Numerical Analysis of Cyclic Impact Damage Evolution of Rock Materials under Confining Pressure
Abstract
:1. Introduction
2. Numerical Modeling and Verification
2.1. SHPB Fundamentals
2.2. Numerical Modeling
2.3. Cyclic Impact Simulation of Rock Materials under Confining Pressure
- (1)
- Segment setting. The lateral surface of the cylindrical rock specimen and the end surface of the transmission bar are defined as different groups by using the keyword SEGMENT_SET.
- (2)
- Boundary setting. Firstly, constrain all translation and rotation of the incident bar and transmission bar except the horizontal motion by using the keyword SPC_SET. Secondly, set the non-reflective boundary at the end surface of the transmission bar by using the keyword NON_REFLECTING.
- (3)
- Confining pressure applying. Firstly, define a preload curve according to static circumferential confining pressure by using the keyword DEFINE_CURVE. Secondly, apply the preload curve on the lateral surface of the cylindrical rock specimen by using the keyword LODING_ SEGMENT_SET. Thirdly, run the dynamic relaxation analysis by keyword CONTROL_DYNAMIC_RELAXATION to make the static circumferential confining pressure maintain the designed value before impact load.
- (4)
- Cyclic impacts realization. Cyclic impact simulation is realized by using a full restart analysis.
2.4. Verification of Numerical Model
3. Results and Analysis
3.1. Dynamic Stress-Strain Curve Analysis
3.2. Numerical Simulation of Rock Fracture
3.3. Defining Damage Variable
3.4. Damage Evolution Analysis
4. Discussion
5. Conclusions
- (1)
- Cyclic impact tests of rock materials under confining pressure can be simulated first by applying static confining pressure with a dynamic relaxation process, then conducting cyclic impact tests with full restart analysis.
- (2)
- In numerical simulation, the crack generation and propagation result in the failure of elements in the finite element model. Thus, the damage variable defined by the crack density method can be characterized by volume reduction.
- (3)
- The number of cyclic impacts before macroscopic fracture increases with the increase of confining pressure and decreases with the increase of the amplitude of the incident stress wave.
- (4)
- The cumulative damage of rock under confining pressure progressively increases with the number of cyclic impacts, and damage evolution exhibits three distinct stages: rapid rising, steady development, and sharp rising. A high incident stress wave leads to serve damage after the first impact and a small number of cyclic impacts.
- (5)
- Under confining pressure, the damage of rock is alleviated due to the constraint effect on crack propagation. Large confining pressure results in minor damage and a large number of cyclic impacts.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qian, Q.H. Challenges faced by underground projects construction safety and countermeasures. J. Rock Mech. Eng. 2012, 31, 1945–1956. [Google Scholar]
- Dai, B.; Shan, Q.W.; Chen, Y.; Luo, X.Y. Mechanical and energy dissipation characteristics of granite under cyclic impact loading. J. Cent. South Univ. 2022, 29, 116–128. [Google Scholar] [CrossRef]
- Xie, H.P. Research framework and anticipated results of deep rock mechanics and mining theory. Adv. Eng. Sci. 2017, 49, 1–16. [Google Scholar] [CrossRef]
- Huang, Y.H.; Wen, L.; Ma, J.J.; Kou, Z.L. Mechanical properties and damage evolution characteristics of sandstone under cyclic impact with axial compression. Min. Metall. Eng. 2021, 41, 6–10. [Google Scholar]
- Yang, G.L.; Yang, R.S.; Che, Y.L. Damage accumulative effect of enclosing rock under periodic blasting vibration. J. China Coal Soc. 2013, 38, 25–29. [Google Scholar]
- Li, H.B.; Xia, X.; Li, J.; Zhao, J.; Liu, B.; Li, Y.Q. Rock damage control in bedrock blasting excavation for a nuclear power plant. Int. J. Rock Mech. Min. Sci. 2011, 48, 210–218. [Google Scholar] [CrossRef]
- Liu, M.G.; Zhang, G.H.; Liu, S.B.; Li, Q. Research on accumulative damage effect of interlaid rock in damaoshan tunnel group with small clear distance. J. Rock Mech. Eng. 2009, 28, 1363–1369. [Google Scholar]
