Study on Rock Failure Criterion Based on Elastic Strain Energy Density
Abstract
:1. Introduction
2. Conventional Triaxial Compression Test of Sandstone
2.1. Test Method
2.2. Analysis of Test Results
3. Sandstone Energy Analysis
3.1. Theoretical Analysis
3.2. Energy Density Analysis
4. Sandstone Failure Criterion
5. Discussions
6. Conclusions
- (1)
- In the conventional triaxial compression deformation process, the input energy density of sandstone continued to increase, while the elastic strain energy density gradually increased in the pre-peak stage. When the energy storage limit of sandstone was exceeded, the sandstone was damaged, the elastic strain energy density decreased sharply, and the dissipative energy density increased rapidly.
- (2)
- The peak elastic strain energy density increased linearly with the confining pressure; based on this, the rock energy density failure criterion under conventional triaxial compression was established. This criterion is simple in form, contains only a few parameters, and the physical meaning of each parameter is clear. The energy density failure criterion can be transformed into the Hoek–Brown failure criterion through parameter transformation, indicating that the Hoek–Brown failure criterion is a special case of the energy density failure criterion.
- (3)
- The Mohr–Coulomb, Drucker–Prager, and energy–density criteria were used to calculate the strengths of the seven types of rocks under different confining pressures, and the energy–density criterion was the closest to the experimental results, indicating that the feasibility and accuracy of the energy–density criterion were higher than those of the Mohr–Coulomb and Drucker–Prager criteria.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Masoud, A.; Alireza, K.; Azim, K. Evaluation of mechanical, chemical, and thermal effects on wellbore stability using different rock failure criteria. J. Nat. Gas Sci. Eng. 2020, 78, 103276. [Google Scholar]
- Li, Y.; Cheng, H.; Zhang, L.L. Energy analysis of C60 concrete under triaxial compression under different confining pressures. Chin. J. Appl. Mech. 2020, 37, 2086–2093. [Google Scholar]
- Liu, X.S.; Ning, J.G.; Tan, Y.L.; Gu, Q.H. Damage constitutive model based on energy dissipation for intact rock subjected to cyclic loading. Int. J. Rock Mech. Min. Sci. 2016, 85, 27–32. [Google Scholar] [CrossRef]
- Xie, H.P.; Li, L.Y.; Peng, R.D.; Ju, Y. Energy analysis and criteria for structural failure of rocks. J. Rock Mech. Geotech. Eng. 2009, 1, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Lia, D.Y.; Sun, Z.; Xie, T.; Lia, X.B.; Ranjith, P.G. Energy evolution characteristics of hard rock during triaxial failure with different loading and unloading paths. Eng. Geol. 2017, 228, 270–281. [Google Scholar] [CrossRef]
- Bagde, M.N.; Petroš, V. Fatigue and dynamic energy behaviour of rock subjected to cyclical loading. Int. J. Rock Mech. Min. Sci. 2009, 46, 200–209. [Google Scholar] [CrossRef]
- Fuenkajorn, K.; Sriapai, T.; Samsri, P. Effects of loading rate on strength and deformability of Maha Sarakham salt. Eng. Geol. 2012, 135, 10–23. [Google Scholar] [CrossRef]
- Peng, R.D.; Ju, Y.; Wang, J.G.; Xie, H.P.; Gao, F.; Mao, L.T. Energy dissipation and release during coal failure under conventional triaxial compression. Rock Mech. Rock Eng. 2015, 48, 509–526. [Google Scholar] [CrossRef]
- Song, D.Z.; Wang, E.Y.; Li, Z.H.; Liu, J.; Xu, W.Q. Energy dissipation of coal and rock during damage and failure process based on EMR. Int. J. Min. Sci. Technol. 2015, 25, 787–795. [Google Scholar] [CrossRef]
