Creep Characteristics of a Strongly Weathered Argillaceous Sandstone Sliding Zone and the Disaster Evolution Mechanism of the Huaipa Landslide, China
Abstract
:1. Introduction
2. Huaipa Landslide Profile
2.1. Distribution and Deformation Characteristics of the Landslide
2.2. Landslide Material Composition
3. Creep Characteristics of the Strongly Weathered Argillaceous Sandstone
3.1. Large Triaxial Creep Test Scheme
3.2. Analysis of the Experimental Results
3.2.1. Creep Curve
3.2.2. Influencing Factors of the Creep Characteristics
3.2.3. Particle Fragmentation Analysis of the Creep Specimens
4. Long-Term Strength of the Strongly Weathered Argillaceous Sandstone
4.1. Stress–Strain Isochronous Curves
4.2. Long-Term Strength
5. Three-Dimensional Numerical Simulations of the Huaipa Landslide
5.1. Calibration with the Triaxial Compression Creep Tests
5.2. Landslide Creep Deformation and Disaster Evolution Mechanism
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Furuya, G.; Sassa, K.; Hiura, H.; Fukuoka, H. Mechanism of creep movement caused by landslide activity and underground erosion in crystalline schist, Shikoku Island, southwestern Japan. Eng. Geol. 1999, 53, 311–325. [Google Scholar] [CrossRef]
- Gunatilake, J.; Iwao, Y.; Yamasaki, T. Relationship of the faulting to the creep movement of Iwakura landslide in Saga, Japan. J. Jpn. Landslide Soc. 2002, 39, 212–223. [Google Scholar] [CrossRef] [Green Version]
- Kumsar, H.; Aydan, Ö.; Tano, H.; Çelik, S.; Ulusay, R. An Integrated Geomechanical Investigation, Multi-Parameter Monitoring and Analyses of Babadağ-Gündoğdu Creep-like Landslide. Rock Mech. Rock Eng. 2015, 49, 2277–2299. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, L.; Yin, K.; Shrestha, D.P.; Zhang, L. Quantitative risk assessment of slow-moving landslides from the viewpoint of decision-making: A case study of the Three Gorges Reservoir in China. Eng. Geol. 2020, 273, 105667. [Google Scholar] [CrossRef]
- Wu, Y.; Miao, F.; Li, L.; Xie, Y.; Chang, B. Time-varying reliability analysis of Huangtupo Riverside No.2 Landslide in the Three Gorges Reservoir based on water-soil coupling. Eng. Geol. 2017, 226, 267–276. [Google Scholar] [CrossRef]
- Medina, V.; Hürlimann, M.; Guo, Z.; Lloret, A.; Vaunat, J. Fast physically-based model for rainfall-induced landslide susceptibility assessment at regional scale. Catena 2021, 201, 105213. [Google Scholar] [CrossRef]
- Dun, J.; Feng, W.; Yi, X.; Zhang, G.; Wu, M. Detection and Mapping of Active Landslides before Impoundment in the Baihetan Reservoir Area (China) Based on the Time-Series InSAR Method. Remote Sens. 2021, 13, 3213. [Google Scholar] [CrossRef]
- Di Maio, C.; Vassallo, R.; Vallario, M.; Pascale, S.; Sdao, F. Structure and kinematics of a landslide in a complex clayey formation of the Italian Southern Apennines. Eng. Geol. 2010, 116, 311–322. [Google Scholar] [CrossRef]
- Massey, C.I.; Petley, D.N.; McSaveney, M.J. Patterns of movement in reactivated landslides. Eng. Geol. 2013, 159, 1–19. [Google Scholar] [CrossRef]
