A Survey on Cyber Risk Management for the Internet of Things
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
Research Questions
4. Cyber Risk Assessment for IoT Survey Results
4.1. IoT Cyber Risk Identification
4.1.1. Identification of IoT Assets
4.1.2. Identification of Users
4.1.3. Identification of Threats
4.1.4. Identification of Vulnerabilities
4.1.5. Identification of Controls
4.1.6. Identification of Impact
4.1.7. Identification of Likelihood
4.2. IoT Cyber Risk Calculation
4.2.1. Use of Graph Modelling
4.2.2. Use of Risk Matrices
4.2.3. Use of Threat Knowledge Bases
4.2.4. Use of Weighted Risk Formulas
5. Cyber Risk Treatment For IoT Survey Results
5.1. IoT Risk Control
5.1.1. Establish Security Requirements
5.1.2. Consider Resources for Risk Control
5.1.3. Optimise Control Strategies
5.2. Risk Monitoring
5.2.1. Ensure Continuous Risk Monitoring
5.2.2. Calculate Residual IoT Risk
6. Recommendations
6.1. Recommendations for IoT Cyber Risk Identification
6.2. Recommendations for IoT Cyber Risk Calculation
6.3. Recommendations for IoT Cyber Risk Control
6.4. Recommendations for IoT Cyber Risk Monitoring
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Herath, T.; Herath, H.S. Coping with the new normal imposed by the COVID-19 pandemic: Lessons for technology management and governance. Inf. Syst. Manag. 2020, 37, 277–283. [Google Scholar] [CrossRef]
- Zikria, Y.B.; Ali, R.; Afzal, M.K.; Kim, S.W. Next-generation internet of things (iot): Opportunities, challenges, and solutions. Sensors 2021, 21, 1174. [Google Scholar] [CrossRef] [PubMed]
- Baruah, P.D.; Dhir, S.; Hooda, M. Impact of IOT in current era. In Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14–16 February 2019; pp. 334–339. [Google Scholar]
- Lee, S.K.; Bae, M.; Kim, H. Future of IoT networks: A survey. Appl. Sci. 2017, 7, 1072. [Google Scholar] [CrossRef] [Green Version]
- Varga, P.; Plosz, S.; Soos, G.; Hegedus, C. Security threats and issues in automation IoT. In Proceedings of the 2017 IEEE 13th International Workshop on Factory Communication Systems (WFCS), Trondheim, Norway, 31 May–2 June 2017; pp. 1–6. [Google Scholar]
- Whitman, M.E.; Mattord, H.J. Principles of Information Security; Cengage Learning: Boston, MA, USA, 2017. [Google Scholar]
- Ross, R.; Pillitteri, V.; Graubart, R.; Bodeau, D.J.; McQuaid, R.M. NIST Special Publication 800–160, Volume 2 Revision 1: Developing Cyber Resilient Systems: A Systems Security Engineering Approach; Technical Report; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2019.
- Wunder, J.; Halbardier, A.; Waltermire, D. Specification for Asset Identification 1.1; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2011.
- Mavropoulos, O.; Mouratidis, H.; Fish, A.; Panaousis, E. Apparatus: A framework for security analysis in internet of things systems. Ad Hoc Netw. 2019, 92, 101743. [Google Scholar] [CrossRef] [Green Version]
- Mavropoulos, O.; Mouratidis, H.; Fish, A.; Panaousis, E. ASTo: A tool for security analysis of IoT systems. In Proceedings of the 2017 IEEE 15th International Conference on Software Engineering Research, Management and Applications (SERA), London, UK, 7–9 June 2017; pp. 395–400. [Google Scholar]
- Heartfield, R.; Loukas, G. Detecting semantic social engineering attacks with the weakest link: Implementation and empirical evaluation of a human-as-a-security-sensor framework. Comput. Secur. 2018, 76, 101–127. [Google Scholar] [CrossRef]
- Bada, M.; Nurse, J.R. The social and psychological impact of cyberattacks. In Emerging Cyber Threats and Cognitive Vulnerabilities; Elsevier: Amsterdam, The Netherlands, 2020; pp. 73–92. [Google Scholar]
- Chatterjee, S.; Sarker, S.; Valacich, J.S. The behavioral roots of information systems security: Exploring key factors related to unethical IT use. J. Manag. Inf. Syst. 2015, 31, 49–87. [Google Scholar] [CrossRef]
- Cullen, A.; Armitage, L. A Human Vulnerability Assessment Methodology. In Proceedings of the 2018 International Conference On Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA), Scotland, UK, 11–12 June 2018; pp. 1–2. [Google Scholar]
- Ross, R.S. Guide for Conducting Risk Assessments NIST Special Publication 800-30 Revision 1; US Department Commerce, NIST: Gaithersburg, MD, USA, 2012.