- Liu, W.; Zeng, P.; Yan, L.; Yang, Y.; Liu, L.S. Mechanical properties and permeability evolution of weakly weathered rocks under cyclic impact. J. China Coal Soc. 2021, 46, 1855–1863. [Google Scholar] [CrossRef]
- Fan, L.D.; Xu, F.; Yu, Y.Q.; Zhang, Z.W.; Yu, L.W.; Zhou, G.J. Experimental study of dynamic mechanical characteristics of sandstone under one-dimensional coupled static-cyclic impact loads. Chin. J. High Press. Phys. 2022, 36, 48–59. [Google Scholar]
- Deng, H.W.; Liu, C.J.; Ke, B.; Wang, Y.; Zhang, Y.N. Experimental study on microdamage characteristics of granite under cyclic dynamic disturbance. J. Eng. Sci. 2017, 39, 1634–1639. [Google Scholar] [CrossRef]
- Hao, H.; Wu, C.; Zhou, Y. Numerical analysis of blast-induced stress waves in a rock mass with anisotropic continuum damage models Part 1: Equivalent material property approach. Rock Mech. Rock Eng. 2002, 35, 79–94. [Google Scholar] [CrossRef]
- Shariati, M.; Tahir, M.M.; Wee, T.C.; Shah, S.N.R.; Jalali, A.; Abdullahi, M.M.; Khorami, M. Experimental investigations on monotonic and cyclic behavior of steel pallet rack connections. Eng. Fail. Anal. 2018, 85, 149–166. [Google Scholar] [CrossRef]
- Jalali, A.; Toghroli, A.; Shariati, M.; Ibrahim, Z. Assessment of stiffened angle shear connector under monotonic and fully reversed cyclic loading. In Proceedings of the Fifth International Conference on Advances in Civil, Structural, and Mechanical Engineering-CSM 2017, Zürich, Switzerland, 2–3 September 2017; pp. 64–68. [Google Scholar]
- Lu, H. Responses on Dynamic Responses and Damage Effect of Red Sandstone with Fluid-Solid Coupling under Impact Loading. Ph.D. Thesis, China University of Mining and Technology, Beijing, China, 2013. [Google Scholar]
- Mei, N.F. Research on Fatigue Damage and Mechanical Characteristics of Brittle Rock under Cycle Dynamic Loading. Master’s Thesis, China University of Geosciences, Wuhan, China, 2014. [Google Scholar]
- Jin, J.F.; Li, X.B.; Yin, Z.Q.; Zou, Y. A method for defining rock damage variable by wave impedance under cyclic impact loadings. Rock Soil Mech. 2011, 32, 1385–1393+1410. [Google Scholar] [CrossRef]
- Jin, J.F.; Zhong, H.B.; Wu, Y.; Guo, Z.Q.; Zhou, X.J. Method selection for defining damage variable of rock subjected to static loadings and cyclic impacts. Nonferrous Met. Sci. Eng. 2013, 4, 85–90. [Google Scholar] [CrossRef]
- Gan, D.Q.; Tian, X.X.; Liu, Z.Y.; Gao, F. Study on mechanical and damage characteristics of sandstone under cyclic impact state. China Min. Mag. 2021, 30, 203–211. [Google Scholar]
- Liu, S.H.; Xu, J.Y.; Wang, P.; Zhang, G.X. Mechanical and ultrasonic analysis on damage of sandstone under cyclical impact loading with confining pressure. J. Vib. Shock 2015, 34, 190–194. [Google Scholar] [CrossRef]
- Wang, Z.L.; Yang, H.; Tian, N.C. Mechanical property and damage evolution mechanism of granite under uniaxial cyclic impac. J. Eng. Geol. 2014, 22, 79–86. [Google Scholar]
- Tian, N.C.; Wang, Z.L.; Xiong, F.; Liu, Z.Y. Influence of axial pressure on dynamic mechanical properties of granite under cyclic impact loading. J. Harbin Inst. Technol. 2021, 53, 156–164. [Google Scholar]
- Tang, L.Z.; Wang, C.; Cheng, L.P.; Gao, L.H. Experimental study of mechanical characteristics of skarn under one-dimensional coupled static and cyclic impact loads. J. Cent. South Univ. Sci. Technol. 2015, 46, 3898–3906. [Google Scholar]
- Lv, X.C.; Xu, J.Y.; Zhao, D.H.; Ge, H.H.; Wang, Z.D. Research on confining pressure effect of sandstone dynamic mechanical performance under the cyclical impact loadings. Eng. Mech. 2011, 28, 138–144. [Google Scholar]
- Yu, Y.; Xu, Q.; Diao, X.H.; Yan, Z.Y. I Effect of cyclic impact on sandstone characteristics under confining pressures. J. Huazhong Univ. Sci. Technol. Nat. Sci. Ed. 2019, 47, 127–132. [Google Scholar] [CrossRef]
- Jin, J.F.; Li, X.B.; Zhong, H.B. Study of dynamic mechanical characteristic of sandstone subjected to three-dimensional coupled static-cyclic impact loadings. Chin. J. Rock Mech. Eng. 2013, 32, 1358–1372. [Google Scholar]
