.00 | 0.00 | 0.50 | 0.50 | 0.00 | India |
77 | Gang et al. [89] | 2017 | 0.00 | 0.67 | 0.17 | 0.17 | 0.00 | 0.00 | China |
78 | Plamping et al. [90] | 2017 | 0.00 | 0.17 | 0.50 | 0.17 | 0.17 | 0.00 | UK |
79 | Ye Yuan et al. [91] | 2017 | 0.90 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | China |
80 | J. F. Qu et al. [92] | 2017 | 0.50 | 0.17 | 0.17 | 0.17 | 0.00 | 0.00 | China |
81 | Ahirwal, Maiti, & Singh [93] | 2017 | 0.50 | 0.00 | 0.30 | 0.20 | 0.00 | 0.00 | India |
82 | Yongchun Chen et al. [94] | 2017 | 0.10 | 0.00 | 0.00 | 0.90 | 0.00 | 0.00 | China |
83 | Bao et al. [95] | 2017 | 0.33 | 0.00 | 0.00 | 0.00 | 0.67 | 0.00 | China |
84 | Frouz [96] | 2017 | 0.67 | 0.00 | 0.33 | 0.00 | 0.00 | 0.00 | Czech Republic |
85 | Q. Zhang et al. [97] | 2017 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | USA |
86 | Maiti & Rana [98] | 2017 | 0.10 | 0.00 | 0.10 | 0.80 | 0.00 | 0.00 | India |
87 | Bauman et al. [99] | 2017 | 0.00 | 0.00 | 0.50 | 0.50 | 0.00 | 0.00 | USA |
88 | Atanassova et al. | 2017 | 0.25 | 0.00 | 0.00 | 0.75 | 0.00 | 0.00 | Bulgaria |
89 | Jing Wang et al. [100] | 2017 | 0.00 | 0.00 | 0.00 | 0.00 | 0.67 | 0.33 | China |
90 | Shi et al. [101] | 2017 | 0.13 | 0.00 | 0.13 | 0.75 | 0.00 | 0.00 | China |
91 | Jinman Wang et al. [102] | 2017 | 0.00 | 0.33 | 0.00 | 0.33 | 0.33 | 0.00 | China |
92 | Liu, Bai, et al. [103] | 2017 | 0.33 | 0.33 | 0.00 | 0.33 | 0.00 | 0.00 | China |
93 | Y. Yuan et al. [91] | 2017 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | China |
94 | Darmody & McSweeney [104] | 2017 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | USA |
95 | Hou et al. [105] | 2017 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | China |
96 | Maiti & Ahirwal [106] | 2017 | 0.50 | 0.00 | 0.13 | 0.25 | 0.00 | 0.13 | India |
97 | Mukhopadhyay & Masto [107] | 2016 | 0.67 | 0.17 | 0.00 | 0.17 | 0.00 | 0.00 | India |
98 | Ye Yuan et al. [108] | 2016 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | China |
99 | Kołodziej et al. [109] | 2016 | 0.11 | 0.67 | 0.11 | 0.11 | 0.00 | 0.00 | Poland |
100 | Nash et al. [110] | 2016 | 0.17 | 0.33 | 0.17 | 0.33 | 0.00 | 0.00 | USA |
101 | Russell et al. [111] | 2016 | 0.00 | 0.17 | 0.67 | 0.17 | 0.00 | 0.00 | USA |
102 | Stumpf et al. [112] | 2016 | 0.10 | 0.50 | 0.30 | 0.10 | 0.00 | 0.00 | Brazil |
103 | Jinman Wang et al. [113] | 2016 | 0.00 | 0.33 | 0.00 | 0.00 | 0.67 | 0.00 | China |
104 | Maiti et al. [114] | 2016 | 0.00 | 0.00 | 0.25 | 0.75 | 0.00 | 0.00 | India |
105 | Wick et al. [115] | 2016 | 0.40 | 0.50 | 0.00 | 0.10 | 0.00 | 0.00 | USA |
106 | Das & Maiti [116] | 2016 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | India |
107 | Ahirwal & Maiti [117] | 2016 | 0.33 | 0.33 | 0.00 | 0.33 | 0.00 | 0.00 | India |