- Joint Task Force Transformation Initiative. NIST Special Publication 800-53 Revision 4-Security and Privacy Controls for Federal Information Systems and Organizations; Technical Report; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2013.
- National Institute of Standards and Technology. NIST SP 800-39, Managing Information Security Risk: Organization, Mission, and Information System View; Organization, Mission, and Information System View; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2011; p. 88.
- International Organization for Standardization. Information Technology-Security Techniques-Information Security Management Systems-Requirements (ISO/IEC 27001:2013 Including Cor 1:2014 and Cor 2:2015); Ger. Version EN; International Organization for Standardization: Geneva, Switzerland, 2017; Volume 27001. [Google Scholar]
- Kandasamy, K.; Srinivas, S.; Achuthan, K.; Rangan, V.P. IoT cyber risk: A holistic analysis of cyber risk assessment frameworks, risk vectors, and risk ranking process. EURASIP J. Inf. Secur. 2020, 2020, 8. [Google Scholar] [CrossRef]
- Caralli, R.A.; Stevens, J.F.; Young, L.R.; Wilson, W.R. Introducing Octave Allegro: Improving the Information Security Risk Assessment Process; Technical Report; Carnegie-Mellon Univ. Software Engineering Inst.: Pittsburgh, PA, USA, 2007. [Google Scholar]
- Wynn, J.; Whitmore, J.; Upton, G.; Spriggs, L.; McKinnon, D.; McInnes, R.; Graubart, R.; Clausen, L. Threat Assessment & Remediation Analysis (TARA): Methodology Description Version 1.0; Technical Report; MITRE CORP: Bedford, MA, USA, 2011. [Google Scholar]
- Heartfield, R.; Loukas, G.; Budimir, S.; Bezemskij, A.; Fontaine, J.R.; Filippoupolitis, A.; Roesch, E. A taxonomy of cyber-physical threats and impact in the smart home. Comput. Secur. 2018, 78, 398–428. [Google Scholar] [CrossRef] [Green Version]
- Nifakos, S.; Chandramouli, K.; Nikolaou, C.K.; Papachristou, P.; Koch, S.; Panaousis, E.; Bonacina, S. Influence of human factors on cyber security within healthcare organisations: A systematic review. Sensors 2021, 21, 5119. [Google Scholar] [CrossRef]
- Lee, I. Internet of Things (IoT) cybersecurity: Literature review and IoT cyber risk management. Future Internet 2020, 12, 157. [Google Scholar] [CrossRef]
- Akinrolabu, O.; Nurse, J.R.; Martin, A.; New, S. Cyber risk assessment in cloud provider environments: Current models and future needs. Comput. Secur. 2019, 87, 101600. [Google Scholar] [CrossRef]
- Fernández-Alemán, J.L.; Señor, I.C.; Lozoya, P.Á.O.; Toval, A. Security and privacy in electronic health records: A systematic literature review. J. Biomed. Inform. 2013, 46, 541–562. [Google Scholar] [CrossRef] [PubMed]
- Google Trends. 2023. Available online: https://trends.google.com/trends (accessed on 3 March 2023).
- International Organization for Standardization. Risk Management–Principles and Guidelines; International Organization for Standardization: Geneva, Switzerland, 2009. [Google Scholar]
- Zardari, S.; Nisar, N.; Fatima, Z.; Dhirani, L.L. IoT–Assets Taxonomy, Threats Assessment and Potential Solutions. In Proceedings of the 2023 Global Conference on Wireless and Optical Technologies (GCWOT), Malaga, Spain, 24–27 January 2023; pp. 1–8. [Google Scholar]
- Booth, H.; Rike, D.; Witte, G.A. The National Vulnerability Database (nvd): Overview. Available online: https://nvd.nist.gov/ (accessed on 1 March 2023).
- Mitre. 1999. Available online: https://cve.mitre.org/ (accessed on 22 July 2023).