- Jin, J.F.; Li, X.B.; Chang, J.R.; Tao, W.; Qiu, C. Stress strain curve and stress wave characteristics of rock subjected to cyclic impact loadings. Explos. Shock Waves 2013, 33, 613–619. [Google Scholar]
- Guo, L.J.; Ma, H.Y.; Xu, J.L.; Wang, X.S.; Deng, Q.C.; Li, P.F. Study on energy dissipation characteristics and damage of rock under cyclic impact. Min. Res. Dev. 2023, 43, 106–112. [Google Scholar] [CrossRef]
- Zhou, Z.L.; Li, X.B.; Zhao, G.Y.; Hu, L.Q. Three dimensional numerical analysis of perfect loading wave-form of rock with SHPB. Min. Metall. Eng. 2005, 3, 18–20. [Google Scholar]
- Zhou, Z.L.; Li, X.; Liu, A.; Zou, Y. Stress uniformity of split Hopkinson pressure bar under half-sine wave loads. Int. J. Rock Mech. Min. Sci. 2011, 48, 697–701. [Google Scholar] [CrossRef]
- Huang, Y.H.; Liang, S.F.; Liu, D.S.; Xiong, W.G.; Xu, R. 3D SHPB device experimental design and principle research. J. Beijing Inst. Technol. 2014, 34, 1024–1027+1033. [Google Scholar] [CrossRef]
- Yuan, P.; Ma, Q.Y. Correction of non-parallel end-faces of rock specimens in SHPB test. Explos. Shock Waves 2017, 37, 929–936. [Google Scholar] [CrossRef]
- Wang, X.Y.; Li, Q.; Wang, W.; Zhang, M.T.; Wang, Q.Z. Numerical simulation of damage evolution of sandstone under combined dynamic and static loading. Sci. Technol. Eng. 2022, 22, 6248–6254. [Google Scholar]
- Ling, T.L.; Wu, S.F.; Liu, D.S.; Liang, S.F.; Li, C.; Ma, J.H. Determination of Holmquist-Johnson-Cook model parameters for sandstone. J. China Coal Soc. 2018, 43, 2211–2216. [Google Scholar] [CrossRef]
- Yang, J.; Liu, K.; Li, X.; Liu, Z. Stress initialization methods for dynamic numerical simulation of rock mass with high in-situ stress. J. Cent. South Univ. 2020, 27, 3149–3162. [Google Scholar] [CrossRef]
- Dai, F.; Huang, S.; Xia, K.; Tan, Z. Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar. Rock Mech. Rock Eng. 2010, 43, 657–666. [Google Scholar] [CrossRef]
- Gong, F.Q.; Li, X.B.; Liu, X.L. Tests for sandstone mechanical properties and failure model under triaxial SHPB loading. J. Vib. Shock 2012, 31, 29–32. [Google Scholar] [CrossRef]
ρ/(g·cm−3) | E/GPa | μ |
---|---|---|
7.80 | 210 | 0.3 |
ρ/(g·cm−3) | E/GPa | μ | fc/MPa | G/GPa | K/GPa |
---|---|---|---|---|---|
2.42 | 12.9 | 0.25 | 88.1 | 5.16 | 8.6 |
Pmax/MPa | Pc/MPa | n | Vi/(10−6 m3) | D |
---|---|---|---|---|
170 | 0 | 1 | 47.024 | 0.041 |
2 | 46.730 | 0.047 | ||
3 | 46.632 | 0.049 | ||
4 | 45.455 | 0.073 | ||
5 | 44.426 | 0.094 | ||
6 | 40.552 | 0.173 | ||
180 | 0 | 1 | 45.556 | 0.071 |
2 | 43.73 | 0.108 | ||
3 | 33.736 | 0.312 | ||
2 | 1 | 47.851 | 0.024 | |
2 | 47.417 | 0.033 | ||
3 | 47.221 | 0.037 | ||
4 | 46.730 | 0.047 | ||
5 | 45.848 | 0.065 | ||
6 | 43.445 | 0.114 | ||
7 | 39.571 | 0.193 | ||
4 | 1 | 48.937 | 0.002 | |
2 | 48.839 | 0.004 | ||
3 | 48.741 | 0.006 | ||
4 | 48.643 | 0.008 | ||
5 | 48.250 | 0.016 | ||
6 | 47.858 | 0.024 | ||
7 | 46.927 | 0.043 | ||
8 | 46.338 | 0.055 | ||
9 | 45.014 | 0.082 | ||
10 | 42.857 | 0.126 | ||
11 | 32.804 | 0.331 | ||
190 | 0 | 1 | 42.611 | 0.131 |
2 | 22.066 | 0.550 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, P.; Zhang, Q.; Li, A. Numerical Analysis of Cyclic Impact Damage Evolution of Rock Materials under Confining Pressure. Appl. Sci. 2023, 13, 8822. https://doi.org/10.3390/app13158822
Yuan P, Zhang Q, Li A. Numerical Analysis of Cyclic Impact Damage Evolution of Rock Materials under Confining Pressure. Applied Sciences. 2023; 13(15):8822. https://doi.org/10.3390/app13158822
Chicago/Turabian StyleYuan, Pu, Qinghe Zhang, and Aobo Li. 2023. "Numerical Analysis of Cyclic Impact Damage Evolution of Rock Materials under Confining Pressure" Applied Sciences 13, no. 15: 8822. https://doi.org/10.3390/app13158822
APA StyleYuan, P., Zhang, Q., & Li, A. (2023). Numerical Analysis of Cyclic Impact Damage Evolution of Rock Materials under Confining Pressure. Applied Sciences, 13(15), 8822. https://doi.org/10.3390/app13158822