- Okubo, S.; Nishimatsu, Y.; Fukui, K. Complete creep curves under uniaxial compression. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1991, 28, 77–82. [Google Scholar] [CrossRef]
- Ding, X.; Fu, J.; Liu, J.; Sheng, Q.; Chen, H.; Han, B. Study on creep behavior of alternatively distributed soft and hard rock layers and slope stability analysis. Chin. J. Rock Mech. Eng. 2005, 24, 3410–3418. [Google Scholar]
- QY, F.; KQ, Y.; WM, W. Study on creep mechanism of argillaceous soft rocks. Chin. J. Rook Mech. Eng. 2010, 29, 1555–1561. [Google Scholar]
- Li, F.; Yang, J.; Liu, W.; Fan, Z.; Yang, Y. Effect of loading rate changing on the mechanical properties of mudstone under uniaxial compression. Rock Soil Mech. 2021, 42, 369–378. [Google Scholar] [CrossRef]
- Cong, L.; Hu, X. Triaxial rheological property of sandstone under low confining pressure. Eng. Geol. 2017, 231, 45–55. [Google Scholar] [CrossRef]
- Yang, C.; Daemen, J.; Yin, J.-H. Experimental investigation of creep behavior of salt rock. Int. J. Rock Mech. Min. Sci. 1999, 36, 233–242. [Google Scholar] [CrossRef]
- Long, Z.; Cheng, Y.; Yang, G.; Yang, D.; Xu, Y. Study on Triaxial Creep Test and Constitutive Model of Compacted Red Clay. Int. J. Civ. Eng. 2020, 19, 517–531. [Google Scholar] [CrossRef]
- Hu, X.; Sun, M.; Tang, H.; Xie, N.; Guo, J. Creep tests of gravel-soil of Majiagou landslide in Three Gorges Reservoir area. Rock Soil Mech. 2014, 35, 3163–3169+3190. [Google Scholar] [CrossRef]
- Wang, C.; Hu, D.J.; Liu, H.W. Creep tests of sliding zone soils of Xietan landslide in Three Gorges Area. Rock Soil Mech. 2003, 24, 1007–1010. [Google Scholar] [CrossRef]
- Zhu, F.; Duan, Z.; Wu, Z.; Wu, Y.; Li, T.; Cai, Y. Experimental Study on Direct Shear Creep Characteristics and Long-Term Strength of Red Layer Sliding Zone Soil in Southern Hunan. Adv. Mater. Res. 2013, 842, 782–787. [Google Scholar] [CrossRef]
- Nan, J.; Wang, C.; Wang, T.; Li, S.; Wang, D. Experimental study on direct shear creep of strongly weathered mudstone in Changchun. In Proceedings of the 2017 National Academic Conference on Engineering Geology, Guilin, China, 25–29 July 2017; pp. 172–177. [Google Scholar]
- Jiang, X.; Wen, B. Creep behavior of slip zone of reactivated slow-moving landslide and its characteristic strength. Rock Soil Mech. 2015, 36, 495–501+549. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, W.; He, Z.; Lyv, S.; Yang, Q. Nonlinear creep damage model considering effect of pore pressure and analysis of long-term stability of rock structure. Int. J. Damage Mech. 2019, 29, 144–165. [Google Scholar] [CrossRef]
- Wang, X.; Lian, B.-q.; Wang, J.-d.; Feng, W.; Gu, T.-F. Creep damage properties of sandstone under dry-wet cycles. J. Mt. Sci. 2020, 17, 3112–3122. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, A.; Li, M. Experimental investigation of the time-dependent behavior of quartz sandstone and quartzite under the combined effects of chemical erosion and freeze–thaw cycles. Cold Reg. Sci. Technol. 2019, 161, 51–62. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, A.; Zhang, F. Research on creep characteristics and variable parameter-based creep damage constitutive model of gneiss subjected to freeze–thaw cycles. Environ. Earth Sci. 2021, 80, 7. [Google Scholar] [CrossRef]
