Radio Link Model for Node Deployment in Underground Mine Sensor Networks
Abstract
:1. Introduction
2. Proposed Radio Link Model for Underground Mines
2.1. Path Loss Model
2.2. Propagation Zone Model
2.2.1. Free Space Dividing Point
2.2.2. Multi-Mode (Limited) Dividing Point
2.2.3. Multi-Mode (Fundamental) Dividing Point
3. Experimental Setup and Measured Results in the Salt Mine
3.1. Different Mining Structures in Underground Mines
3.2. Node Deployment Analysis in the Mine
3.2.1. Node Position
3.2.2. Node Separation
3.2.3. Packet Error Rate (PER) Analysis
4. Application-Based Performance
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kumar, P.P.; Paul, P.S.; Ananda, M. Development of LoRa Communication System for Effective Transmission of Data from Underground Coal Mines. Processes 2023, 11, 1691. [Google Scholar] [CrossRef]
- Forooshani, A.E.; Bashir, S.; Michelson, D.G.; Noghanian, S. A Survey of Wireless Communications and Propagation Modeling in Underground Mines. IEEE Commun. Surv. Tutorials 2013, 15, 1524–1545. [Google Scholar] [CrossRef]
- Minhas, U.I.; Naqvi, I.H.; Qaisar, S.; Ali, K.; Shahid, S.; Aslam, M.A. A WSN for Monitoring and Event Reporting in Underground Mine Environments. IEEE Syst. J. 2018, 12, 485–496. [Google Scholar] [CrossRef]
- Zhang, H.; Li, B.; Karimi, M.; Saydam, S.; Hassan, M. Recent Advancements in IoT Implementation for Environmental, Safety, and Production Monitoring in Underground Mines. IEEE Internet Things J. 2023, 1. [Google Scholar] [CrossRef]
- Branch, P. Propagation Measurements and Models of 915 MHz LoRa Radio in a Block Cave Gold Mine. In Proceedings of the International Conference on Information Networking (ICOIN), Jeju Island, Republic of Korea, 13–16 January 2021; pp. 333–338. [Google Scholar]
- Guan, K.; Zhong, Z.; Ai, B.; He, R.; Chen, B.; Li, Y.; Briso-Rodriguez, C. Complete Propagation Model in Tunnels. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 741–744. [Google Scholar] [CrossRef]
- Shi, J.; Wang, F.; Zhang, D.; Huang, H.; Wu, Y. Refined numerical simulation of signal propagation in soils for wireless underground sensor networks. Tunn. Undergr. Space Technol. 2023, 140, 105312. [Google Scholar] [CrossRef]
- Ranjan, A.; Sahu, H.B.; Misra, P. DeepSense: Sensing the radio signal behavior in metal and non-metal underground mine workings. In Proceedings of the IEEE Conference on Computer Communications Workshops, Honolulu, HI, USA, 15–19 April 2018; pp. 913–918. [Google Scholar]
- Guan, K.; Zhong, Z.; Ai, B.; He, R.; Chen, B.; Li, Y.; Briso-Rodriguez, C. Complete propagation model structure inside tunnels. Prog. Electromagn. Res. 2013, 141, 711–726. [Google Scholar] [CrossRef]
- Rissafi, Y.; Talbi, L.; Ghaddar, M. Experimental Characterization of an UWB Propagation Channel in Underground Mines. IEEE Trans. Antennas Propag. 2012, 60, 240–246. [Google Scholar] [CrossRef]
- Arsalan, M.; Umair, A.; Verma, V.K. Dash7: Performance. IOSR J. Electron. Commun. Eng. 2012, 2, 8–11. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, Z.; Chai, R. RSSI Estimation for Wireless Sensor Network Through-the-earth Communication at Frequency 433 MHz. J. Intell. Fuzzy Syst. 2020, 38, 1401–1410. [Google Scholar] [CrossRef]
