Accurate Modeling, Operation Laws and Commutation Timing Matching for Concrete Pumping Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Structure and working principle of the CPS
2.2. Methods
2.3. CPS modeling and validation
3. Results and Discussion
3.1. Operation law of the CPS
3.1.1. Operation law of the pumping mechanism
3.1.2. Operation law of swing mechanism
3.2. Commutation timing of the CPS
3.3. Commutation timing optimization
3.3.1. Erosion wear of the CPS
3.3.2. Optimization scheme of commutation timing
3.3.3. Optimization results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ivanovi, B.; Saha, A.; Stevi, E.; Zavadskas, E.K. Selection of truck mixer concrete pump using novel MEREC DNMARCOS model. Arch. Civ. Mech. Eng. 2022, 22, 173. [Google Scholar] [CrossRef]
- Ren, W.; Li, Z.; Bi, Y.; Zhao, S.; Peng, B.; Zhou, L. Modeling and analysis of truck mounted concrete pump boom by virtual prototyping. J. Robot. 2017, 2017, 9182143. [Google Scholar] [CrossRef] [Green Version]
- Deng, Z.; Tang, Z.; Zhu, H.; Zhao, Y. An improved expectation maximization algorithm for missing data management of concrete pump truck. J. Cent. South Univ. (Sci. Technol.) 2021, 52, 443–449. [Google Scholar]
- Secrieru, E.; Mohamed, W.; Fataei, S.; Mechtcherine, V. Assessment and prediction of concrete flow and pumping pressure in pipeline. Cem. Concr. Compos. 2020, 107, 103495. [Google Scholar] [CrossRef]
- Chen, R. Concrete Machinery Development in China. Constr. Mach. Technol. Manag. 2005, 18, 27–29. [Google Scholar]
- Zhang, Q. Research on integrated control method for concrete pumping system. Mach. Tool Hydraul. 2019, 47, 88–98. [Google Scholar]
- Deng, R.; Tan, Y.; Xiao, X. Optimization of blade structural parameters of concrete truck mixer based on discrete element method. Part. Sci. Technol. 2021, 40, 712–721. [Google Scholar] [CrossRef]
- Jiang, S.; Chen, X.; Cao, G.; Tan, Y.; Xiao, X.; Zhou, Y.; Liu, S.; Tong, Z.; Wu, Y. Optimization of fresh concrete pumping pressure loss with CFD-DEM approach. Constr. Build. Mater. 2021, 276, 122204. [Google Scholar] [CrossRef]
- Secrieru, E.; Cotardo, D.; Mechtcherine, V.; Lohaus, L.; Schröfl, C.; Begemann, C. Changes in concrete properties during pumping and formation of lubricating material under pressure. Cem. Concr. Res. 2018, 108, 129–139. [Google Scholar] [CrossRef]
- Choi, M.S.; Kim, Y.; Jang, K.; Kwon, S. Effect of the coarse aggregate size on pipe flow of pumped concrete. Constr. Build. Mater. 2014, 66, 723–730. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, H.; Deng, K.; Xie, X. Mechatronics-hydraulics-integrated modeling and simulation on virtual prototyping for concrete pump trucks. Chin. J. Constr. Mach. 2009, 7, 58–62. [Google Scholar]
- Gu, F.; Liu, H.; Zhao, Q.; You, R.; Dai, M.; Liu, Z. Study on modeling and simulation of S pipe valve direction shift system of concrete pump. Mach. Tool Hydraul. 2020, 48, 138–140. [Google Scholar]
- Li, K.; Deng, M.; Huang, W.; Zhang, Y.; Zeng, J.-W.; Chen, M.-L. Study on working characteristics of swing system of concrete wet spraying machine. J. Eng. Des. 2022, 29, 519–526. [Google Scholar]
- Yuan, X.; Hu, J.; Zhou, C. Research on buffer characteristics of the driven cylinder of S tube distributing valve for concrete pump. J. Agric. Univ. Hebei 2012, 35, 125–129. [Google Scholar]
- Chen, L.; Wang, F. Performance analysis and optimization of concrete pump swing hydraulic system. Chin. Hydraul. Pneum. 2023, 47, 174–180. [Google Scholar]
- Chen, L.; Bu, Q.; Zhao, Y. Operation law and parameter optimization of swing systems of concrete pumps. Chin. Hydraul. Pneum. 2021, 45, 143–151. [Google Scholar]
- Shi, F.; Wang, C.; Ding, H.; Wang, F.; Zhao, Y. Operation law and time sequence analysis of hydraulic control pumping systems. J. Mech. Electr. Eng. 2022, 39, 1262–1268. [Google Scholar]