108 | Clark & Zipper [118] | 2016 | 0.00 | 0.75 | 0.25 | 0.00 | 0.00 | 0.00 | USA |
109 | Gypser et al. [119] | 2016 | 0.25 | 0.50 | 0.25 | 0.00 | 0.00 | 0.00 | Germany |
110 | Brown et al. [120] | 2016 | 0.00 | 0.00 | 0.50 | 0.50 | 0.00 | 0.00 | USA |
111 | Dutta et al. [121] | 2016 | 0.75 | 0.13 | 0.13 | 0.00 | 0.00 | 0.00 | USA |
112 | Mukhopadhyay et al. [122] | 2016 | 0.25 | 0.25 | 0.25 | 0.25 | 0.00 | 0.00 | India |
113 | Frasson et al. [123] | 2016 | 0.00 | 0.00 | 0.75 | 0.25 | 0.00 | 0.00 | Brazil |
114 | Cudlín et al. [124] | 2016 | 0.33 | 0.00 | 0.33 | 0.33 | 0.00 | 0.00 | Czech Republic |
115 | Hu et al. [125] | 2016 | 0.00 | 0.00 | 0.00 | 0.00 | 0.50 | 0.50 | China |
116 | X. R. Zhang et al. [126] | 2016 | 0.25 | 0.50 | 0.25 | 0.00 | 0.00 | 0.00 | China |
117 | Nadłonek & Cabala [127] | 2016 | 0.25 | 0.00 | 0.00 | 0.75 | 0.00 | 0.00 | Poland |
118 | Klojzy-Karczmarczyk et al. [128] | 2016 | 0.00 | 0.33 | 0.00 | 0.67 | 0.00 | 0.00 | Poland |
119 | Junjian Li et al. [129] | 2016 | 0.10 | 0.10 | 0.10 | 0.70 | 0.00 | 0.00 | China |
120 | Frouz et al. [130] | 2015 | 0.17 | 0.00 | 0.00 | 0.67 | 0.17 | 0.00 | Czech Republic |
121 | Kumar et al. [131] | 2015 | 0.25 | 0.25 | 0.25 | 0.25 | 0.00 | 0.00 | India |
122 | Lanham et al. [132] | 2015 | 0.33 | 0.33 | 0.00 | 0.33 | 0.00 | 0.00 | USA |
123 | Evans et al. [133] | 2015 | 0.00 | 0.67 | 0.00 | 0.00 | 0.00 | 0.33 | USA |
124 | Bauman et al. [134] | 2015 | 0.00 | 0.00 | 0.67 | 0.00 | 0.17 | 0.17 | USA |
125 | Weber et al. [135] | 2015 | 0.25 | 0.25 | 0.25 | 0.25 | 0.00 | 0.00 | Poland |
126 | Zhen et al. [136] | 2015 | 0.25 | 0.25 | 0.25 | 0.25 | 0.00 | 0.00 | China |
127 | Macdonald et al. [137] | 2015 | 0.00 | 0.25 | 0.25 | 0.25 | 0.25 | 0.00 | Canada |
128 | Jinman Wang, Yang, et al. [138] | 2015 | 0.75 | 0.00 | 0.00 | 0.00 | 0.25 | 0.00 | China |
129 | Saminathan et al. [139] | 2015 | 0.00 | 0.00 | 0.75 | 0.25 | 0.00 | 0.00 | USA |
130 | Dutta et al. [140] | 2015 | 0.33 | 0.33 | 0.00 | 0.33 | 0.00 | 0.00 | USA |
131 | Bartuška et al. [141] | 2015 | 0.25 | 0.25 | 0.25 | 0.25 | 0.00 | 0.00 | Czech Republic |
132 | Mathiba & Awuah-Offei [142] | 2015 | 0.75 | 0.00 | 0.00 | 0.00 | 0.25 | 0.00 | USA |
133 | Niu et al. [143] | 2015 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | China |
134 | L. Zhang et al. [144] | 2015 | 0.00 | 0.67 | 0.00 | 0.33 | 0.00 | 0.00 | China |
135 | Shouqin et al. [145] | 2015 | 0.00 | 0.50 | 0.25 | 0.25 | 0.00 | 0.00 | China |
136 | Haigh et al. [146] | 2015 | 0.00 | 0.50 | 0.25 | 0.00 | 0.25 | 0.00 | UK |
137 | Jinman Wang, Zhang, et al. [147] | 2015 | 0.13 | 0.50 | 0.00 | 0.13 | 0.25 | 0.00 | China |
138 | Pallavicini et al. [148] | 2015 | 0.11 | 0.11 | 0.67 | 0.11 | 0.00 | 0.00 | Spain |
139 | Y. Li, Chen, & Wen [149] | 2015 | 0.17 | 0.00 | 0.67 | 0.17 | 0.00 | 0.00 | China |