- Zhou, Y.; Lv, W.J.; Zhou, Z.H.; Tang, Q.Q.; Han, G.S.; Hao, J.S.; Chen, W.Q.; Wu, F.Q. New failure criterion for rock slopes with intermittent joints based on energy mutation. Nat. Hazards 2023, 1–19. [Google Scholar] [CrossRef]
- Wang, Z.F.; Qi, C.Z.; Zhao, F.; Jiang, K.; Feng, Y.J. A new critical strain energy release rate failure criterion for anisotropic rock under high confining pressure. Geomech. Energy Environ. 2023, 34, 100464. [Google Scholar] [CrossRef]
- Gennady, K.; Vitali, S. Energy criterion for fracture of rocks and rock-like materials on the descending branch of the load-displacement curve. Materials 2022, 15, 7907. [Google Scholar]
- Chen, W.; Heinz, K.; Tan, X.; Thomas, F. Pre-failure damage analysis for brittle rocks under triaxial compression. Comput. Geotech. 2016, 74, 45–55. [Google Scholar] [CrossRef]
- Zhang, Z.Z.; Gao, F. Experimental investigation on the energy evolution of dry and water-saturated red sandstones. Int. J. Min. Sci. Technol. 2015, 25, 383–388. [Google Scholar] [CrossRef]
- Guo, J.Q.; Liu, X.R.; Wang, J.B.; Huang, Z.H. Strength criterion of rock based on elastic strain energy. Rock Soil Mech. 2016, 37, 129–136. [Google Scholar]
- Zhang, J. Study on evolution law of rock compression energy and nonlinear evolution model. Coal Sci. Technol. 2021, 49, 73–80. [Google Scholar]
- Yao, J.K.; Wang, Z.L. Study on mechanical property and energy evolution law of Huashan granite. Hydro-Sci. Eng. 2018, 3, 78–85. [Google Scholar]
- Liu, T.W.; He, J.D.; Xu, W.J. Energy properties of failure of marble samples under triaxial compression. Chin. J. Geotech. Eng. 2013, 35, 395–400. [Google Scholar]
- Guo, J.Q.; Jiang, J.G.; Liu, X.R.; Chen, J.H.; Lu, X.F.; Yang, Q.D. Modification of Drucker-Prager strength criterion based on the elastic strain energy. China Civ. Eng. J. 2021, 54, 110–116. [Google Scholar]
- Xu, J.; Yan, S.S.; Peng, S.J.; Tang, Y.; Chen, C.C. Deformation and energy analysis in progressive failure of rock. Min. Res. Dev. 2019, 39, 47–53. [Google Scholar]
- Wang, B.; Zhu, J.B.; Wu, A.Q.; Liu, X.H. Experimental validation of nonlinear strength property of rock under high geostress. Chin. J. Rock Mech. Eng. 2010, 29, 542–548. [Google Scholar]
- Qiao, L.; Wang, X.; Li, Y. Study of acoustic emission and characteristic stress in deep granodiorite failure process. Chin. J. Rock Mech. Eng. 2014, 33, 2773–2778. [Google Scholar]
- Guo, J.Q. Study on the Criterion of Rock Salt Based on Energy Principles and Its Application in Engineering. Ph.D.Thesis, Chongqing University, Chongqing, China, 2014. [Google Scholar]
- Hoek, E.; Brown, E.T. Empirical strength criterion for rock masses. J. Geotech. Eng. Div. ASCE 1980, 106, 1013–1035. [Google Scholar] [CrossRef]
- Zhou, H.; Li, Z.; Yang, Y.S. Unified energy yield criterion of rock. Chin. J. Rock Mech. Eng. 2013, 32, 2170–2184. [Google Scholar]
/MPa | /MPa | Peak Axial Strain/% | Peak Circumferential Strain/% | Peak Volumetric Strain/% | /GPa | c/MPa | φ/(°) | |
---|---|---|---|---|---|---|---|---|
0 | 52.32 | 0.56 | −0.22 | 0.12 | 9.33 | 0.18 | 14.44 | 34.75 |
5 | 78.53 | 0.57 | −0.18 | 0.21 | 14.94 | 0.20 | ||
10 | 92.70 | 0.65 | −0.22 | 0.21 | 15.02 | 0.21 | ||
15 | 106.88 | 0.74 | −0.19 | 0.36 | 16.19 | 0.19 | ||
20 | 130.68 | 0.79 | −0.21 | 0.37 | 18.06 | 0.19 | ||
25 | 147.81 | 0.91 | −0.51 | −0.11 | 18.62 | 0.21 |
References | Rock Types | /MPa | /MPa | UEP/(MJ·m−3) |
---|---|---|---|---|
[16] | Chlorite schist | 0 | 34.57 | 0.0408 |
5 | 51.51 | 0.0608 | ||
20 | 78.67 | 0.1062 | ||