- Zheng, H.; Feng, X.-T.; Hao, X.-j. A creep model for weakly consolidated porous sandstone including volumetric creep. Int. J. Rock Mech. Min. Sci. 2015, 78, 99–107. [Google Scholar] [CrossRef]
- Damjanac, B.; Fairhurst, C. Evidence for a Long-Term Strength Threshold in Crystalline Rock. Rock Mech. Rock Eng. 2010, 43, 513–531. [Google Scholar] [CrossRef]
- Shen, M.; Chem, H.; Zhang, Q. Method for determining long-term strength of discontinuity using shear creep test. Chin. J. Rock Mech. Eng. 2012, 31, 1–7. [Google Scholar]
- Shu, Z. Application of long-term strength to engineering. Hydrogeol. Eng. Geol. 1986, 5, 27–29. [Google Scholar]
- Li, S.; Liao, Y. Creep behavior analysis of landslide in a project reservoir area. J. Nat. Disaster 2009, 18, 135–140. [Google Scholar]
- Lai, X.L.; Wang, S.M.; Qin, H.B. Unsaturated Creep Model of the Sliding Zone Soils of Qianjiangping Landslide in Three Gorges and Its Empirical Models. In Proceedings of the International Symposium on Unsaturated Soil Mechanics & Deep Geological Nuclear Waste Disposal, Shanghai, China, 24–28 August 2009. [Google Scholar]
- Lai, X.L.; Wang, S.M.; Ye, W.M.; Cui, Y.J. Experimental investigation on the creep behavior of an unsaturated clay. Can. Geotech. J. 2014, 51, 621–628. [Google Scholar] [CrossRef]
- Yan, S.J.; Xiang, W.; Tang, H.M.; Man, Z.W.; Xu, R. Research on creep behavior of slip band soil of Dayantang landslide. Rock Soil Mech. 2008, 29, 58–62+68. [Google Scholar] [CrossRef]
- Sun, M.J.; Tang, H.M.; Wang, X.H.; Hu, X.L.; Wang, M.Y.; Ni, W. Creep properties of sliding-zone soil from a creeping landslide. Rock Soil Mech. 2017, 38, 385–391+399. [Google Scholar] [CrossRef]
- Wen, B.-P.; Jiang, X.-Z. Effect of gravel content on creep behavior of clayey soil at residual state: Implication for its role in slow-moving landslides. Landslides 2017, 14, 559–576. [Google Scholar] [CrossRef]
- Li, S.-Y.; Li, D.-D.; Liu, H.-D.; Wang, S.-W.; Geng, Z.; Peng, B. Formation and failure mechanism of the landslide: A case study for Huaipa, Western Henan, China. Environ. Earth Sci. 2021, 80, 478. [Google Scholar] [CrossRef]
- Zhao, J.; Jiang, M.; Chen, F.; Jiarong, W. Determination method of long-term strength of Jinping marble under true triaxial stress. Chin. J. Rock Mech. Eng. 2023, 42, 3324–3330. [Google Scholar] [CrossRef]
- Di Maio, C.; Vassallo, R.; Vallario, M. Plastic and viscous shear displacements of a deep and very slow landslide in stiff clay formation. Eng. Geol. 2013, 162, 53–66. [Google Scholar] [CrossRef]
- Zhang, Q.Z.; Shen, M.R.; Ding, W.Q. Study of Mechanical Properties and long-term strength of Jinping Green schist. Chin. J. Rock Mech. Eng. 2012, 31, 1642–1649. [Google Scholar]
- Jia, Y.F.; Wang, B.; Chi, S.C. Particle breakage of rockfill during triaxial tests. Chin. J. Geotech. Eng. 2015, 37, 1692–1697. [Google Scholar]
- Guo, W.L.; Cai, Z.Y.; Wu, Y.L.; Huang, Y.H. Study on the particle breakage energy and dilatancy of coarse-grained soils. Rock Soil Mech. 2019, 40, 4703–4710. [Google Scholar] [CrossRef]