- Stine, K.; Quinn, S.; Witte, G.; Gardner, R. Integrating cybersecurity and enterprise risk management (ERM). Natl. Inst. Stand. Technol. 2020, 10. [Google Scholar]
- Maner, J.K.; Gailliot, M.T.; Butz, D.A.; Peruche, B.M. Power, risk, and the status quo: Does power promote riskier or more conservative decision making? Personal. Soc. Psychol. Bull. 2007, 33, 451–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolter, K.; Reinecke, P. Performance and security tradeoff. In Formal Methods for Quantitative Aspects of Programming Languages, Proceedings of the 10th International School on Formal Methods for the Design of Computer, Communication and Software Systems, SFM 2010, Bertinoro, Italy, 21–26 June 2010; Advanced Lectures; Springer: Berlin, Germany, 2010; pp. 135–167. [Google Scholar]
- Quinn, S.; Barrett, M.; Witte, G.; Gardner, R.; Ivy, N. Prioritizing Cybersecurity Risk for Enterprise Risk Management. In NIST Interagency/Internal Report (NISTIR); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2022. [Google Scholar]
- Viriyasitavat, W.; Anuphaptrirong, T.; Hoonsopon, D. When blockchain meets Internet of Things: Characteristics, challenges, and business opportunities. J. Ind. Inf. Integr. 2019, 15, 21–28. [Google Scholar] [CrossRef]
- Antonakakis, M.; April, T.; Bailey, M.; Bernhard, M.; Bursztein, E.; Cochran, J.; Durumeric, Z.; Halderman, J.A.; Invernizzi, L.; Kallitsis, M.; et al. Understanding the mirai botnet. In Proceedings of the 26th USENIX Security Symposium (USENIX Security 17), Vancouver, BC, Canada, 15–17 August 2017; pp. 1093–1110. [Google Scholar]
- Abbass, W.; Baina, A.; Bellafkih, M. ArchiMate based Security Risk Assessment as a service: Preventing and responding to the cloud of things’ risks. In Proceedings of the 2019 International Conference on Wireless Networks and Mobile Communications (WINCOM), Fez, Morocco, 29 October–1 November 2019; pp. 1–5. [Google Scholar]
- Aiken, W.; Ryoo, J.; Rizvi, S. An Internet of Things (IoT) Security Assessment for Households. In Proceedings of the 2020 International Conference on Software Security and Assurance (ICSSA), Altoona, PA, USA, 28–30 October 2020; pp. 53–59. [Google Scholar]
- Al Mousa, A.; Al Qomri, M.; Al Hajri, S.; Zagrouba, R.; Chaabani, S. Environment based IoT security risks and vulnerabilities management. In Proceedings of the 2020 International Conference on Computing and Information Technology (ICCIT-1441), Tabuk, Saudi Arabia, 9–10 September 2020; pp. 1–6. [Google Scholar]
- Ali, B.; Awad, A.I. Cyber and physical security vulnerability assessment for IoT-based smart homes. Sensors 2018, 18, 817. [Google Scholar] [CrossRef] [Green Version]
- Ali, O.; Ishak, M.K.; Bhatti, M.K.L. Internet of things security: Modelling smart industrial thermostat for threat vectors and common vulnerabilities. In Intelligent Manufacturing and Mechatronics; Springer: Berlin/Heidelberg, Germany, 2021; pp. 175–186. [Google Scholar]
- Alsubaei, F.; Abuhussein, A.; Shiva, S. Security and privacy in the internet of medical things: Taxonomy and risk assessment. In Proceedings of the 2017 IEEE 42nd Conference on Local Computer Networks Workshops (LCN Workshops), Singapore, 9–12 October 2017; pp. 112–120. [Google Scholar]
- Andrade, R.O.; Tello-Oquendo, L.; Ortiz, I. Cybersecurity Risk of IoT on Smart Cities; Springer: Berlin, Germany, 2021. [Google Scholar]
- Anisetti, M.; Ardagna, C.A.; Bena, N.; Foppiani, A. An Assurance-Based Risk Management Framework for Distributed Systems. In Proceedings of the 2021 IEEE International Conference on Web Services (ICWS), Chicago, IL, USA, 5–10 September 2021; pp. 482–492. [Google Scholar]
- Arfaoui, A.; Kribeche, A.; Senouci, S.M.; Hamdi, M. Game-based adaptive risk management in wireless body area networks. In Proceedings of the 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC), Limassol, Cyprus, 25–29 June 2018; pp. 1087–1093. [Google Scholar]
- Chehida, S.; Baouya, A.; Alonso, D.F.; Brun, P.E.; Massot, G.; Bozga, M.; Bensalem, S. Asset-Driven Approach for Security Risk Assessment in IoT Systems. In Proceedings of the Risks and Security of Internet and Systems: 15th International Conference, CRiSIS, Paris, France, 4–6 November 2020; pp. 149–163. [Google Scholar]
- Christensen, D.; Martin, M.; Gantumur, E.; Mendrick, B. Risk assessment at the edge: Applying NERC CIP to aggregated grid-edge resources. Electr. J. 2019, 32, 50–57. [Google Scholar] [CrossRef]