30 | 97.36 | 0.1539 | ||
40 | 115.11 | 0.2138 | ||
[17] | Hengda sandstone | 0 | 76.07 | 0.1027 |
10 | 108.23 | 0.1796 | ||
20 | 132.95 | 0.2439 | ||
30 | 148.19 | 0.2759 | ||
40 | 169.31 | 0.3324 | ||
[18] | Argillaceous dolomite | 0 | 20.20 | 0.0358 |
5 | 67.80 | 0.2155 | ||
10 | 107.50 | 0.3694 | ||
15 | 132.00 | 0.4792 | ||
20 | 171.00 | 0.6431 | ||
[19] | Jinping greenschist | 0 | 39.87 | 0.0757 |
4 | 65.63 | 0.1677 | ||
8 | 88.79 | 0.2041 | ||
20 | 133.92 | 0.3499 | ||
40 | 173.03 | 0.4385 | ||
50 | 188.68 | 0.5577 | ||
[20] | Huashan granite | 0 | 140.36 | 0.2143 |
15 | 272.36 | 0.5994 | ||
25 | 313.82 | 0.7263 | ||
35 | 376.00 | 0.9854 | ||
[21] | Jinping marble | 0 | 82.31 | 0.1831 |
5 | 146.12 | 0.3466 | ||
10 | 187.21 | 0.5091 | ||
20 | 246.34 | 0.8211 | ||
30 | 290.78 | 1.0484 | ||
40 | 331.74 | 1.0899 | ||
[22] | Granodiorite | 0 | 164.62 | 0.2596 |
1 | 176.79 | 0.3025 | ||
2.5 | 203.88 | 0.4043 | ||
5 | 217.59 | 0.4418 | ||
10 | 289.88 | 0.7263 | ||
15 | 310.43 | 0.8377 | ||
20 | 347.14 | 1.0591 |
Rock Type | /MPa | Test Value/MPa | Calculated Value/MPa | ||
---|---|---|---|---|---|
M-C | D-P | E-D | |||
Chlorite schist | 0 | 34.57 | 38.31 | 29.36 | 34.57 |
5 | 51.51 | 48.06 | 37.89 | 46.97 | |
20 | 78.67 | 77.31 | 63.48 | 78.83 | |
30 | 97.36 | 96.81 | 80.54 | 97.78 | |
40 | 115.11 | 116.31 | 97.60 | 115.68 | |
Hengda sandstone | 0 | 76.07 | 81.66 | 60.66 | 76.07 |
10 | 108.23 | 104.26 | 80.26 | 103.32 | |
20 | 132.95 | 126.86 | 99.87 | 127.84 | |
30 | 148.19 | 149.46 | 119.47 | 150.63 | |
40 | 169.31 | 172.06 | 139.07 | 172.18 | |
Argillaceous dolomite | 0 | 20.20 | 26.54 | 11.53 | 20.2 |
5 | 67.80 | 63.14 | 30.66 | 77.29 | |
10 | 107.50 | 99.74 | 49.78 | 110.21 | |
15 | 132.00 | 136.34 | 68.91 | 136.90 | |
20 | 171.00 | 172.94 | 88.03 | 160.27 | |
Jinping greenschist | 0 | 39.87 | 57.08 | 38.74 | 39.87 |
4 | 65.63 | 68.48 | 47.75 | 61.09 | |
8 | 88.79 | 79.88 | 56.75 | 78.20 | |
20 | 133.92 | 114.08 | 83.78 | 119.69 | |
40 | 173.03 | 171.08 | 128.82 | 175.22 | |
50 | 188.68 | 199.58 | 151.34 | 199.86 | |
Huashan granite | 0 | 140.36 | 151.76 | 70.31 | 140.36 |
15 | 272.36 | 250.91 | 124.84 | 261.79 | |
25 | 313.82 | 317.01 | 161.20 | 322.27 | |
35 | 376.00 | 383.11 | 197.55 | 375.35 | |
Jinping marble | 0 | 82.31 | 110.28 | 54.20 | 82.31 |
5 | 146.12 | 139.93 | 71.49 | 136.30 | |
10 | 187.21 | 169.58 | 88.78 | 176.45 | |
20 | 246.34 | 228.88 | 123.36 | 240.54 | |
30 | 290.78 | 288.18 | 157.93 | 293.76 | |
40 | 331.74 | 347.48 | 192.51 | 340.83 | |
Granodiorite | 0 | 164.62 | 174.11 | 64.80 | 164.62 |
1 | 176.79 | 183.30 | 68.83 | 177.90 | |
2.5 | 203.88 | 197.09 | 74.87 | 196.37 | |
5 | 217.59 | 220.06 | 84.94 | 224.25 | |
10 | 289.88 | 266.01 | 105.08 | 272.76 | |
15 | 310.43 | 311.96 | 125.21 | 315.03 | |
20 | 347.14 | 357.91 | 145.35 | 353.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Zhang, L. Study on Rock Failure Criterion Based on Elastic Strain Energy Density. Appl. Sci. 2023, 13, 8435. https://doi.org/10.3390/app13148435
Cheng Y, Zhang L. Study on Rock Failure Criterion Based on Elastic Strain Energy Density. Applied Sciences. 2023; 13(14):8435. https://doi.org/10.3390/app13148435
Chicago/Turabian StyleCheng, Yang, and Liangliang Zhang. 2023. "Study on Rock Failure Criterion Based on Elastic Strain Energy Density" Applied Sciences 13, no. 14: 8435. https://doi.org/10.3390/app13148435
APA StyleCheng, Y., & Zhang, L. (2023). Study on Rock Failure Criterion Based on Elastic Strain Energy Density. Applied Sciences, 13(14), 8435. https://doi.org/10.3390/app13148435