On-Demand Waveguide-Integrated Microlaser-on-Silicon
Abstract
:1. Introduction
2. Results and Discussion
2.1. On-Demand Si-Waveguide-Integrated Microdisk Laser
2.2. Device Fabrication
2.3. Optical Characterizations
2.4. Numerical Simulations
3. Conclusions
4. Methods
4.1. Optical Measurement
4.2. Numerical Simulations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, S.E. Integrated Optics: An Introduction. Bell Syst. Tech. J. 1969, 48, 2059–2069. [Google Scholar] [CrossRef]
- Liang, D.; Bowers, J.E. Recent progress in lasers on silicon. Nat. Photonics 2010, 4, 511–517. [Google Scholar] [CrossRef]
- Soref, R. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 1678–1687. [Google Scholar] [CrossRef]
- Smit, M.; Leijtens, X.; Ambrosius, H.; Bente, E.; Van der Tol, J.; Smalbrugge, B.; De Vries, T.; Geluk, E.J.; Bolk, J.; Van Veldhoven, R.; et al. An introduction to InP-based generic integration technology. Semicond. Sci. Technol. 2014, 29, 083001. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, M.; Wang, J.; Zhou, X.; Qiang, X.; Guo, G.; Ren, X. Silicon Photonic Devices for Scalable Quantum Information Applications. Photonics Res. 2022, 10, A135–A153. [Google Scholar] [CrossRef]
- Tanaka, S.; Jeong, S.-H.; Sekiguchi, S.; Kurahashi, T.; Tanaka, Y.; Morito, K. High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology. Opt. Express 2012, 20, 28057–28069. [Google Scholar] [CrossRef]
- Roelkens, G.; Campenhout, J.V.; Brouckaert, J.; Thourhout, D.V.; Baets, R.; Rojo Romeo, P.; Regreny, P.; Kazmierczak, A.; Seassal, C.; Letartre, X.; et al. III-V/Si photonics by die-to-wafer bonding. Mater. Today 2007, 10, 36–43. [Google Scholar] [CrossRef]
- Sheng, Z.; Liu, L.; Brouckaert, J.; He, S.; Van Thourhout, D. InGaAs PIN Photodetectors Integrated on Silicon-on-Insulator Waveguides. Opt. Express 2010, 18, 1756–1761. [Google Scholar] [CrossRef]
- Roelkens, G.; Van Thourhout, D.; Baets, R.; Nötzel, R.; Smit, M. Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit. Opt. Express 2006, 14, 8154–8159. [Google Scholar] [CrossRef]
- Campenhout, J.V.; Rojo-Romeo, P.; Regreny, P.; Seassal, C.; Thourhout, D.V.; Verstuyft, S.; Cioccio, L.D.; Fedeli, J.-M.; Lagahe, C.; Baets, R. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Opt. Express 2007, 15, 6744–6749. [Google Scholar] [CrossRef]
- Karle, T.J.; Halioua, Y.; Raineri, F.; Monnier, P.; Braive, R.; Gratiet, L.L.; Beaudoin, G.; Sagnes, I.; Roelkens, G.; Laere, F.V.; et al. Heterogenous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides. J. Appl. Phys. 2010, 107, 063103. [Google Scholar] [CrossRef]
- Fang, A.W.; Park, H.; Cohen, O.; Jones, R.; Paniccia, M.J.; Bowers, J.E. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt. Express 2006, 14, 9203–9210. [Google Scholar] [CrossRef]
- Liang, D.; Fiorentino, M.; Okumura, T.; Chang, H.-H.; Spencer, D.T.; Kuo, Y.-H.; Fang, A.W.; Dai, D.; Beausoleil, R.G.; Bowers, J.E. Electrically-pumped Compact Hybrid Silicon Microring Lasers for Optical Interconnects. Opt. Express 2009, 17, 20355–20364. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Huang, X.; Kurczveil, G.; Fiorentino, M.; Beausoleil, R.G. Integrated finely tunable microring laser on silicon. Nat. Photonics 2016, 10, 719–722. [Google Scholar] [CrossRef]