- Danielis, P.; Beckmann, M.; Skodzik, J. An ISO-Compliant Test Procedure for Technical Risk Analyses of IoT Systems Based on STRIDE. In Proceedings of the 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid, Spain, 13–17 July 2020; pp. 499–504. [Google Scholar]
- Duan, X.; Ge, M.; Le, T.H.M.; Ullah, F.; Gao, S.; Lu, X.; Babar, M.A. Automated Security Assessment for the Internet of Things. In Proceedings of the 2021 IEEE 26th Pacific Rim International Symposium on Dependable Computing (PRDC), Perth, Australia, 1–4 December 2021; pp. 47–56. [Google Scholar]
- Echeverría, A.; Cevallos, C.; Ortiz-Garces, I.; Andrade, R.O. Cybersecurity model based on hardening for secure internet of things implementation. Appl. Sci. 2021, 11, 3260. [Google Scholar] [CrossRef]
- García, S.N.M.; Hernandez-Ramos, J.L.; Skarmeta, A.F. Test-based risk assessment and security certification proposal for the Internet of Things. In Proceedings of the 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 5–8 February 2018; pp. 641–646. [Google Scholar]
- George, G.; Thampi, S.M. A graph-based security framework for securing industrial IoT networks from vulnerability exploitations. IEEE Access 2018, 6, 43586–43601. [Google Scholar] [CrossRef]
- George, G.; Thampi, S.M. Vulnerability-based risk assessment and mitigation strategies for edge devices in the Internet of Things. Pervasive Mob. Comput. 2019, 59, 101068. [Google Scholar] [CrossRef]
- Ivanov, D.; Kalinin, M.; Krundyshev, V.; Orel, E. Automatic security management of smart infrastructures using attack graph and risk analysis. In Proceedings of the 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), London, UK, 27–28 July 2020; pp. 295–300. [Google Scholar]
- James, F. IoT Cybersecurity based Smart Home Intrusion Prevention System. In Proceedings of the 2019 3rd Cyber Security in Networking Conference (CSNet), Quito, Ecuador, 23–25 October 2019; pp. 107–113. [Google Scholar]
- James, F. A Risk Management Framework and A Generalized Attack Automata for IoT based Smart Home Environment. In Proceedings of the 2019 3rd Cyber Security in Networking Conference (CSNet), Quito, Ecuador, 23–25 October 2019; pp. 86–90. [Google Scholar]
- Kalinin, M.; Krundyshev, V.; Zegzhda, P. Cybersecurity risk assessment in smart city infrastructures. Machines 2021, 9, 78. [Google Scholar] [CrossRef]
- Kavallieratos, G.; Chowdhury, N.; Katsikas, S.; Gkioulos, V.; Wolthusen, S. Threat analysis for smart homes. Future Internet 2019, 11, 207. [Google Scholar] [CrossRef] [Green Version]
- Ksibi, S.; Jaidi, F.; Bouhoula, A. Cyber-Risk Management within IoMT: A Context-aware Agent-based Framework for a Reliable e-Health System. In Proceedings of the 23rd International Conference on Information Integration and Web Intelligence, Linz, Austria, 29 November–1 December 2021; pp. 547–552. [Google Scholar]
- Lally, G.; Sgandurra, D. Towards a framework for testing the security of IoT devices consistently. In Proceedings of the International Workshop on Emerging Technologies for Authorization and Authentication, Barcelona, Spain, 7 September 2018; pp. 88–102. [Google Scholar]
- Mohsin, M.; Anwar, Z.; Husari, G.; Al-Shaer, E.; Rahman, M.A. IoTSAT: A formal framework for security analysis of the internet of things (IoT). In Proceedings of the 2016 IEEE Conference on Communications and Network Security (CNS), Philadelphia, PA, USA, 17–19 October 2016; pp. 180–188. [Google Scholar]
- Mohsin, M.; Sardar, M.U.; Hasan, O.; Anwar, Z. IoTRiskAnalyzer: A probabilistic model checking based framework for formal risk analytics of the Internet of Things. IEEE Access 2017, 5, 5494–5505. [Google Scholar] [CrossRef]
- Nakamura, E.T.; Ribeiro, S.L. A privacy, security, safety, resilience and reliability focused risk assessment in a health iot system: Results from ocariot project. In Proceedings of the 2019 Global IoT Summit (GIoTS), Aarhus, Denmark, 17–21 June 2019; pp. 1–6. [Google Scholar]
- Pacheco, J.; Zhu, X.; Badr, Y.; Hariri, S. Enabling risk management for smart infrastructures with an anomaly behavior analysis intrusion detection system. In Proceedings of the 2017 IEEE 2nd International Workshops on Foundations and Applications of Self* Systems (FAS* W), Tucson, AZ, USA, 18–22 September 2017; pp. 324–328. [Google Scholar]
- Pacheco, J.; Ibarra, D.; Vijay, A.; Hariri, S. IoT security framework for smart water system. In Proceedings of the 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), Hammamet, Tunisia, 30 October–3 November 2017; pp. 1285–1292. [Google Scholar]