- Marsal, R. Large Scale Testing of Rockfill Materials. J. Soil Mech. Found. Div. 1967, 93, 27–43. [Google Scholar] [CrossRef]
- Song, D.; Wang, C. Study on formation mechanism of reservoir bank landslide under impoundment condition. Water Resour. Hydropower Eng. 2016, 47, 101–105+109. [Google Scholar] [CrossRef]
- Zhao, N.; Hu, B.; Yan, E.; Xu, X.; Yi, Q. Research on the creep mechanism of Huangniba landslide in the Three Gorges Reservoir Area of China considering the seepage–stress coupling effect. Bull. Eng. Geol. Environ. 2018, 78, 4107–4121. [Google Scholar] [CrossRef]
- Bozzano, F.; Martino, S.; Montagna, A.; Prestininzi, A. Back analysis of a rock landslide to infer rheological parameters. Eng. Geol. 2012, 131–132, 45–56. [Google Scholar] [CrossRef]
- Li, L.; Li, S.; Hong, L. Time-dependent deformation of rock slopes based on long-term strength characteristics of rocks. Chin. J. Geotech. Eng. 2014, 36, 47–56. [Google Scholar]
- Jiang, J.S.; Cheng, Z.L.; Zuo, Y.Z.; Ding, H.S. CT triaxial rheological test on coarse-grained soils. Rock Soil Mech. 2014, 35, 2507–2514. [Google Scholar] [CrossRef]
Subzone of Slide | Slide Mass | Slide Zone | Slide Bed |
---|---|---|---|
Front part | Quaternary eluvium and deluvium deposits, gravel clay, and strongly weathered sandstone and mudstone Thickness~10.0 m | Strongly weathered argillaceous sandstone Thickness~0.1–0.3 m | Anti-tipping mudstone and sandstone Dip angle = −19.8° to 1.2° |
Middle part | Quaternary eluvium and deluvium deposits, gravel clay, and strongly weathered sandstone and mudstone Thickness~14.0–30.0 m | Strongly weathered argillaceous sandstone Thickness~1.0–1.5 m | Mudstone and sandstone Dip angle = 6.3°–14° |
Rear part | Quaternary eluvium and deluvium deposits and gravel clay Thickness~13.0–29.0 m | Strongly weathered argillaceous sandstone Thickness~0.2–0.5 m | Mudstone and sandstone Dip angle = 17.8°–52° |
Natural Moisture Content/% | Density/(g/cm3) | Specific Gravity | Liquid Limit/% | Plastic Limit/% | Plasticity Index |
---|---|---|---|---|---|
13 | 2.09 | 2.68 | 24.6 | 16.6 | 8.0 |
Moisture Content | Confining Pressure/kPa | Deviator Stress/kPa |
---|---|---|
13% | 100 | 125 → 250 → 375 → 500 → 620 |
200 | 180 → 360 → 540 →720 → 880 | |
300 | 210 → 420 → 630 →840 → 1050 | |
saturated state | 100 | 65 → 130 → 195 →260 → 320 |
200 | 110 → 220 → 330 →440 → 530 | |
300 | 150 → 300 → 450 →600 → 750 |
Time | Confining Pressure | Natural State | Saturated State | ||||||
---|---|---|---|---|---|---|---|---|---|
SL2 | SL4 | SL6 | SL8 | SL2 | SL4 | SL6 | SL8 | ||
Instantaneous strain (30 min) Unit:% | 100 kPa | 0.10 | 0.99 | 1.90 | 4.57 | 0.15 | 1.23 | 3.76 | 9.79 |
200 kPa | 1.00 | 2.15 | 3.38 | 6.15 | 1.03 | 1.69 | 5.24 | 9.99 | |
300 kPa | 1.76 | 3.40 | 5.23 | 8.24 | 1.67 | 2.54 | 5.87 | 12.81 | |
Total strain (10,000 min) Unit:% | 100 kPa | 0.17 | 1.29 | 2.75 | 8.40 | 0.26 | 1.56 | 4.75 | 14.15 |
200 kPa | 1.31 | 3.34 | 5.91 | 12.64 | 1.24 | 2.15 | 5.98 | 15.99 | |
300 kPa | 2.12 | 4.43 | 7.65 | 13.96 | 1.89 | 3.18 | 7.01 | 16.75 | |