140 | Sena et al. [150] | 2015 | 0.25 | 0.25 | 0.25 | 0.25 | 0.00 | 0.00 | USA |
141 | Hoomehr et al. [151] | 2015 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | USA |
142 | Y. Li, Chen, Zhang, et al. [152] | 2015 | 0.33 | 0.00 | 0.67 | 0.00 | 0.00 | 0.00 | China |
143 | C. Huang et al. [153] | 2015 | 0.33 | 0.33 | 0.00 | 0.33 | 0.00 | 0.00 | Germany |
144 | Gruchot et al. [154] | 2015 | 0.25 | 0.25 | 0.25 | 0.25 | 0.00 | 0.00 | Poland |
145 | Hlava et al. [155] | 2015 | 0.13 | 0.25 | 0.50 | 0.13 | 0.00 | 0.00 | Czech Republic |
Years | Categories | Number of Papers/Total Points | |||||
---|---|---|---|---|---|---|---|
C, N and SOM | Physical | Biological | Chemical | Technology | Review & Metadata | ||
2015 | 4.98 | 6.89 | 6.12 | 5.73 | 1.58 | 0.70 | 26 |
2016 | 5.96 | 5.56 | 4.30 | 5.51 | 1.17 | 0.50 | 23 |
2017 | 7.51 | 3.80 | 6.42 | 6.48 | 4.33 | 1.46 | 30 |
2018 | 8.14 | 5.04 | 9.69 | 7.39 | 1.73 | 0.00 | 32 |
2019 | 7.45 | 3.01 | 7.61 | 5.66 | 2.27 | 2.00 | 28 |
2020 | 1.63 | 0.83 | 2.60 | 0.27 | 0.67 | 0.00 | 6 |
2015–2019 | 34.04 | 24.31 | 34.14 | 30.78 | 11.08 | 4.66 | 139 |
2015–2020 | 35.67 | 25.14 | 36.74 | 31.04 | 11.75 | 4.66 | 145 |
Country | No. of Papers | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|
China | 56 | 8 | 5 | 13 | 14 | 13 | 3 |
USA | 30 | 8 | 6 | 6 | 5 | 4 | 1 |
India | 23 | 1 | 5 | 7 | 6 | 4 | 0 |
Poland | 7 | 2 | 3 | 0 | 2 | 0 | 0 |
Czech Republic | 5 | 3 | 1 | 1 | 0 | 0 | 0 |
UK | 5 | 1 | 0 | 1 | 1 | 2 | 0 |
Germany | 4 | 1 | 1 | 1 | 0 | 1 | 0 |
Bulgaria | 4 | 0 | 0 | 1 | 1 | 2 | 0 |
Indonesia | 3 | 0 | 0 | 0 | 1 | 2 | 0 |
South Africa | 2 | 0 | 0 | 0 | 1 | 0 | 1 |
Spain | 2 | 1 | 0 | 0 | 0 | 0 | 1 |
Brazil | 2 | 0 | 2 | 0 | 0 | 0 | 0 |
Chile | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
Canada | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spasić, M.; Drábek, O.; Borůvka, L.; Tejnecký, V. Trends of Global Scientific Research on Reclaimed Coal Mine Sites between 2015 and 2020. Appl. Sci. 2023, 13, 8412. https://doi.org/10.3390/app13148412
Spasić M, Drábek O, Borůvka L, Tejnecký V. Trends of Global Scientific Research on Reclaimed Coal Mine Sites between 2015 and 2020. Applied Sciences. 2023; 13(14):8412. https://doi.org/10.3390/app13148412
Chicago/Turabian StyleSpasić, Marko, Ondřej Drábek, Luboš Borůvka, and Václav Tejnecký. 2023. "Trends of Global Scientific Research on Reclaimed Coal Mine Sites between 2015 and 2020" Applied Sciences 13, no. 14: 8412. https://doi.org/10.3390/app13148412
APA StyleSpasić, M., Drábek, O., Borůvka, L., & Tejnecký, V. (2023). Trends of Global Scientific Research on Reclaimed Coal Mine Sites between 2015 and 2020. Applied Sciences, 13(14), 8412. https://doi.org/10.3390/app13148412