- Parsons, E.K.; Panaousis, E.; Loukas, G. How secure is home: Assessing human susceptibility to IoT threats. In Proceedings of the 24th Pan-Hellenic Conference on Informatics, Athens, Greece, 20–22 November 2020; pp. 64–71. [Google Scholar]
- Rizvi, S.; Pipetti, R.; McIntyre, N.; Todd, J.; Williams, I. Threat model for securing internet of things (IoT) network at device-level. Internet Things 2020, 11, 100240. [Google Scholar] [CrossRef]
- Ryoo, J.; Tjoa, S.; Ryoo, H. An IoT risk analysis approach for smart homes (work-in-progress). In Proceedings of the 2018 International Conference on Software Security and Assurance (ICSSA), Seoul, Republic of Korea, 26–27 July 2018; pp. 49–52. [Google Scholar]
- Seeam, A.; Ogbeh, O.S.; Guness, S.; Bellekens, X. Threat modeling and security issues for the internet of things. In Proceedings of the 2019 Conference on Next Generation Computing Applications (NextComp), Balaclava, Mauritius, 19–21 September 2019; pp. 1–8. [Google Scholar]
- Shivraj, V.; Rajan, M.; Balamuralidhar, P. A graph theory based generic risk assessment framework for internet of things (IoT). In Proceedings of the 2017 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), Bhubaneswar, India, 17–20 December 2017; pp. 1–6. [Google Scholar]
- Shokeen, R.; Shanmugam, B.; Kannoorpatti, K.; Azam, S.; Jonkman, M.; Alazab, M. Vulnerabilities Analysis and Security Assessment Framework for the Internet of Things. In Proceedings of the 2019 Cybersecurity and Cyberforensics Conference (CCC), Melbourne, Australia, 8–9 May 2019; pp. 22–29. [Google Scholar]
- Tseng, T.W.; Wu, C.T.; Lai, F. Threat analysis for wearable health devices and environment monitoring internet of things integration system. IEEE Access 2019, 7, 144983–144994. [Google Scholar] [CrossRef]
- Vakhter, V.; Soysal, B.; Schaumont, P.; Guler, U. Threat Modeling and Risk Analysis for Miniaturized Wireless Biomedical Devices. IEEE Internet Things J. 2022, 9, 13338–13352. [Google Scholar] [CrossRef]
- Wangyal, S.; Dechen, T.; Tanimoto, S.; Sato, H.; Kanai, A. A Study of Multi-viewpoint Risk Assessment of Internet of Things (IoT). In Proceedings of the 2020 9th International Congress on Advanced Applied Informatics (IIAI-AAI), Kitakyushu, Japan, 1–15 September 2020; pp. 639–644. [Google Scholar]
- Zahra, B.F.; Abdelhamid, B. Risk analysis in Internet of Things using EBIOS. In Proceedings of the 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 9–11 January 2017; pp. 1–7. [Google Scholar]
- de la Defense Nade la Defense Nationale, Secretariat General. EBIOS: Expression of Needs and Identification of Security Objectives. 2005. Available online: https://www.enisa.europa.eu/topics/risk-management/current-risk/risk-management-inventory/rm-ra-methods/m_ebios.html (accessed on 18 May 2023).
- Breier, J.; Schindler, F. Assets dependencies model in information security risk management. In Proceedings of the Information and Communication Technology: Second IFIP TC5/8 International Conference, ICT-EurAsia 2014, Bali, Indonesia, 14–17 April 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 405–412. [Google Scholar]
- Federal Information Processing Standards. Minimum Security Requirements for Federal Information and Information Systems; FIPS Publication: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Archiveddocs, M. The STRIDE Threat Model. 2009. Available online: https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)?redirectedfrom=MSDN (accessed on 18 April 2023).
- Deng, M.; Wuyts, K.; Scandariato, R.; Preneel, B.; Joosen, W. A privacy threat analysis framework: Supporting the elicitation and fulfillment of privacy requirements. Requir. Eng. 2011, 16, 3–32. [Google Scholar] [CrossRef]
- Michael, H.; David, L. Writing Secure Code; Pearson Education: London, UK, 2002. [Google Scholar]
- Wang, Z.; Zhu, H.; Sun, L. Social engineering in cybersecurity: Effect mechanisms, human vulnerabilities and attack methods. IEEE Access 2021, 9, 11895–11910. [Google Scholar] [CrossRef]
- Gan, D.; Heartfield, R. Social engineering in the internet of everything. Cut. IT J. 2016, 29, 20–29. [Google Scholar]
- Souppaya, M.; Stine, K.; Simos, M.; Sweeney, S.; Scarfone, K. [Project Description] Critical Cybersecurity Hygiene: Patching the Enterprise; Technical Report; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2020.