- Ye, X.; Hu, J.; Han, Q. Research on control method of hydraulic impact in concrete pumping system. J. Hefei Univ. Technol. (Nat. Sci.) 2014, 37, 789–795. [Google Scholar]
- Ding, H.; Zhao, Y.; Robin; Sang, Z.; Yang, C. Active disturbance rejection control of the novel variable speed direct drive pumping system. In Proceedings of the 33rd Chinese Control and Decision Conference, Kunming, China, 24 May 2021; pp. 725–730. [Google Scholar]
- Wu, W.; Mao, Z. Study of control method based on hydromechanics for hydraulic impact of open hydraulic system in concrete pump. Adv. Mater. Res. 2014, 908, 320–325. [Google Scholar]
- Huang, M.; Wang, Z.; Pan, Q.; Li, Y.; Wen, C. Modeling simulation and characteristics analysis of pump control system of concrete pump truck. J. South China Univ. Technol. (Nat. Sci. Ed.) 2022, 50, 106–118. [Google Scholar]
- Yue, D.; Zuo, X.; Liu, Z. An adaptive control method for the distribution valve of a digital pump. Machines 2023, 11, 11020148. [Google Scholar] [CrossRef]
- Fan, C.; Zeng, F.; Li, D.; Liu, L. Simulation study of the hydraulic system of concrete pumping truck based on Amesim. Appl. Mech. Mater. 2012, 170–173, 1920–1925. [Google Scholar]
- Shi, Z.; Wang, A.; Hu, Y.; Jiang, T.; Zhang, Q. Variable Displacement Control in Direction Changing Process of Concrete Pumping. China J. Highw. Transp. 2012, 25, 153–158. [Google Scholar]
- Wu, S.; Wang, J.; Qiao, Z. Fatigue life prediction of distribution valve drive shaft of concrete pump. Constr. Mach. 2020, 527, 45–48. [Google Scholar]
- Li, Y.; Xu, W.; Li, H.; Lai, J.; Qiang, S.; Luo, T. Multi-ion erosion experiment and corrosion mechanism verification of steel fiber-reinforced concrete under stray current. J. Mater. Civ. Eng. 2022, 314, 125618. [Google Scholar] [CrossRef]
- Yu, H.; Liu, H.; Zhang, S.; Zhang, J.; Han, Z. Research progress on coping strategies for the fluid-solid erosion wear of pipelines. Powder Technol. 2023, 422, 118457. [Google Scholar] [CrossRef]
Component | Parameters |
---|---|
Main cylinder piston/rod/stroke Main cylinder effective mass | 125/80/2000 mm 109.2 kg |
Swing cylinder piston/rod/stroke | 100/70/179 mm |
Swing cylinder effective mass | 20 kg |
Main pump displacement | 190 mL/r |
Main pump speed | 2200 r/min |
Main pump power | 120 kW |
Cutoff pressure | 350 bar |
Swing pump displacement | 28 mL/r |
Swing pump speed | 2200 r/min |
Setting pressure | 85 bar |
Main valve diameter/stroke | 40/±23.5 mm |
Swing valve diameter/stroke | 40/48 mm |
Signal valve diameter/stroke | 4/9.5 mm |
Parameters | Before Optimization | After Optimization |
---|---|---|
Acc. volume | 10 L | 13 L |
Acc. charging pressure | 100 bar | no change |
Swing valve throttle orifice | 12 mm | 14 mm |
Total buffer length | 30 mm | no change |
Buffer length | 15 mm | 10 mm |
Quick oil inlet hole | 6 mm | 10 mm |
Reversing pressure | 80 bar | 50 bar |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, H.; Wang, C. Accurate Modeling, Operation Laws and Commutation Timing Matching for Concrete Pumping Systems. Appl. Sci. 2023, 13, 8821. https://doi.org/10.3390/app13158821
Ding H, Wang C. Accurate Modeling, Operation Laws and Commutation Timing Matching for Concrete Pumping Systems. Applied Sciences. 2023; 13(15):8821. https://doi.org/10.3390/app13158821
Chicago/Turabian StyleDing, Haigang, and Chen Wang. 2023. "Accurate Modeling, Operation Laws and Commutation Timing Matching for Concrete Pumping Systems" Applied Sciences 13, no. 15: 8821. https://doi.org/10.3390/app13158821
APA StyleDing, H., & Wang, C. (2023). Accurate Modeling, Operation Laws and Commutation Timing Matching for Concrete Pumping Systems. Applied Sciences, 13(15), 8821. https://doi.org/10.3390/app13158821