The ratio of instantaneous strain to total strain | 100 kPa | 56% | 77% | 69% | 54% | 56% | 79% | 79% | 69% |
200 kPa | 76% | 64% | 57% | 49% | 83% | 78% | 88% | 62% | |
300 kPa | 83% | 77% | 68% | 59% | 89% | 80% | 84% | 76% |
Moisture State | Strength | Confining Pressure | Strength Parameters | |||
---|---|---|---|---|---|---|
100 kPa | 200 kPa | 300 kPa | Cohesion | Angle of Internal Friction | ||
13% moisture content | Long-term strength | 405 kPa | 557 kPa | 662 kPa | 94 kPa | 23° |
Instantaneous strength | 617.5 kPa | 876.8 kPa | 1048.2 kPa | 130.9 kPa | 32.1 | |
Proportionality | 66% | 64% | 63% | 72% | 72% | |
Saturated state | Long-term strength | 198 kPa | 347 kPa | 471 kPa | 21 kPa | 22.9° |
Instantaneous strength | 317.1 kPa | 522.7 kPa | 745.1 kPa | 30.5 kPa | 30.6° | |
Proportionality | 62% | 66% | 63% | 69% | 78% |
Moisture Condition | Bulk Modulus (kPa) | Cohesion (kPa) | Friction (°) | Kelvin Shear Modulus (kPa) | Kelvin Viscosity (kPa·min) | Maxwell Shear Modulus (kPa) | Maxwell Viscosity (kPa·min) |
---|---|---|---|---|---|---|---|
Natural | 1.38 × 105 | 0.094 × 103 | 23 | 8.44 × 103 | 7.2 × 105 | 0.24–0.7 × 104 | 1.728 × 109 |
Saturated | 1.03 × 105 | 0.021 × 103 | 24 | 8.84 × 103 | 9.61 × 104 | 0.09–0.53 × 104 | 4.69 × 108 |
Parameters | Elastic Modulus (GPa) | Poisson Ratio | Unit Weight (kN/m3) | Cohesion (kPa) | Angle of Internal Friction (°) | Kelvin Shear Modulus (kPa) | Kelvin Viscosity (kPa·day) | Maxwell Shear Modulus (kPa) | Maxwell Viscosity (kPa·day) |
---|---|---|---|---|---|---|---|---|---|
Sliding mass | 0.25 | 0.32 | 21.2 | 150 | 32 | ||||
Bedrock | 75 | 0.26 | 27.1 | 310 | 39.7 | ||||
Sliding zone | 0.15 | 0.32 | 20.9 | 130 | 32.1 | ||||
Sliding zone | 0.15 | 0.32 | 20.9 | 94 | 23 | 8.44 × 103 | 5.00 × 102 | 6.50 × 103 | 1.20 × 106 |
Sliding zone (saturated) | 0.105 | 0.33 | 21 | 21 | 23.9 | 8.84 × 103 | 6.67 × 10 | 1.00 × 103 | 3.26 × 105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, J.; Zhao, Y.; Liu, H.; Zhao, J.; Zhang, Z.; Chi, Q.; Yang, J. Creep Characteristics of a Strongly Weathered Argillaceous Sandstone Sliding Zone and the Disaster Evolution Mechanism of the Huaipa Landslide, China. Appl. Sci. 2023, 13, 8579. https://doi.org/10.3390/app13158579
Dong J, Zhao Y, Liu H, Zhao J, Zhang Z, Chi Q, Yang J. Creep Characteristics of a Strongly Weathered Argillaceous Sandstone Sliding Zone and the Disaster Evolution Mechanism of the Huaipa Landslide, China. Applied Sciences. 2023; 13(15):8579. https://doi.org/10.3390/app13158579
Chicago/Turabian StyleDong, Jinyu, Yawen Zhao, Handong Liu, Jiancang Zhao, Zhimin Zhang, Qiuhui Chi, and Jihong Yang. 2023. "Creep Characteristics of a Strongly Weathered Argillaceous Sandstone Sliding Zone and the Disaster Evolution Mechanism of the Huaipa Landslide, China" Applied Sciences 13, no. 15: 8579. https://doi.org/10.3390/app13158579
APA StyleDong, J., Zhao, Y., Liu, H., Zhao, J., Zhang, Z., Chi, Q., & Yang, J. (2023). Creep Characteristics of a Strongly Weathered Argillaceous Sandstone Sliding Zone and the Disaster Evolution Mechanism of the Huaipa Landslide, China. Applied Sciences, 13(15), 8579. https://doi.org/10.3390/app13158579