- Maennel, K.; Mäses, S.; Maennel, O. Cyber hygiene: The big picture. In Proceedings of the Secure IT Systems: 23rd Nordic Conference, NordSec 2018, Oslo, Norway, 28–30 November 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 291–305. [Google Scholar]
- Rizvi, S.; Orr, R.; Cox, A.; Ashokkumar, P.; Rizvi, M.R. Identifying the attack surface for IoT network. Internet Things 2020, 9, 100162. [Google Scholar] [CrossRef]
- Zevin, S. Standards for Security Categorization of Federal Information and Information Systems; DIANE Publishing: Collingdale, PA, USA, 2009. [Google Scholar]
- Hong, J.; Kim, D.S. Harms: Hierarchical Attack Representation Models for Network Security Analysis; Edith Cowan University: Joondalup, WA, Australia, 2012. [Google Scholar]
- ISO. Medical Devices: Application of Risk Management to Medical Devices; International Organization for Standardization: Geneva, Switzerland, 2019. [Google Scholar]
- Johnson, C.; Badger, L.; Waltermire, D.; Snyder, J.; Skorupka, C. NIST Special Publication 800-150: Guide to Cyber Threat Information Sharing; Technical Report; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2016.
- ISO. 31000: 2018 Risk Management. Guidelines. Suomen Standarditoimisliitto SFS ry. 2018. Available online: https://sfs.fi/ (accessed on 26 July 2023).
- Deutsche Telekom. Privacy and Security Assessment Process. 2012. Available online: https://www.telekom.com/en/company/data-privacy-and-security/news/privacy-and-security-assessment-process-358312#:~:text=The%20PSA%20process%20guarantees%20for,(zip%2C%203.5%20MB) (accessed on 26 July 2023).
- Barker, E.B.; Smid, M.; Branstad, D. Profile for US Federal Cryptographic Key Management Systems; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2015.
- Stouffer, K.; Falco, J.; Scarfone, K. Guide to industrial control systems (ICS) security. NIST Spec. Publ. 2011, 800, 16. [Google Scholar]
- Center of Internet Security. CIS Controls v8 Internet of Things Companion Guide. 2021. Available online: https://www.cisecurity.org/white-papers/cis-controls-v8-internet-of-things-companion-guide/ (accessed on 22 July 2023).
- Khouzani, M.; Liu, Z.; Malacaria, P. Scalable min-max multi-objective cyber-security optimisation over probabilistic attack graphs. Eur. J. Oper. Res. 2019, 278, 894–903. [Google Scholar] [CrossRef]
- Zhang, Y.; Malacaria, P. Bayesian Stackelberg games for cyber-security decision support. Decis. Support Syst. 2021, 148, 113599. [Google Scholar] [CrossRef]
- Fielder, A.; Panaousis, E.; Malacaria, P.; Hankin, C.; Smeraldi, F. Decision support approaches for cyber security investment. Decis. Support Syst. 2016, 86, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Verizon. 2023 Data Breach Investigations Report. 2023. Available online: https://www.verizon.com/business/resources/reports/dbir/ (accessed on 18 July 2023).
- Motohashi, T.; Hirano, T.; Okumura, K.; Kashiyama, M.; Ichikawa, D.; Ueno, T. Secure and scalable mhealth data management using blockchain combined with client hashchain: System design and validation. J. Med. Internet Res. 2019, 21, e13385. [Google Scholar] [CrossRef]
- Safa, N.S.; Maple, C.; Watson, T.; Von Solms, R. Motivation and opportunity based model to reduce information security insider threats in organisations. J. Inf. Secur. Appl. 2018, 40, 247–257. [Google Scholar] [CrossRef] [Green Version]
- Yao, D.; Wen, M.; Liang, X.; Fu, Z.; Zhang, K.; Yang, B. Energy theft detection with energy privacy preservation in the smart grid. IEEE Internet Things J. 2019, 6, 7659–7669. [Google Scholar] [CrossRef]
- Kumar, P.; Lin, Y.; Bai, G.; Paverd, A.; Dong, J.S.; Martin, A. Smart grid metering networks: A survey on security, privacy and open research issues. IEEE Commun. Surv. Tutor. 2019, 21, 2886–2927. [Google Scholar] [CrossRef] [Green Version]
- Affia, A.A.O.; Finch, H.; Jung, W.; Samori, I.A.; Potter, L.; Palmer, X.L. IoT Health Devices: Exploring Security Risks in the Connected Landscape. IoT 2023, 4, 150–182. [Google Scholar] [CrossRef]
- Izrailov, K.; Chechulin, A.; Vitkova, L. Threats classification method for the transport infrastructure of a smart city. In Proceedings of the 2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT), Uzbekistan, Tashkent, 7–9 October 2020; pp. 1–6. [Google Scholar]
- VARIoT. Variot Databases of IOT Exploits and Vulnerabilities. 2022. Available online: https://www.variotdbs.pl/ (accessed on 2 June 2023).