- Crosnier, G.; Sanchez, D.; Bouchoule, S.; Monnier, P.; Beaudoin, G.; Sagnes, I.; Raj, R.; Raineri, F. Hybrid Indium Phosphide-on-Silicon Nanolaser Diode. Nat. Photonics 2017, 11, 297–300. [Google Scholar] [CrossRef]
- Hattori, H.T.; Seassal, C.; Touraille, E.; Rojo-Romeo, P.; Letartre, X.; Hollinger, G.; Viktorovitch, P.; Di Cioccio, L.; Zussy, M.; Melhaoui, L.E.; et al. Heterogeneous integration of microdisk lasers on silicon strip waveguides for optical interconnects. IEEE Photonics Technol. Lett. 2006, 18, 223–225. [Google Scholar] [CrossRef]
- Billah, M.R.; Blaicher, M.; Hoose, T.; Dietrich, P.-I.; Marin-Palomo, P.; Lindenmann, N.; Nesic, A.; Hofmann, A.; Troppenz, U.; Moehrle, M.; et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica 2018, 5, 876–883. [Google Scholar] [CrossRef]
- Roelkens, G.; Zhang, J.; Bogaert, L.; Billet, M.; Wang, D.; Pan, B.; Kruckel, C.J.; Soltanian, E.; Maes, D.; Vanackere, T.; et al. Micro-Transfer Printing for Heterogeneous Si Photonic Integrated Circuits. IEEE J. Sel. Top. Quantum Electron. 2023, 29, 8200414. [Google Scholar] [CrossRef]
- Karnadi, I.; Son, J.; Kim, J.Y.; Jang, H.; Lee, S.; Kim, K.S.; Min, B.; Lee, Y.H. A printed nanobeam laser on a SiO2/Si substrate for low-threshold continuous-wave operation. Opt. Express 2014, 22, 12115–12121. [Google Scholar] [CrossRef]
- Lee, J.; Karnadi, I.; Kim, J.T.; Lee, Y.-H.; Kim, M.-K. Printed Nanolaser on Silicon. ACS Photonics 2017, 4, 2117–2123. [Google Scholar] [CrossRef]
- Kim, M.-W.; Park, S.-W.; Park, K.-T.; Min, B.-J.; Ku, J.-H.; Ko, J.-Y.; Choi, J.S.; No, Y.-S. All-Graphene-Contact Electrically Pumped On-Demand Transferrable Nanowire Source. Nano Lett. 2022, 22, 1316–1323. [Google Scholar] [CrossRef] [PubMed]
- Huber, T.; Predojević, A.; Khoshnegar, M.; Dalacu, D.; Poole, P.J.; Majedi, H.; Weihs, G. Polarization Entangled Photons from Quantum Dots Embedded in Nanowires. Nano Lett. 2014, 14, 7107–7114. [Google Scholar] [CrossRef] [PubMed]
- Huffaker, D.L.; Park, G.; Zou, Z.; Shchekin, O.B.; Deppe, D.G. 1.3 μm room-temperature GaAs-based quantum-dot laser. Appl. Phys. Lett. 1998, 73, 2564–2566. [Google Scholar] [CrossRef]
- Liu, A.; Jones, R.; Liao, L.; Samara-Rubio, D.; Rubin, D.; Cohen, O.; Nicolaescu, R.; Paniccia, M. A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor. Nature 2004, 427, 615. [Google Scholar] [CrossRef]
- Michel, J.; Liu, J.L.; Kimerling, L.C. High-performance Ge-on-Si photodetectors. Nat. Photonics 2010, 4, 527–534. [Google Scholar] [CrossRef]
- Knight, J.C.; Birks, T.A.; Russell, P.S.J.; Atkin, D.M. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 1996, 21, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Jen, A.K.-Y.; Dalton, L.R. Polymer-Based Optical Waveguides: Materials, Processing, and Devices. Adv. Mater. 2002, 14, 1339–1365. [Google Scholar] [CrossRef]
- Chan, K.C.; Teo, M.; Zhong, Z.W. Characterization of low-k benzocyclobutene dielectric thin film. Microelectron. Int. 2003, 20, 11–22. [Google Scholar] [CrossRef]