- Ranjan, A.; Misra, P.; Sahu, H.B. On the importance of link characterization for wireless sensor networks in underground mines. In Proceedings of the International Conference on Communication Systems and Networks (COMSNETS), Bengaluru, India, 4–8 January 2017; pp. 576–577. [Google Scholar]
- Moridi, M.A.; Kawamura, Y.; Sharifzadeh, M.; Chanda, E.K.; Jang, H. An investigation of underground monitoring and communication system based on radio waves attenuation using ZigBee. Tunn. Undergr. Space Technol. 2014, 43, 362–369. [Google Scholar] [CrossRef]
- Karanth, N.; Choudhary, D.; Reddy, J.F.; Athulla, U. LoRaWAN-Based Communication Protocol for Wearable Safety Devices in Mining Fields. In Emerging Research in Computing, Information, Communication and Applications ERCICA 2020; Springer: Cham, Switzerland, 2021; Volume 2, pp. 441–453. [Google Scholar]
- Moiroux-Arvis, L.; Cariou, C.; Chanet, J.-P. Evaluation of LoRa technology in 433-MHz and 868-MHz for underground to aboveground data transmission. Comput. Electron. Agric. 2022, 194, 106770. [Google Scholar] [CrossRef]
- Das, I.; Shaw, R.N.; Das, S. Analysis of Effect of Fading Models in Wireless Sensor Networks. In Proceedings of the 2020 IEEE International Conference on Computing, Power and Communication Technologies (GUCON), Greater Noida, India, 2–4 October 2020; pp. 858–860. [Google Scholar]
- Saleem, A.; Zhang, X.; Xu, Y.; Albalawi, U.A.; Younes, O.S. A Critical Review on Channel Modeling: Implementations, Challenges and Applications. Electronics 2023, 12, 2014. [Google Scholar] [CrossRef]
- Haneda, K.; Rudd, R.; Vitucci, E.; He, D.; Kyösti, P.; Tufvesson, F.; Salous, S.; Miao, Y.; Joseph, W.; Tanghe, E. Chapter 2-Radio propagation modeling methods and tools. In Inclusive Radio Communications for 5G and Beyond; Academic Press: Cambridge, MA, USA, 2021; pp. 7–48. [Google Scholar]
Specifications | DASH7 | LoRa | ZigBee |
---|---|---|---|
Frequency | 433.04–434.79 MHz | 866–868 MHz | 2.402–2.482 GHz |
Discrete channels | 16 | 16 | 16 |
Modulation | FSK or GFSK | GFSK | QPSK |
Data Rate | 55.4 Kbps | 200 Kbps | 250 Kbps |
Max potential data rate | 200 Kbps | 1 Mbps | 500 Kbps |
Range (0 dBm) | 140 m | 115 m | 75 m |
Water/Concrete Wall penetration | Good | Fair | Poor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahid, S.; Zahra, H.; Qaisar, S.B.; Naqvi, I.H.; Abbas, S.M.; Mukhopadhyay, S. Radio Link Model for Node Deployment in Underground Mine Sensor Networks. Appl. Sci. 2023, 13, 8987. https://doi.org/10.3390/app13158987
Shahid S, Zahra H, Qaisar SB, Naqvi IH, Abbas SM, Mukhopadhyay S. Radio Link Model for Node Deployment in Underground Mine Sensor Networks. Applied Sciences. 2023; 13(15):8987. https://doi.org/10.3390/app13158987
Chicago/Turabian StyleShahid, Saleem, Hijab Zahra, Saad Bin Qaisar, Ijaz Haider Naqvi, Syed Muzahir Abbas, and Subhas Mukhopadhyay. 2023. "Radio Link Model for Node Deployment in Underground Mine Sensor Networks" Applied Sciences 13, no. 15: 8987. https://doi.org/10.3390/app13158987
APA StyleShahid, S., Zahra, H., Qaisar, S. B., Naqvi, I. H., Abbas, S. M., & Mukhopadhyay, S. (2023). Radio Link Model for Node Deployment in Underground Mine Sensor Networks. Applied Sciences, 13(15), 8987. https://doi.org/10.3390/app13158987