- ENISA. Smart Grid Threat Landscape and Good Practice Guide. 2013. Available online: https://www.enisa.europa.eu/publications/smart-grid-threat-landscape-and-good-practice-guide (accessed on 26 July 2023).
- ENISA. Cyber Security and Resilience for Smart Hospitals. 2021. Available online: https://www.enisa.europa.eu/publications/cyber-security-and-resilience-for-smart-hospitals (accessed on 26 July 2023).
- ENISA. ENISA Good Practices for IoT and Smart Infrastructures Tool. 2021. Available online: https://www.enisa.europa.eu/topics/iot-and-smart-infrastructures/iot/good-practices-for-iot-and-smart-infrastructures-tool (accessed on 22 July 2023).
- Haney, J.M.; Furman, S.M.; Acar, Y. Smart home security and privacy mitigations: Consumer perceptions, practices, and challenges. In Proceedings of the 22nd HCI International Conference, HCII 2020, Copenhagen, Denmark, 19–24 July 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 393–411. [Google Scholar]
- Health and Safety Executive. Managing Risks and Risk Assessment at Work. Available online: https://www.hse.gov.uk/simple-health-safety/risk/index.htm (accessed on 24 July 2023).
IoT Risk Identification | IoT Cyber Risk Calculation | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reference | Assets | Users | Threats | Vulnerabilities | Controls | Impact | Likelihood | Graph Modelling | Risk Matrices | Vulnerability Databases | Threat Knowledge Bases | Weighted Risk Formulas | |
Abbass et al. [38] | √ | - | √ | √ | - | - | - | - | - | - | - | - | |
Aiken et al. [39] | - | - | - | √ | √ | - | - | - | - | - | - | √ | |
Al et al. [40] | √ | - | √ | √ | - | - | √ | - | - | - | - | - | |
Ali and Awad [41] | √ | √ | √ | √ | - | √ | - | - | - | - | √ | - | |
Ali et al. [42] | √ | - | √ | √ | - | - | - | - | √ | - | - | - | |
Alsubaei et al. [43] | - | - | √ | √ | √ | √ | √ | - | - | - | √ | √ | |
Andrade et al. [44] | √ | √ | √ | √ | - | √ | √ | √ | √ | - | - | √ | |
Anisetti et al. [45] | √ | - | √ | √ | - | √ | √ | √ | - | - | - | - | |
Arfaoui et al. [46] | - | - | √ | √ | - | √ | √ | - | - | - | - | - | |
Chehida et al. [47] | √ | √ | √ | √ | - | √ | - | - | √ | - | √ | - | |
Christensen et al. [48] | √ | - | √ | √ | - | - | √ | - | - | - | - | - | |
Danielis et al. [49] | √ | - | √ | √ | - | √ | √ | - | √ | - | - | - | |
Duan et al. [50] | √ | √ | - | √ | - | √ | √ | √ | - | √ | √ | - | |
Echeverria et al. [51] | √ | - | - | √ | - | √ | √ | - | √ | √ | √ | - | |
Garcia et al. [52] | - | - | - | √ | - | √ | √ | - | - | √ | √ | - | |
George and Thampi [53] | - | - | √ | √ | - | √ | √ | √ | √ | - | - | - | |
George and Thampi [54] | - | - | √ | √ | - | - | √ | √ | √ | - | - | √ | |
Ivanov et al. [55] | - | - | √ | √ | - | - | - | √ | - | √ | √ | - | |
James [56] | - | - | √ | √ | - | - | - | √ | - | - | - | - | |
James [57] | √ | - | √ | √ | - | - | √ | √ | - | - | - | - | |
Kalinin et al. [58] | √ | - | √ | √ | - | - | √ | - | - | - | - | - | |
Kavallieratos et al. [59] | √ | - | √ | √ | - | - | √ | √ | - | - | - | - | |
Ksibi et al. [60] | √ | √ | √ | √ | √ | √ | √ | - | - | - | - | √ | |
Lally and Sgandurra [61] | - | - | √ | √ | - | - | - | - | - | - | - | - | |
Mohsin et al. [62] | - | - | √ | - | - | - | - | √ | - | - | - | - | |
Mohsin et al. [63] | - | - | √ | √ | - | - | √ | √ | √ | - | - | - | |
Nakamura and Ribeiro [64] | - | √ | √ | √ | - | √ | √ | - | √ | - | √ | - | |
Pacheco et al. [65] | - | - | √ | √ | - | √ | - | - | - | - | - | - | |
Pacheco et al. [66] | - | - | √ | √ | - | √ | - | - | - | - | √ | - | |
Parsons et al. [67] | √ | √ | √ | √ | √ | √ | √ | - | - | - | √ | √ | |