- Mauthe, S.; Vico Triviño, N.; Sousa, M.; Staudinger, P.; Baumgartner, Y.; Tiwari, P.; Stöferle, T.; Caimi, D.; Scherrer, M.; Schmid, H.; et al. Monolithic integration of III-V microdisk lasers on silicon. In Proceedings of the 2019 International Conference on Optical MEMS and Nanophotonics (OMN), Daejeon, Republic of Korea, 28 July–1 August 2019; pp. 32–33. [Google Scholar]
- Park, S.-W.; Kim, M.-W.; Park, K.-T.; Ku, J.-H.; No, Y.-S. On-Chip Transferrable Microdisk Lasers. ACS Photonics 2020, 7, 3313–3320. [Google Scholar] [CrossRef]
- Min, B.-J.; Kim, Y.-J.; Choi, J.-H.; Kim, M.-W.; Park, K.-T.; Jang, D.J.; Choi, J.S.; No, Y.-S. Electrically driven on-chip transferrable micro-LEDs. Appl. Phys. Lett. 2022, 121, 241107. [Google Scholar] [CrossRef]
- Kim, Y.; Park, B.J.; Kim, M.; Song, D.I.; Lee, J.; Yu, A.; Kim, M.-K. Hybrid Silicon Microlasers with Gain Patches of Unlimited Designs. ACS Photonics 2021, 8, 2590–2597. [Google Scholar] [CrossRef]
- Guilhabert, B.; Hurtado, A.; Jevtics, D.; Gao, Q.; Tan, H.H.; Jagadish, C.; Dawson, M.D. Transfer Printing of Semiconductor Nanowires with Lasing Emission for Controllable Nanophotonic Device Fabrication. ACS Nano 2016, 10, 3951–3958. [Google Scholar] [CrossRef] [PubMed]
- Osada, A.; Ota, Y.; Katsumi, R.; Watanabe, K.; Iwamoto, S.; Arakawa, Y. Transfer-printed quantum-dot nanolasers on a silicon photonic circuit. Appl. Phys. Express 2018, 11, 072002. [Google Scholar] [CrossRef]
- Liu, Q.; Li, S.; Wang, B.; Ke, S.; Qin, C.; Wang, K.; Liu, W.; Gao, D.; Berini, P.; Lu, P. Efficient mode transfer on a compact silicon chip by encircling moving exceptional points. Phy. Rev. Lett. 2020, 124, 153903. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, T.; Lei, Q.; Zhao, D.; Ke, S. Nonreciprocal topological mode conversion by encircling an exceptional point in dynamic waveguides. Opt. Lett. 2023, 48, 4089–4092. [Google Scholar] [CrossRef] [PubMed]
- Berdichevsky, Y.; Khandurina, J.; Guttman, A.; Lo, Y.-H. UV/ozone modification of poly (dimethylsiloxane) microfluidic channels. Sens. Actuators B Chem. 2004, 97, 402–408. [Google Scholar] [CrossRef]
- Mao, C.; Zhong, D.; Liu, F.; Wang, L.; Zhao, D. Multiple optical bistabilities in graphene arrays-bulk dielectric composites. Opt. Laser Technol. 2022, 154, 108292. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, Z.; Shum, P.P.; Xu, Z.; Keiser, G.; Humbert, G.; Zhang, H.; Zeng, S.; Dinh, X.Q. Sensing and lasing applications of whispering gallery mode microresonators. Opto-Electron. Adv. 2018, 1, 180015. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, B.-J.; Kim, Y.-J.; No, Y.-S. On-Demand Waveguide-Integrated Microlaser-on-Silicon. Appl. Sci. 2023, 13, 9329. https://doi.org/10.3390/app13169329
Min B-J, Kim Y-J, No Y-S. On-Demand Waveguide-Integrated Microlaser-on-Silicon. Applied Sciences. 2023; 13(16):9329. https://doi.org/10.3390/app13169329
Chicago/Turabian StyleMin, Byung-Ju, Yeon-Ji Kim, and You-Shin No. 2023. "On-Demand Waveguide-Integrated Microlaser-on-Silicon" Applied Sciences 13, no. 16: 9329. https://doi.org/10.3390/app13169329
APA StyleMin, B. -J., Kim, Y. -J., & No, Y. -S. (2023). On-Demand Waveguide-Integrated Microlaser-on-Silicon. Applied Sciences, 13(16), 9329. https://doi.org/10.3390/app13169329