Rizvi et al. [68] | - | - | √ | √ | - | √ | - | - | - | √ | √ | - | |
Ryoo et al. [69] | √ | - | √ | √ | - | - | - | - | - | - | - | - | |
Seeam et al. [70] | √ | - | √ | √ | - | √ | - | - | - | - | - | - | |
Shivraj et al. [71] | √ | - | √ | √ | - | √ | √ | √ | √ | - | - | √ | |
Shokeen et al. [72] | - | - | - | √ | - | - | - | - | - | - | - | - | |
Tseng et al. [73] | √ | √ | √ | √ | - | - | √ | - | - | - | √ | - | |
Vakhter et al. [74] | √ | - | √ | √ | - | √ | √ | - | √ | - | - | - | |
Wangyal et al. [75] | - | - | √ | √ | - | - | √ | - | √ | - | - | - | |
Zahra and Abdelhamid [76] | √ | √ | √ | √ | - | √ | √ | - | - | - | √ | - |
IoT Risk Control | IoT Risk Monitoring | ||||||
---|---|---|---|---|---|---|---|
Reference | IoT Control Strategies | IoT Security Requirements | IoT Risk Resources | Optimise IoT Control Strategies | Continuous Monitoring | Residual IoT Risk | |
Abbass et al. [38] | √ | √ | - | - | √ | - | |
Aiken et al. [39] | - | - | - | - | - | - | |
Al et al. [40] | √ | - | √ | - | √ | √ | |
Ali and Awad [41] | √ | √ | - | - | - | - | |
Ali et al. [42] | - | - | - | - | - | - | |
Alsubaei et al. [43] | √ | - | - | - | - | - | |
Andrade et al. [44] | √ | √ | √ | - | √ | √ | |
Anisetti et al. [45] | √ | - | - | √ | √ | √ | |
Arfaoui et al. [46] | √ | √ | - | √ | √ | - | |
Chehida et al. [47] | √ | √ | - | - | √ | - | |
Christensen et al. [48] | √ | √ | - | - | - | - | |
Danielis et al. [49] | √ | - | - | √ | - | - | |
Duan et al. [50] | - | - | - | - | - | - | |
Echeverria et al. [51] | √ | √ | - | - | √ | - | |
Garcia et al. [52] | - | - | - | - | √ | - | |
George and Thampi [53] | √ | - | - | √ | - | - | |
George and Thampi [54] | √ | √ | - | - | - | - | |
Ivanov et al. [55] | √ | - | √ | √ | - | - | |
James [56] | √ | √ | - | - | - | - | |
James [57] | √ | √ | √ | - | - | - | |
Kalinin et al. [58] | - | - | - | - | √ | - | |
Kavallieratos et al. [59] | - | - | - | - | - | - | |
Ksibi et al. [60] | - | √ | - | √ | √ | - | |
Lally and Sgandurra [61] | - | - | - | - | - | - | |
Mohsin et al. [62] | √ | √ | - | - | - | - | |
Mohsin et al. [63] | √ | √ | - | - | - | - | |
Nakamura and Ribeiro [64] | √ | √ | - | √ | - | - | |
Pacheco et al. [65] | √ | √ | - | - | - | - | |
Pacheco et al. [66] | √ | √ | - | - | - | - | |
Parsons et al. [67] | √ | - | √ | √ | - | - | |
Rizvi et al. [68] | √ | √ | - | √ | √ | - | |
Ryoo et al. [69] | - | - | - | - | √ | √ | |
Seeam et al. [70] | √ | √ | - | - | √ | - | |
Shivraj et al. [71] | - | - | - | - | - | - | |
Shokeen et al. [72] | √ | √ | √ | - | - | - | |
Tseng et al. [73] | √ | √ | - | - | - | - | |
Vakhter et al. [74] | √ | - | - | √ | √ | - | |
Wangyal et al. [75] | √ | √ | - | - | - | - | |
Zahra and Abdelhamid [76] | √ | √ | - | - | √ | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parsons, E.K.; Panaousis, E.; Loukas, G.; Sakellari, G. A Survey on Cyber Risk Management for the Internet of Things. Appl. Sci. 2023, 13, 9032. https://doi.org/10.3390/app13159032
Parsons EK, Panaousis E, Loukas G, Sakellari G. A Survey on Cyber Risk Management for the Internet of Things. Applied Sciences. 2023; 13(15):9032. https://doi.org/10.3390/app13159032
Chicago/Turabian StyleParsons, Emily Kate, Emmanouil Panaousis, George Loukas, and Georgia Sakellari. 2023. "A Survey on Cyber Risk Management for the Internet of Things" Applied Sciences 13, no. 15: 9032. https://doi.org/10.3390/app13159032
APA StyleParsons, E. K., Panaousis, E., Loukas, G., & Sakellari, G. (2023). A Survey on Cyber Risk Management for the Internet of Things. Applied Sciences, 13(15), 9032. https://doi.org/10.3390/app13159032